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We present a convergence study of the gyromoment (GM) approach, which is based
on projecting the gyrokinetic distribution function onto a Hermite–Laguerre polynomial
basis, focused on the cyclone base case (CBC) (Lin et al., Phys. Rev. Lett., vol. 83, no.
18, 1999, pp. 3645–3648) and Dimits shift (Dimits et al., Phys. Plasmas, vol. 7, no. 3,
2000, pp. 969–983) as benchmarks. We report that the GM approach converges more
rapidly in capturing the nonlinear dynamics of the CBC than the continuum GENE
code (Jenko et al., Phys. Plasmas, vol. 7, no. 5, 2000, pp. 1904–1910) when comparing
the number of points representing the velocity space. Increasing the velocity dissipation
improves the convergence properties of the GM approach, albeit yielding a slightly larger
saturated heat flux. By varying the temperature equilibrium gradient, we show that the
GM approach successfully reproduces the Dimits shift (Dimits et al., Phys. Plasmas, vol.
7, no. 3, 2000, pp. 969–983) and effectively captures its width, which is in contrast to
the gyrofluid framework. In the collisional regime, the convergence properties of the GM
approach improve and a good agreement with previous global particle-in-cell results on
transport is obtained (Lin et al., Phys. Rev. Lett., vol. 83, no. 18, 1999, pp. 3645–3648).
Finally, we report that the choice of collision model has a minimal impact both on
the ion temperature gradient growth rate and on the nonlinear saturated heat flux, at
tokamak-relevant collisionality.
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1. Introduction

To reduce the computational cost of gyrokinetic (GK) simulations, gyrofluid (GF)
models evolve a limited number of moments of the distribution function, according
to conservation laws derived from the GK Boltzmann equation (Grant & Feix 1967;
Madsen 2013; Held, Wiesenberger & Kendl 2020). However, a comparative study with
a set of GK codes presented by Dimits et al. (2000) reveals that the use of GF models
can lead to erroneous results. Focusing on the cyclone base case (CBC), a simulation
scenario with the parameters of a DIII-D H-mode discharge (Greenfield et al. 1997),
and using particle-in-cell (PIC) and continuum GK codes, Dimits et al. (2000) identify
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a shift between the minimum value of the background temperature gradient that yields
a finite saturated nonlinear heat flux, and the linear ion temperature gradient (ITG)
stability threshold. In contrast, the GF model of Beer, Cowley & Hammett (1995) does
not predict the Dimits shift, thus questioning of the validity of GF models for tokamak
core simulations. In fact, despite a correct prediction of the ITG linear growth rate at
conventional CBC parameters, the GF model does not present a strongly reduced transport
in the ITG marginal stability region, overestimating drastically the transport in comparison
with GK codes.

In this study, we show that the limitations of the GF models revealed in Dimits et al.
(2000) can be overcome with a GK moment-based approach (Frei, Jorge & Ricci 2020).
This approach extends the drift-kinetic model presented in Jorge, Ricci & Loureiro (2017)
and is based on the projection of the velocity space dependence of the distribution function
on a Hermite–Laguerre polynomial basis at an arbitrary order. This yields an infinite
set of fluid-like equations for the basis coefficients, referred to as gyromoments (GMs),
that extend the GF models to an arbitrary number of moments. As the number of GK
Hermite–Laguerre moments increases, the evolution of the distribution function converges
to the one provided by the full-F GK Boltzmann equation. In addition, Jorge, Frei & Ricci
(2019) project advanced GK collision operators on the same basis, including the nonlinear
GK Fokker–Planck collision operator (Rosenbluth & Longmire 1957), thus providing a
GK model that includes an advanced description of collisional effects and combines the
accuracy of the GK model with the efficiency of a fluid approach, in particular when a high
collisionality regime is considered. Frei et al. (2020) introduce the linear δf flux-tube limit
of the GK moment approach, where equilibrium and fluctuating quantities are separated
as in the simulation of the CBC and Dimits shift. The δf flux-tube GM model can be
considered an extension of δf flux-tube GF models, such as the ones introduced by Brizard
(1992), Hammett, Dorland & Perkins (1992), Beer et al. (1995), Snyder & Hammett (2001)
and Scott (2005), thanks to the use of an arbitrary number of GMs to describe the evolution
of the perturbations of a Maxwellian equilibrium distribution. Within the δf framework,
Frei, Hoffmann & Ricci (2022) also project and use several GK collision operators,
in particular the Dougherty model (Dougherty 1964), the Sugama model (Sugama &
Watanabe 2006) and the Landau form of the full Coulomb collision model (Rosenbluth,
MacDonald & Judd 1957; Hazeltine & Meiss 2003).

Using the linear δf GM model, Frei et al. (2023) validate the GM approach with
investigations of toroidal ITG modes, trapped electron modes, microtearing modes and
kinetic ballooning modes in the s − α flux-tube geometry. Hoffmann, Frei & Ricci (2023)
present the first nonlinear simulations based on the δf GM model and use them to
investigate the evolution of turbulence in a Z-pinch configuration, where the dynamics
is dominated by zonal flows, considering both the collisionless and the collisional cases.
The number of GMs needed for convergence in the collisionless case is shown to be less
than the number of grid points necessary for convergence in the state-of-the-art continuum
GK code GENE (Jenko, Dorland & Kotschenreuther 2000), depending on the background
gradient strength. Moreover, the results reveal that the choice of the collision model
significantly impacts the level of saturated transport, even at low collision frequency.

