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INTRODUCTION 

Since the Moscow meeting the Commission has lost by death its members Professor M. 
Milankovitch, who died on 12 December 1958, and Dr R. Vernic, who died on 20 October 1958. 

During the past three years the activity in celestial mechanics has been at an exceptionally 
high level. A considerable part of the current literature in celestial mechanics has been con
cerned with the problem of the motion of artificial satellites. A second contributing circum
stance has been the greater use of high-speed calculators for the solution of problems in 
celestial mechanics. 

ARTIFICIAL SATELLITE MOTION 

The literature on this subject is so vast that a comprehensive bibliography of the subject 
would be beyond the scope of this report. Even a critical analysis of what has been accom
plished in this field would be a major undertaking which, at the present time, might be 
premature. For these reasons only a few comments will be recorded. 

Some investigations on the subject of artificial satellite motion were primarily concerned 
with the analytical solution of the drag-free motion of a small particle under the gravitational 
attraction of a non-spherical primary, others with the evaluation of the coefficients of the 
higher terms in the Earth's potential, and still others with the evaluation of the density of the 
air at great heights. A great deal of new information has been gained from these various aspects 
of the problem. 

The equations of motion of the drag-free problem show a considerable resemblance with the 
equations of motion of the main problem of the lunar theory, although the character of the 
disturbing function is, of course, quite different. It is not surprising, therefore, that among the 
methods that have been used for the solution of the artificial satellite problem many correspond 
to methods that were used for the solution of the problem of the Moon's motion. 

Numerous contributions to the subject have been produced by scientists trained in applied 
mathematics and general dynamics, but with little previous acquaintance with the literature of 
celestial mechanics. This has resulted in a freshness of approach, but also in some confusion 
of terminology and notation. The problem has also attracted the attention of mathematicians 
who have dealt with questions concerning the convergence of series and whether or not definite 
bounds can be established for variables that occur in the solution. This revival of interest holds 
promise for the future development of the field, if it should be extended to more difficult 
problems. 

As a result of all this activity the character of the analytical solution of the problem of the 
drag-free motion of a particle in the gravitational field of a non-spherical planet with rotational 
symmetry has been thoroughly explored. The solution is generally obtained in a form similar 
to that of the solution of the main problem of the lunar theory, except for its greater simplicity. 
The arguments of sine and cosine terms that appear in the solution are linear combinations of 
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two fundamental arguments, as against four in the main problem of the lunar theory. The 
solution is developed in powers of the coefficients that appear in the development of the Earth's 
potential in spherical harmonics, but developments in powers of the eccentricity or inclination 
are not needed to perform the integration. If J designates the coefficient of the principal 
oblateness term in the potential, and if all further terms are at least of OfJ2), then the solution 
is usually obtained to 0(J) for the periodic terms and to Otf2) in the motions of perigee and 
node. This limitation is probably adequate for current applications. 

In general, it has been a simple matter to establish agreement among the various published 
solutions to the first power of J. Apparent disagreements of the coefficients of J 2 in the secular 
motions have in many cases been explained as the consequence of differences in the definition 
of the constants of integration, especially the inclination constant. 

The solution described holds for any inclination except in a region near the critical inclination 
(tan /„ = 2), because of the occurrence of divisors 1 — 5 cos H in the solution. For orbits in 
the vicinity of the critical inclination a solution in powers of J* can be obtained, and has been 
the subject of several contributions (1, 2). 

A different form of solution was obtained by Vinti (3), who showed that if the force function, 
written in the form 

r 
- V Jn(*YPn(sinp) 

satisfies the conditions 

J*n = ( - I)K+1J2
M . J2«+l = ( ~ 0 " J l K 

the solution can be achieved by separation of variables. It is expressed with the aid of elliptic 
integrals. 

Vinti's solution is evidently the solution of a special potential, for which the critical inclina
tion does not exist. It is found that if J 4 = — J2

2, as required by Vinti, all the divisors of the 
form 1 — 5 cos H vanish from the general solution in which terms with J2 and J± as factors are 
included. 

The odd harmonics with coefficients J3 and J5 were first introduced by O'Keefe, Eckels and 
Squires (4). Subsequently King-Hele (5) and Kozai (6) included them in their solutions. The 
three solutions with their mean errors are: 

All quantities are in units of io~6 

O'Keefe et al. King-Hele Kozai 

J2 + 1082-5 ± o - i +1082-79 ± 0-15 +1082-19 ± 0-04 
J3 — 2-4 ± 0-4 — 2-4 ±0.3 — . 2-28 ± 0-03 
Ji — I - 7 ± O - I — 1-4 ± 0-2 — 2-12 ± 0-06 
jf5 — 0-05 ± o-i — o-i ± o-i — 0-23 ± 0-03 
jfe — + 0-9 ± o-8 — 

A weighted mean value for the ratio — J4/J2
2 i s + i ' 7 ° ± 0-05, significantly exceeding 

unity, which would apply to Vinti's special potential. Nevertheless, Vinti's solution as an 
intermediate orbit may have advantages, as suggested by Izsak (7). 

