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THE BOUNDS BASED ON THE FUNCTIONS 
OF OBSERVATIONS FOR MAXIMUM OF 

STABLE LAW 

BY 

A. K. BASU AND M. T. WASAN 

Gnedenko and Kolmogorov [3, pp. 181-182] have shown that if Xn with law 
F(x) belong to the domain of normal attraction of a stable law of index 0 < a < 2, 
i.e. if partial sum Sn/anlla converges in distribution to some stable law Va, a > 0 then 
there exist cx and c2 such that 

(1) l - F ( x ) ~ cxa
ax~a as x->oo 

and 

(2) F( — x) ~ c2a
a\x\~ce asx->QO. 

They also proved that for every constant k > 0 

( 3 ) l-F(kx) + F(-kx)-*k aS*->°°-

Now, if Xn are nonnegative random variables then (3) reduces to 

//i\ \-F(x) 1a 
( 4 ) ï=F(kx)->k aSX^œ-

Hence, by a theorem of Gnedenko [2], 

<5> il* ̂ H e x p (-*-«) if î ïo 
where 

1 
F(An)~ 1 

n 

However, equation (5) is difficult to solve as the form of F is not known explicitly. 
So that it is interesting to construct two functions of n between which the entire 
probability mass of the maximum lies. 

THEOREM. Let Xu X2,..., Xn be i.i.d. random variables belonging to the domain 
of normal attraction of a stable law with characteristic exponent a(0<a<2). 
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If Yn is the nth order statistic (maximum) of Xlt X2, • •., Xn, then, for any fixed 
S>0 

(6) lim P[nlla~ô < Yn < nlla+ô] = 1 if Zx > Oa.s. 
n-»oo 

and 

(7) lim P[-nlla + ô < Yn < nlla + ô] = 1 if X1 is symmetric. 
n-+ oo 

Proof. For (6) it is sufficient to show 

(8) lim Fn(nlla-0) = 0 
n-*oo 

and 

(9) lim Fn(nlla + Ô) = 1 , 
n-+oo 

where F is the common d.f. This is equivalent to showing that 

lim nlogF(nlla~ô) = -oo 
n-+eo 

and 

lim nlogF(nlla+ô) = 0. 
n-+ao 

If Xx>0 a.s., then from (1) there exists dl9 d2>0 such that 

\-d2x~a < F(x) < \-d1x~a 

for x sufficiently large. 

Also 
\og(\-d2x-a) < logF(x) < logO-rf i*-") . 

Since F is not degenerate, without loss of generality, we can assume 

0 < dxx-" < 1. 

Therefore by expansion, 

So, ifx=nlla-\ 

-logÇl-diX-*) > d&^n-1, 

which implies 

lim /ilog(l—rf]*""*) < lim-naôdx = -oo. 
n-+oo n-*oo 

Therefore, 

lim wlogCFO*1'"-*5)) = ~oo. 
n-*oo 

https://doi.org/10.4153/CMB-1972-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-051-1


1972] BOUNDS FOR STABLE LAW 287 

Now, by usual power series expansion of log (1 —x), 

lim 
n-*oo *log(i-J-<^>) lim 

n-+oo 

nlog(l-rf2n-<1+aiS)) = 0. 

But 

1 - d2n ~ a+a<S) < F(nlla+6) < 1 if « is large, 

|log(l-4"" (1+a ,5 ))| > |log F(nlla+% 

lim nlogF(nlla+e) = lim nlogF(nlla+â) = 0. 
71-+00 n - » o o 

If Xx is symmetric it is sufficient to show 

lim Fn(nlla+Ô) = 1, 
n-»oo 

where i7 satisfies (1). 
The rest of the proof follows, same as (9). 

REMARK. This covers the result of Doubleday and Wasan [1], which is a par
ticular case of this result if we put a=\. 
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