A similar nonlinear δf GM model is presented by Mandell, Dorland & Landreman
(2018) and Mandell et al. (2022) and implemented in GX, a GPU native code that solves
the nonlinear δf GM hierarchy of equations in record times. The GX code is benchmarked
against GS2 (Kotschenreuther, Rewoldt & Tang 1995), CGYRO (Candy & Waltz 2003)
and Stella (Barnes, Parra & Landreman 2019) in linear and nonlinear cases, for tokamak
Miller (Miller et al. 1998) and stellarator magnetic equilibria, while considering both
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adiabatic and kinetic electrons. In contrast to GF models, Mandell et al. (2022) show
that the GM approach can retrieve the Dimits shift.

Extending the work in Mandell et al. (2022), the present study aims to investigate the
convergence properties of the GM method in the simulation of the CBC and the Dimits
shift (Dimits et al. 2000) using the open source MPI-based GYACOMO code (Hoffmann,
Frei & Ricci 2022). In addition, the impact of the collision model on the CBC is studied
by comparing different linear GK collision models, thus extending the work of Lin et al.
(1999), which studies heat transport close to the Dimits threshold using a GK PIC code
and a pitch-angle collision operator at a physically relevant collision frequency. Finally,
the effect of collisions on the Dimits shift is investigated.

Our study confirms that, similarly to GX, the δf GM approach converges to the correct
ITG linear stability threshold and nonlinear transport value, which sets it apart from GF
models. This is assessed by comparing the results of the GM approach with the Dimits
et al. (2000) results as well as results from the GENE code (Jenko et al. 2000). We also
conduct a detailed convergence study with respect to the velocity space resolution. We
analyse the impact of the background temperature gradient levels, the number of GMs
and the level of numerical velocity dissipation on the convergence properties. Finally, we
focus on a specific temperature gradient value corresponding to the Dimits regime and
investigate the impact of collisions on the level of transport (Lin et al. 1999), as well as
the impact of collisions on the Dimits shift. We compare the results obtained using three
different GK collision operators: Dougherty (1964), Sugama, Watanabe & Nunami (2009)
and Landau (Rosenbluth et al. 1957).

The paper is organized as follows. Section 2 introduces the Hermite–Laguerre GM
approach within the context of the CBC. In § 3, we present the benchmarks of the GM
results for the ITG threshold and turbulence in the collisionless limit. The convergence
study of the Dimits shift is presented in § 4. In § 5, we investigate the effect of collisions.
The conclusions follow in § 6.

2. Gyrokinetic gyromoment approach in a flux-tube configuration

In the present section, we introduce the GK δf model in a field-aligned coordinate
system. Then, we project the GK Boltzmann equation on a Hermite–Laguerre polynomial
basis, thus obtaining a nonlinear GM model, which is an extension of the linear model
presented in Frei et al. (2023). Finally, the numerical implementation of the GM model is
discussed.

2.1. Nonlinear gyrokinetic model
Within the GK approach (Catto 1978; Frieman & Chen 1982; Hazeltine & Meiss 2003), we
consider an adiabatic electron model and evolve the ion gyroaveraged distribution function
〈Fi〉(R, v‖, μ, t), which expresses the probability density of finding an ion with guiding
centre R, velocity parallel to the magnetic field v‖ and magnetic moment μ, at a time t.
Using the δf approach, we decompose 〈Fi〉 as the sum of a time-independent background
Maxwellian component and a perturbation g, i.e.

〈Fi〉(R, v‖, μ, t) = F0(x, v‖, μ)+ g(R, v‖, μ, t), (2.1)

where the Maxwellian distribution is defined as

F0(x, v‖, μ) = N
(π1/2vthi)3

exp

(
−miv

2
‖

2Ti
− μB

Ti

)
, (2.2)
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with B(x) = ‖B‖ the norm of the equilibrium magnetic field, N = N(x) the equilibrium
density, Ti = Ti(x) the equilibrium temperature, mi the ion mass and v2

thi = 2Ti/mi its
thermal velocity. The background quantities depend on the particle position x, which is
related to the gyrocentre position as x = R + ρie⊥, where ρi is the ion Larmor radius and
e⊥ = [R − (R · b)b]/‖R − (R · b)b‖, with b = B/B.