The many publications dealing with artificial satellite motion have exhibited a great variety 
of notations for the coefficients of the terms in the Earth's potential. A recommendation by the 
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Commission may lead to greater uniformity in future work. The notation adopted in this 
report has the objection that Ju is the standard designation for Bessel Functions. 

It may suffice to add a few general references to the literature by remarking that many 
papers on artificial satellite motion have appeared in the Astronomical Journal, the Astronomical 
Journal, Moscow, the Bulletin of the Institute of Theoretical Astronomy (Leningrad), as well as 
in various series of special reports. Among these are the series 'Artificial Earth Satellites' 
(Moscow), the 'Bulletin of the Stations for the Observation of Artificial Satellites' (Moscow), 
the series 'Research in Space Science, Special Reports' issued by the Smithsonian Astro-
physical Observatory, and the reports issued by the Royal Aircraft Establishment, Farn-
borough, England. An early paper by King-Hele (8) appeared in the Proceedings of the Royal 
Society. 

USE OF HIGH-SPEED COMPUTERS 

At the Institute of Theoretical Astronomy in Leningrad Gontkovskaya (9) and Polozova (10) 
made a study of the use of high-speed computers in the application to various forms of general 
planetary theories, while Shor ( n ) considered the solution of the restricted problem of three 
bodies by the Hill-Brown method. In this connection it may be remarked that the Theory of 
Mars by Clemence (12) is an early example of a development of a general planetary theory by 
Hansen's method, carried out with the use of high-speed computers. 

Many applications of high-speed computers pertain to solutions by numerical integration. 
The motions of Trojan-type orbits received particular attention. Examples are the papers by 
Chebotarev and Bozhkova (13) who studied the motions of two Trojan asteroids, Patroclus 
and Anchises over a period of 700 years. Chebotarev and Volkov (14) also integrated the motion 
of Trojan asteroids by Proto-Jupiter with Jupiter's mass put at 1/20 the Sun's mass, to explore 
Kuiper's (15) theory of the origin of the Trojans. 

Rabe reports on an as yet unpublished investigation of the well-known sequence of long-
period libration orbits associated with the triangular solutions in the restricted problem of 
three bodies. By making use of recurrence formulas proposed by Steffenson (16) he succeeded 
in obtaining nearly periodic variation orbits. An iteration process was then used to obtain a 
periodic orbit to the desired degree of accuracy. Rabe remarks that his results, to a high degree 
of computational accuracy, refute the claims of Thiiring (17), that these periodic orbits do not 
exist. 

Myachin (18) has investigated the problem of the accumulation of errors of rounding in 
numerical integration; his theory confirms qualitatively the result obtained by Brouwer (19) 
that after k steps, k being sufficiently large, the mean error is proportional to A3'2. A further 
paper on this subject, by Sochilina (20), concerns applications of the theory. 

It is impossible here to note all significant research undertakings that involved extensive use 
of high-speed computers. An exception may be made of the work by Kovalevsky (36) to which 
reference is made in a later section of this report. 

THE PROBLEM OF THREE BODIES 

Merman (21) has examined the problem concerned with the "final motions" in the problem 
of three bodies when the energy constant is negative. Sufficient conditions are given in order 
that the motion decomposes into two almost independent motions which are both close to 
Keplerian motion. In a further paper (22) he deals with the representation of the solution of 
the problem of three bodies by convergent series. The method is distinctly different from 
Sundman's method, although related to it. On the basis of results obtained by Sundman he 
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concludes that, provided that all constants of angular momentum are not zero together, the 
Mittag-Leffler star region of the general solution contains the whole real w-axis. As a conse
quence of this fact the general solution can be expanded in series in terms of polynomials of 
w, convergent for all values of w. 

PLANETARY THEORY 

Clemence reports that his new general theory of the motion of Mars, constructed according 
to the adaptation of Hansen's method that G. W. Hill used for Jupiter and Saturn, is now 
regarded as complete. It has been compared with a numerical integration of the orbit by Herget 
with the Naval Ordnance Research Calculator for the years 1919-54. After adjustment of the 
elements of the orbit the root mean square value for 162 differences in orbital longitude is 
o"-oi3, and for the latitude o"-oo2. It clearly represents a most significant step forward in 
the construction of an accurate planetary theory. 

Rectangular co-ordinates of Mars referred to mean equinox and equator of 1950-0 with an 
interval of 4 days for the period 1950 to 2000, based on the new theory, have been published 
by Duncombe and Clemence (23). These are based on provisional elements derived from 87 
observations made in the years 1802-39 an<i 1931—50. Further improvement in accuracy must 
await the derivation of definitive elements, now being done by Duncombe. In the meantime, 
the published rectangular co-ordinates are a decided improvement over the values published 
in the current ephemerides. 

Lyttleton (24), following up ideas of Littlewood, has shown how the position of Neptune in 
1846 could have been predicted with comparatively little trouble and with greater accuracy 
than was achieved by Adams and Leverrier. The most important improvement results from 
combining the data in such a way that the unknown eccentricity has very little effect on the 
equations actually used, and consequently on the predicted longitude. 