We assume small fluctuations of the distribution function, gi/F0 ∼ Δ � 1, where the
scaling parameter Δ measures the perturbation amplitude relative to the background
(Hazeltine & Meiss 2003). We neglect electromagnetic fluctuations and assume that the
background electrostatic potential vanishes, therefore denoting with φ(x, t) the perturbed
electrostatic potential, such that eφ/Te ∼ Δ, with Te the electron equilibrium temperature.
We also neglect magnetohydrodynamic (MHD) equilibrium pressure effects, namely
(4π∇P/B2)/(b × ∇B/B) � Δ, with P the total pressure. These assumptions yield the
nonlinear δf GK Boltzmann equation

∂tg − qi

mi
∇‖φ̄∂v‖g + 1

B
(b × ∇φ̄) · ∇g + mi

qiB

(
v2

‖ + μB
mi

)
(b × ∇ ln B) · ∇h + v‖∇‖h

− μB
mi

∇‖ ln B∂v‖h + 1
B

b ×
(

∇N
N

+
[

miv
2
‖

2Ti
+ μB

Ti
− 3

2

]
∇Ti

Ti

)
· ∇φ̄ = Cii, (2.3)

where we introduce the parallel gradient operator ∇‖ = b · ∇ and the non-adiabatic part
of the ion distribution function perturbation h = g + F0qiφ/Ti, with qi the ion charge.
In (2.3), φ̄(R, t) denotes the gyroaveraged electrostatic potential and Cii = Cii(R, v‖, μ)
represents the ion–ion collision term.

2.2. Field-aligned coordinate system and magnetic geometry
We use the field-aligned coordinates {ψ, α, χ}, with ψ the flux surface label, χ the
ballooning angle and α the binormal angle defined as α = q(ψ)χ − ϕtor, where q(ψ)
is the safety factor and ϕtor the toroidal angle (Hazeltine & Meiss 2003). Within these
coordinates, the magnetic field can be expressed in Clebsch form, B = ∇ψ × ∇α.
Considering the local limit, we evaluate the equilibrium quantities at the flux-tube centre
position, r0, defining B0 = B(r0) and q0 = q(ψ(r0)). We then normalize the coordinates
(Lapillonne et al. 2009; Frei et al. 2023)

x = q0

r0B0
[ψ − ψ(r0)], y = R0

q0
α, z = χ, (2.4a–c)

where R0 denotes the major radius of the tokamak. The equilibrium magnetic field can thus
be written as B = B0∇x × ∇y and the Jacobian of the normalized field-aligned coordinate
system writes

Jxyz = (∇z · ∇x × ∇y)−1 = B0/(∇z · B) = (B̂bz)
−1, (2.5)

where B̂(z) = B/B0 is the normalized magnetic field amplitude and bz = ∇z · b. In the
field-aligned coordinate system, the parallel gradient operator writes

∇‖= 1

JxyzB̂
∂z. (2.6)

The perpendicular nonlinear term in (2.3) can be expressed as

(b × ∇f1) · ∇f2 = B̂−1[Γ1{f1, f2}xy + Γ2{f1, f2}xz + Γ3{f1, f2}yz], (2.7)
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where f1 and f2 are two generic spatially dependent fields and {f1, f2}ij = ∂if1∂jf2 − ∂jf1∂if2
is the Poisson bracket operator and we introduce the geometric factors

Γ1 = gxxgyy − gxygxy,
Γ2 = gxxgyz − gxygxz,
Γ3 = gxygyz − gyygxz,

⎫⎬
⎭ (2.8)

with gij(z) = ∇i · ∇j the metric coefficients for i, j = x, y, z.
In this work, we consider the s − α magnetic equilibrium model, which assumes circular

concentric flux surfaces using a first-order approximation with respect to the inverse aspect
ratio ε0 = r0/R0 (Connor, Hastie & Taylor 1978). This includes a constant magnetic shear
ŝ, such that the safety factor is expressed as q(x) = q0(1 + xŝ). The ballooning angle
χ is approximated by the poloidal angle θ , which yields z = θ . Neglecting the MHD
equilibrium pressure effects, the metric coefficients are given by

⎛
⎝gxx gxy gxz

gyx gyy gyz
gzx gzy gzz

⎞
⎠ =

⎛
⎝1 ŝz 0

ŝz 1 + (ŝz)2 ε−1

0 ε−1 ε−2

⎞
⎠ , (2.9)

where ε = r0(1 + x)/R0. The s − α geometry retains the finite aspect ratio term in
the expression of the magnetic field amplitude B̂ = 1/(1 + ε cos z), which yields the
derivatives ∂x ln B = − cos(z)B̂/R0, ∂y ln B = 0, ∂z ln B = ε sin(z)B̂ and the Jacobian takes
the form J0 = q0B0/B. While the s − α model is known to present inconsistencies in the
ε ordering (Lapillonne et al. 2009), we consider it here with the purpose of establishing
direct comparisons with previous literature results (Lin et al. 1999; Dimits et al. 2000; Frei
et al. 2023).

2.3. Scale separation
We consider a scale separation between perpendicular and parallel fluctuations, ordering
them such that kxρs ∼ kyρs ∼ kzR0, where ρs = mics/(qB0) is the reference sound Larmor
radius and cs0 = √

Te/mi the reference sound speed. Assuming ρs0/R0 ∼ Δ, this implies
that kz/kx,y ∼ Δ, which is valid for fluctuations in typical conditions of the core and
pedestal of JET and ITER (Giroud et al. 2015). Consequently, we write the magnetic
curvature operator as (b × ∇ ln B) · ∇ = Γ1B̂−1Cxy, with

Cxy = −
[
∂y ln B + Γ2

Γ1
∂z ln B

]
∂

∂x
+
[
∂x ln B − Γ3

Γ1
∂z ln B

]
∂

∂y
, (2.10)

where we neglect terms related to parallel derivatives. The perpendicular nonlinear term
present in (2.3) can be simplified by using the same ordering, that is

(b × ∇φ̄) · ∇g = Γ1B̂−1{φ̄, g}xy. (2.11)

Finally, we note that the parallel nonlinear term can be neglected since

(q/m)bz∂zφ̄∂v‖g ∼ φ̄g/(B0R0ρs0) � Δ. (2.12)
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Parallel velocity s‖ = v
ph
‖ /vthi Perpendicular velocity w⊥ = μphB/Ti

Perpendicular spatial scales kx,y = kph
x,yρs Normalized time t = tphcs/R

Density gradient κT = R0/LTi Temperature gradient κN = R0/LN

Ion charge number q = qph
i /e Temperature ratio τ = Ti/Te

Particle mass ratio σ = √
mi/me Distribution function f = f ph/F0

Electrostatic potential φ = eφph/Te Collision frequency ν = νph/νii

TABLE 1. Dimensionless variables used in the GM model. For a dimensionless variable A, its
equivalent in physical units is explicitly denoted as Aph.

Within these assumptions, and considering radially dependent density and temperature
equilibrium profiles, the GK Boltzmann equation, (2.3), writes

∂tg + B̂
B

{φ̄, g}xy + B̂
B

miv
2
thi

2qi
(2s2

‖ + w⊥)Cxyh

+ B̂
B

[
∂x ln N +

(
s2
‖ + w⊥−3

2

)
∂x ln Ti

]
F0∂yφ̄

+ vthi

2JxyzB̂
[2s‖∂zh − w⊥∂z ln B∂s‖h] = Cii, (2.13)

where we introduce the dimensionless velocity coordinates s‖ = v‖/vthi and w⊥ = μB/Ti,
and use the relation Γ1 = B̂2.

In the rest of this work, we express all quantities in dimensionless units according the
normalization presented in table 1, except for the figure labels where we use physical
units. In the flux-tube limit, we impose constant background gradient profiles, assuming
A(x) ∼ A(0) = A0 and |∇A| ∼ |A0/LA| for a generic background quantity A. Finally, the
dimensionless, scale separated, flux-tube GK Boltzmann equation writes

∂tg + {φ̄, g}xy + τ

q
(2s2

‖ + w⊥)Cxyh +
[
κN +

(
s2
‖ + w⊥−3

2

)
κT

]
∂yφ̄

+
√

2
2

√
τ

1

JxyzB̂
[2s‖∂zh − w⊥∂z ln B∂s‖h] = Cii, (2.14)

introducing κN = R0/LN the normalized background density gradient, κT = R0/LT the
normalized background temperature gradient, τ the ion–electron temperature ratio, q the
ion charge number and σ the electron–ion mass ratio.

2.4. Nonlinear Hermite–Laguerre–Fourier pseudospectral formulation
We project the dimensionless GK perturbed distribution function onto a Hermite and
Laguerre polynomial basis (Grant & Feix 1967; Madsen 2013; Manas et al. 2017; Adkins
& Schekochihin 2018; Staebler, Belli & Candy 2023)

g(x, y, z, s‖,w⊥, t) =
∞∑

p=0

∞∑
j=0

Mpj(x, y, z, t)Hp(s‖)Lj(w⊥), (2.15)
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where we introduce Mpj(x, y, z, t), the ion GM of order ( p, j). The Hermite polynomial of
order p is defined as

Hp(s‖) = (−1)p√
2pp!

es2
‖

dp

dsp
‖

e−s2
‖, (2.16)

which is a normalized version of the physicist’s Hermite polynomials such that∫∞
−∞ ds‖HpHp′ e−s2

‖ = √
πδpp′ , where δpp′ denotes the Kronecker delta. With this

definition, useful Hermite product and derivation identities follow, such as s‖Hp =√
( p + 1)/2Hp+1 + √

p/2Hp−1 and ∂s‖Hp = √
2pHp−1. The Laguerre polynomial of order

j is expressed as

Lj(w⊥) = ew⊥

j!
d j

dw j
⊥

w j
⊥ e−w⊥, (2.17)

and satisfies the orthogonality relation
∫∞

0 dw⊥LjLj′ e−w⊥ = δjj′ . The Laguerre polynomials
also satisfy the product identity w⊥Lj = (2j + 1)Lj − ( j + 1)Lj+1 − jLj−1 (Gradshteyn &
Ryzhik 2014).

By using the orthogonality relations, the GMs are obtained from the distribution
function as

Mpj(x, y, z, t) =
∫∫

dw⊥ ds‖g(x, y, z, s‖,w⊥, t)Hp(s‖)Lj(w⊥). (2.18)

The flux-tube model considers the ∇x and ∇y directions as periodic, which is valid as
long as the domain size is larger than the perpendicular correlation length of the turbulent
eddies (Ball, Brunner & Ajay 2020). It is thus convenient to express our fields in terms of
(kx, ky) Fourier modes, i.e.