A paper by Lyakh (25) deals with a form of development of the disturbing function suitable 
for any value of the mutual inclination and more convenient than Tisserand's method. 

Bazhenov (26) has published two methods, based on Chebyshev's approximation, for comput
ing general perturbations of minor planets. Jarow-Jarowoi (27) has constructed an approximate 
theory of Ceres that proved to be in essential agreement with observations in the years 1801-
*937-

SATELLITE THEORY 

Petrowskaja (28), by a generalization of Wintner's method, has shown that Hill's series 
representing the variation orbit are actually convergent for 

| m | < o - 2 i , m=n/(« — ri) 
compared with 

I m| ^ lj (Lyapunov, 1896) ^ ^(Wintner, 1929) ^ o-18 (Merman, 1952) 
A letter from Joachim Schubart reports that, at the suggestion of Professor C. L. Siegel at 

Gottingen, he has examined periodic solutions of Hill's lunar problem which correspond to 
Poincare's "Solutions de la deuxieme et troisieme sorte". The method is similar to that used 
by Siegel (29) for the treatment of variational orbits. 

Hori (30) has developed a theory of the orbit of Jupiter's ninth satellite. He used the method 
developed by Brown and Brouwer for the theory of Jupiter's eighth satellite (31). A comparison 
with observations yields satisfactory agreement. 

Kozai has studied the effects of the attraction of Saturn's ring on the motion of the inner 
satellites, and finds the mass of the ring to be of the order io~* times the mass of Saturn. 
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Duboshin (32) has worked out the principles of a new theory of motions of Saturn's satellites; 
some numerical applications of the theory have been published by Rybakov (33), while 
Kosachevsky (34) has used the theory in an investigation of the motions of the satellites of 
Mars. 

Grebenikov (35) has published a theory of the motion of Iapetus which yields satisfactory 
agreement with observations 1898-1958. 

Kovalevsky (36) has explored the possibility of using the data obtained in a numerical 
integration for the construction of a general theory of the motion of a satellite perturbed by the 
Sun. He applied the method to the motion of Jupiter's eighth satellite. The problem consists 
of obtaining the periods of the four fundamental arguments present in the theory, and the 
coefficients of the principal terms by harmonic analysis. In the motion of Jupiter's eighth 
satellite a difficulty presents itself on account of the slow motion of the perijove with period of 
the order of 25,000 years, while the numerical integration data produced and used by Kovalevsky 
cover only 100 years. The escape from the difficulty is to ignore the motion of the perijove, 
which is permissible if a representation for a few centuries is required. By a judiciously chosen 
procedure the author succeeds in reducing the harmonic analysis part of the work to a manage
able scope. The comparison of the approximate theory so obtained with the numerical integra
tion data yields 190" for the r.m.s. deviation in geocentric position. This is about one-fifth of 
the r.m.s. deviation of the best analytical theory previously constructed. It is further shown 
that these deviations must be ascribed mainly to omitted terms, not evaluated by the process 
of harmonic analysis. The concluding section deals with a method of iteration in which the 
approximate theory is used to compute the right-hand members of the equations of the varia
tion of the elements. 

MISCELLANEOUS CONTRIBUTIONS 

A determination of the mass of Mercury by Makover and Bokhan (37) from the motion of 
Comet Encke-Backlund in the years 1898-1911 gives for the reciprocal of the mass 

wz-^Mercury) = 5 980 000 ± 170 000. 

Short notes by Rabe (38) deal with the suitability of the orbit of (1362) Griqua for obtaining 
accurately the mass of Jupiter and the orbit of ( ion) Laodamia for the mass of Mars. 

Duncombe (39) published a discussion of the observations of Venus (1750-1949). An 
important result of this discussion is that the discordance that Newcomb found between the 
observed and computed motion of the node is not confirmed. Duncombe writes: 'The reason 
for Newcomb's discrepancy has eluded explanation, but is probably attributable to large 
systematic errors in the older observations.' 

Jeffreys (40) has studied the motion of a pendulum under small harmonic disturbing force. 
When the forcing period is longer than the period of small free oscillations there are three 
periodic solutions, two of which are large while the other approximates to the elementary 
solution. When the periods are sufficiently close the latter coalesces with one of the others and 
the two disappear, while the other large solution passes continuously into the elementary 
solution when the forcing period is the shorter. A conclusion will be that if a system passes 
through resonance there is a radical difference of behaviour according as the forcing period 
increases or decreases through the elementary free period. If the force is 0(a) and the period 
increases the elementary solution attains amplitude 0(a13) near coincidence and ceases to be 
small when the difference of the two periods becomes large. If the period diminishes, the 
stable solution attains 0(a13) and is followed by a stage of libration, the amplitude again 
becoming 0(a) when the difference of periods becomes large. 
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Littlewood (41) has discussed the convergence and asymptotic properties of solutions of the 
problem of three bodies, with special reference to Lagrange's particles. Bounds are given for 
the errors. I t remains doubtful whether the series ever converge except in special cases 
such as periodic orbits. In particular a conjecture of E. T . Whittaker appears to be false. 

DIRK BROUWER 
President of the Commission 
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