Npj(kx, ky, z, t) =
∫∫

dx dyMpj(x, y, z, t) e−ikxx−ikyy. (2.19)

It follows that the Fourier representation of the gyroaveraged electrostatic potential yields

J0(
√

lw⊥)φ(kx, ky, z, t) =
∫∫

dx dyφ̄(x, t) e−ikxx−ikyy, (2.20)

with J0 the Bessel function of the first kind, which can be expressed in terms of Laguerre
polynomials as

J0(
√

lw⊥) =
∞∑

n=0

Kn(l)Ln(w⊥), (2.21)

where Kn(l) = ln e−l/n!, l(kx, ky, z) = τk2
⊥/2 and the perpendicular wavenumber k2

⊥ =
gxxk2

x + 2gxykxky + gyyk2
y (Frei et al. 2020). The projection of (2.14) onto the
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Hermite–Laguerre basis yields the GM nonlinear hierarchy in a flux-tube configuration

∂tNpj + Spj + Mpj
⊥ + Mpj

‖ + Dpj
N + Dpj

T = Cpj
ii . (2.22)

In (2.22), the perpendicular magnetic term, related to the curvature and gradient drifts,
writes

Mpj
⊥ = τ

q
Ckxky [

√
( p + 1)( p + 2)np+2,j + (2p + 1)npj +

√
p( p − 1)np−2,j]

+ τ

q
Ckxky [(2j + 1)npj − ( j + 1)np,j+1 − jnp,j−1], (2.23)

with Ckxky the magnetic curvature operator of (2.10) expressed in Fourier space, while the
parallel magnetic term, related to the Landau damping and the mirror force, is expressed
as

Mpj
‖ = B̂−1

Jxyz

√
τ {∂zℵp±1,j − ∂z ln B[( j + 1)ℵp±1,j − jℵp±1,j−1]

+ ∂z ln B
√

p[(2j + 1)np−1,j − ( j + 1)np−1,j+1 − jnp−1,j−1]}, (2.24)

with ℵp±1,j = √
p + 1np+1,j + √

pnp−1,j. The background gradient drift terms are

Dpj
N = ikyκNKjφδp0, (2.25)

for the density and

Dpj
T = ikyφκT

{
Kj

[
1√
2
δp2 − δp0

]
+ [(2j + 1)Kj − ( j + 1)Kj+1 − jKj−1]δp0

}
, (2.26)

for the temperature. In (2.23), (2.24) and (2.26), we also introduce the non-adiabatic ion
GM, npj(k, t) = Npj + qφKjδp0/τ .

The nonlinear term related to the E × B drift is expressed as

Spj =
∞∑

n=0

{
Knφ,

n+j∑
s=0

dnjsNps

}
xy

, (2.27)

where we use the Bessel–Laguerre decomposition, (2.21), and we express the product of
two Laguerre polynomials as a sum of single polynomials using the identity

LjLn =
n+j∑
s=0

dnjsLs, (2.28)

with

dnjs =
n∑

n1=0

j∑
j1=0

s∑
s1=0

(−1)n1+j1+s1

n1!j1!s1!

(
n
n1

)(
j
j1

)(
s
s1

)
. (2.29)

Finally, using an adiabatic electron response, we close our system with the dimensionless
GK Poisson equation in Fourier space, i.e.[

1 + q2

τ

(
1 −

∞∑
n=0

K2
n

)]
φ − 〈φ〉yz = q

∞∑
n=0

KnN0n, (2.30)
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where 〈φ〉yz is the flux surface average of φ, namely

〈φ〉yz = 1∫
dzJxyz

∫
dzJxyzφ(kx, ky, z, t)δky0. (2.31)

While the adiabatic electron model considered here serves as a valuable tool for
comparison with previous work, it is important to note its inherent limitations. In fact,
evolving the electrons GK equation for the CBC leads to complex small-scale phenomena
resulting, generally, in an increase of linear growth rate and saturated heat flux level due
to the electron temperature gradient instability (Neiser et al. 2019; Hardman et al. 2022).

To model collisions, we consider the GK Landau operator, which considers the linear
limit of exact GK Coulomb collisions, along with the GK Sugama collision model
(Sugama et al. 2009) and the GK Dougherty model (Dougherty 1964). The details of
these operators and their projection onto the Hermite–Laguerre basis can be found in Frei
et al. (2021). For an overview of the qualitative differences between the aforementioned
collision operators we also refer to Hoffmann et al. (2023). We set the intensity of the
collisions through the non-dimensional parameter ν, normalized by the ion–ion collision
frequency

νii = 4
√

π

3
R0Ne4 lnΛ

csm
1/2
i T3/2

i

, (2.32)

where lnΛ is the Coulomb Logarithm.

2.5. Numerical approach
To solve numerically the GM hierarchy, (2.22), we evolve a finite set of ion
Hermite–Laguerre–Fourier modes, Npj(kx, ky, z, t), with 0 ≤ p ≤ P and 0 ≤ j ≤ J. We
label a finite set of GMs by the pair (P, J), where P and J represent the maximal
polynomial degree of the considered Hermite and Laguerre basis, respectively. For the
time integration, we use a standard explicit fourth-order Runge–Kutta time-stepping
scheme.

2.5.1. Perpendicular spatial discretization
The Fourier modes are defined for the wavenumbers kx = 2πm/Lx, with −Nx/2 + 1 ≤

m ≤ Nx/2, and ky = 2πn/Ly, with 0 ≤ n ≤ Ny/2 (we exploit the reality condition), where
Lx and Ly are the perpendicular dimensions of the flux tube. The nonlinear term, (2.27), is
evaluated using a pseudo-spectral method on each perpendicular plane. More precisely, the
spatial derivatives, contained in the Poisson bracket, are obtained in the real space using
a backward fast Fourier transform (Frigo & Johnson 2005). The fields are then multiplied
in real space and the result transformed back to Fourier space using a forward fast Fourier
transform, including a 2/3 anti-aliasing filter (Orszag 1971). To prevent energy pile up due
to the turbulent cascade, we include numerical diffusion of the form μd(ik/kmax)

4, where
kmax is the largest non-aliased allowed wavelength in the simulation and μd a tuneable
parameter, set usually to μd = 0.5.

2.5.2. Parallel spatial discretization
The parallel direction is discretized using a regular grid of Nz points with spacing

Δz = 2π/(Nz − 1), such that the grid points are zl = lΔz − π for 0 ≤ l ≤ Nz − 1. This
constrains our spatial domain to a single poloidal turn around the flux surface (the effect
of using a larger number of poloidal turns is described by Ball et al. 2020; Volčokas, Ball
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& Brunner 2023). For evaluating the parallel derivative coming from the Landau damping
term in (2.24), we use a four-point fourth-order centred finite differences scheme.

To account for the effect of magnetic shear, we adopt a ‘twist-and-shift’ condition for
the parallel boundary conditions, which imposes the coupling between kx and ky modes,
i.e.

A(kx, ky, z) = A(kx + 2πŝky, ky, z + 2π), (2.33)

with A a generic spatially dependent field. For more details on the twist-and-shift boundary
conditions, we refer to the works of Beer et al. (1995) and Ball et al. (2020). We also add
a fourth-order parallel numerical diffusion term of the form μz/Δz4∂4

z , with μz a tuneable
parameter, which prevents the decoupling between odd and even points in the z direction
(Paruta et al. 2018) and helps to smooth out the oscillations due to the Dirichlet boundary
condition applied at the end of the ballooning angle domain. We note that a staggered grid
representation can also be implemented to avoid the checkerboard pattern, as is done for
Braginskii’s equations in Paruta et al. (2018).

2.5.3. Velocity space discretization and closure
When a finite set of (P, J) GMs is considered, (P + 1)× (J + 1) coupled equations are

solved. In order to close the system, the GMs with degree higher than P or J appearing
in (2.23), (2.24) and (2.27), are assumed to vanish using a truncation closure, i.e. Npj = 0
for p > P or j > J. The truncation closure is the most straightforward to apply and shows
good results in Frei et al. (2022), Frei et al. (2023) and Hoffmann et al. (2023). We must
note that, in collisionless simulations, the Hermite parallel coupling in (2.24), combined
with the closure by truncation, may lead to recurrence effects, which yields a non-physical
energy transfer from the highest to the lowest Hermite modes. When considering the
collisionless limit, we avoid recurrence effects by adding a numerical diffusive term in
the velocity space

Dpj
v = −ηv( p + 2j)Npj + ηv[N10δp1δj0 − 2

3(
√

2N01 − N20)δp2δj0

− 2
3(

√
2N20 − N01)δp0δj1], (2.34)

with ηv a tuneable parameter. We note that, this term, similar to a Dougherty collision
operator, has the advantage of conserving mass, momentum and energy. In this work,
we ensure that this artificial term does not impact our results by comparing them at
different values of ηv (see § 4.2). While a generalization of the Braginskii equation closure
to an arbitrary number of moments is still an open issue, more sophisticated closure
models such as the semi-collisional closure proposed by Zocco & Schekochihin (2011)
and Loureiro et al. (2016) exist and might reduce the appearance of recurrence effects
without introducing an artificial dissipation term. One can also mention the work of Shukla
et al. (2022), which presents a method for formulating closures that learn from kinetic
simulation data.

3. Cyclone base case convergence study

We present a benchmark and a convergence analysis of the GM approach in the
collisionless CBC (Lin et al. 1999; Dimits et al. 2000). We focus on the ITG linear
growth rate and the nonlinear saturated heat flux. We compare our findings with the results
obtained from previous work (Dimits et al. 2000), as well as simulations carried out by
using the continuum code GENE (Jenko et al. 2000), also considering an adiabatic electron
response. We also investigate the convergence of the GM approach by varying the number
of evolved moments.
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Unless stated otherwise, we employ the conventional CBC parameters: κT = 6.96,
κN = 2.22, q0 = 1.4, ε = 0.18 and ŝ = 0.8. Regarding the resolution, our linear scan
encompasses Nx = 8 coupled kx modes and Nz = 24 points in the parallel direction.
For the nonlinear simulations, we set Lx/ρs = 120, Ly/ρs = 120 and Lz/R0 = 2π, with
corresponding grid dimensions Nx = 128, Ny = 64 and Nz = 24 in both the GENE and
GM codes. Similarly, a fourth-order parallel dissipation term with μz = 0.2 is used in
both codes (Pueschel, Dannert & Jenko 2010). For GENE simulations, we use the standard
velocity domain, Lv‖ × Lμ = 9 × 3, where Lv‖ and Lμ are the dimensions of the velocity
domain along the parallel velocity and magnetic moment directions, respectively. Finally,
the velocity fourth-order dissipation parameter of GENE is set to νv = 0.2 (Pueschel
et al. 2010), while the GM simulations use the numerical velocity dissipation frequency
ηv = 0.001.

3.1. Linear convergence and ion temperature gradient stability threshold
To evaluate the ITG growth rate, we numerically solve the moment hierarchy equation,
(2.22), neglecting the nonlinear term in (2.27), and we analyse the time evolution of φ(t)
at kx = 0 and z = 0 for various ky values. To capture the parallel dynamics and the coupling
due to the magnetic geometry, we evolve 8 kx modes with Δkx = 2πŝky. The growth rate γ
is determined by fitting the slope of the time evolution of the logarithm of the electrostatic
potential amplitude for a given ky mode.

Similarly to our previous work on the entropy mode (Hoffmann et al. 2023), we
observe a non-monotonic convergence of the GM growth rates with P and J. The GM
approach converges to the correct growth rate with a smaller number of polynomials in
the long-wavelength limit, kyρs � 1, than at short wavelengths. We find that the linear
growth rates obtained with the GM approach show good agreement with the GENE and
Dimits et al. (2000) results when the polynomial basis is sufficiently large, (P, J) � (16, 8)
(see figure 1a).

To analyse the convergence properties of the GM approach in more detail, we
show the relative error of the peak growth rate (kyρs � 0.3), εr = |γ − γ(60,30)|/|γ(60,30)|,
in figure 1(b). The convergence behaviour exhibits typical characteristics of spectral
methods, that is an exponential and non-monotonic trend with P and J. It is worth noting
that figure 1(b) reveals optimal convergence properties when P ∼ 2J, which justifies this
choice also in previous works (Mandell et al. 2022; Frei et al. 2023; Hoffmann et al.
2023). This is possibly related to the fact that Hn is a Hermite polynomial of degree n in
the parallel velocity coordinate, whereas Ln is a Laguerre polynomial of degree 2n in the
perpendicular velocity coordinate. We note that, while high ky modes converge at a slower
rate, they have a reduced impact on the saturated transport level. In fact, according to the
mixing length and critical balance estimates (see e.g. Kotschenreuther et al. 1995; Ricci
et al. 2006; Schekochihin et al. 2008; Barnes, Parra & Schekochihin 2011; Adkins, Ivanov
& Schekochihin 2023), the transport of the unstable modes scales as γ /k2

y .
To compare the linear convergence properties between the GM approach and the GENE

code, we present a convergence study of the linear growth rate carried out with the GENE
code in figure 1(a). We observe that the GM approach converges faster than the GENE
code for small wavenumbers, which can be attributed to the fluid nature of these modes
and to a faster convergence of the Bessel–Laguerre decomposition (see (2.21)). At low
velocity resolution, our results show that the GENE code tends to reduce the linear growth
rates. This is in contrast to the GM approach, which overestimates the linear growth rates
for both the (2, 1) and (4, 2) bases. In addition, figure 1 presents GENE simulations with
a reduced velocity domain, Lv‖ × Lμ = 4.5 × 1.5 (denoted Lv/2). Due to the associated
decrease of the velocity grid spacing, we observe an improvement of the results. However,
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(a) (b)

FIGURE 1. (a) CBC linear growth rates, γ obtained by using the GM approach (top) and the
GENE code (bottom), compared with the results reported in Dimits et al. (2000) (black crosses).
The velocity resolution is scanned by varying the size of the polynomial sets (P, J) for the GM
approach and the number of velocity grid points Nv‖ × Nμ for the GENE code. GENE results
with halved velocity domain, Lv‖ = 4.5 and Lμ = 1.5, are denoted as Lv/2. (b) Convergence of
the relative error εr of the CBC linear growth rate obtained with the GM approach at kyρs = 0.3.
The error is evaluated with respect to the growth rate evaluated with (P, J) = (60, 30) GM,
γ(60,30), namely εr = |γ − γ(60,30)|/|γ(60,30)| .

we note that reducing further the velocity domain stabilizes the ITG mode. Similarly, using
a Nv‖ × Nμ = 6 × 4 grid does not yield unstable growth rates when the standard size of
the velocity domain is considered.

3.2. Nonlinear cyclone base case
We now turn our attention to the nonlinear regime and assess the transport level by
examining the normalized ion heat flux Qx. Figure 2(a) presents the time traces of the
heat flux obtained using different GM sets and varying velocity grid resolutions with
the GENE code. Both codes converge towards the heat flux value obtained by Dimits
et al. (2000). This is also shown in figure 2(b), where the time-averaged value of the heat
flux is shown. We observe that both GENE and the GM codes yield consistent results,
exhibiting similar average values and fluctuation amplitudes. With the velocity dissipation
frequency ηv = 0.001, the GM approach demonstrates faster convergence than the GENE
code, providing a good estimate of the heat flux with approximately 16 Hermite–Laguerre
modes. On the other hand, in agreement with the linear results, we observe that the
(4, 2) GM set overestimates the saturated heat flux level. We note that the (2, 1) GM set
fails to saturate, leading to a numerical crash. Figure 2(b) also presents the convergence
behaviour for two cases with larger numerical velocity dissipation, namely ηv = 0.01
and ηv = 0.05. In these cases, the moment approach converges more rapidly than with
ηv = 0.001, but a 30 % discrepancy in the converged heat flux value is observed. Since
the numerical velocity dissipation term in the GENE code is normalized by the velocity
grid size (Pueschel et al. 2010), the incorrect results obtained with the Nv‖ × Nμ = 8 × 4
and 16 × 8 resolutions is expected to result from the increased strength of the GENE
velocity numerical dissipation. However, the simulations where we reduce by a factor
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(b)(a)

FIGURE 2. (a) Time traces of the heat flux for the CBC with comparison between the GM
approach, GENE and the result of Dimits et al. (2000), Qx ≈ 35. Various velocity resolutions
are used, in particular, different GM sets (P, J) and numbers of points in the GENE velocity
grid Nv‖ × Nμ. (b) Convergence in the saturated heat flux value with respect to the number of
points representing the velocity space Nvp = (P + 1)× (J + 1) for the GM approach and Nvp =
Nv‖ × Nμ for GENE. The configuration space resolution is Nx = 128, Ny = 64 and Nz = 24
for both the GENE code and the GM approach. The error bars reflect the average fluctuation
amplitude around the time-averaged transport value. The GENE simulations denoted by Lv/2
are obtained with a halved velocity domain size.

two the size of the velocity domain, yield significant changes in the heat flux values
(see figure 2b) and no clear convergence towards the results obtained with the highest
resolutions. Thus, we conclude that the GENE code requires, at least, one hundred grid
points in the velocity space to provide a good estimate of the transport level. It is worth
noting that, due to recurrence effects, the (P, J) = (2, 1) GM basis presents a pile up of
energy at the low-order Hermite–Laguerre modes, yielding an inaccurate transport level.
Alternative closures can potentially prevent this pile up and their use is left for future work.

To further analyse the Hermite–Laguerre representation, we examine the amplitude
of the individual GM, defined as Epj = ∑

kx,ky,z |Npj(kx, ky, z)|, time averaged during the
quasi-steady saturated state shown in figure 3. We observe that the truncation closure
used in our simulations affects the Hermite and Laguerre modes differently. In fact, a
plateau followed by a sharp decrease can be observed at higher Laguerre degrees j in both
the (16, 8) and (30, 15) spectra. On the other hand, a decrease with an approximately
constant slope is observed as a function of p. In more detail, the (4, 2) GM basis is
characterized by a spectrum where the amplitude of the evolved moments is overestimated,
although the transport is in good agreement with the converged case. The (8, 4) basis
shows a good agreement in the amplitude of the low-degree GMs whereas the (16, 8)
simulation shows good agreement with the largest resolution case at all p and j. The
reason for the differences observed between the GM energy spectra in the Hermite and
Laguerre directions is twofold. First, the GM hierarchy (2.22) couples the Hermite modes
mostly through the magnetic curvature and gradient drifts, connecting the ( p, j) GM with
the ( p ± 2, j) GMs, whereas the Laguerre coupling occurs mostly through neighbouring
Laguerre modes, i.e. the ( p, j) GM is coupled with the ( p, j ± 1) GMs. This explains
the oscillations observed in the Hermite modes (p direction in figure 3). Second, we
recall that the Laguerre polynomials are involved in the Bessel–Laguerre decomposition of
(2.21), which converges non-monotonically with respect to the maximal Laguerre degree,
explaining the non-monotonic convergence at the highest Laguerre modes in figure 3.
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FIGURE 3. Amplitude of the GM, Epj = ∑
kx,ky,z |Npj(kx, ky, z)|, in the CBC, time averaged

during the quasi-steady state.

We note that the convergence of the nonlinear GM simulations is set by the convergence
of the peak linear growth rate of the ITG mode, which is in agreement with the findings
of our previous work (Hoffmann et al. 2023). In fact, the overestimate of the linear growth
rates observed for the (4, 2) basis (see figure 1a) corresponds to an increased saturated
transport value (see figure 2b) and a high amplitude of the GM spectrum on figure 3. On
the other hand, the (8, 4) basis presents a reduced amplitude for the high-degree GMs.

4. Collisionless Dimits shift

Building upon the study presented in § 3, we now focus on evaluating the capability
of the GM approach to accurately capture the Dimits shift, i.e. the difference between the
threshold value of the linear instability and the gradient where a substantial increase of the
nonlinear saturated transport level occurs (Dimits et al. 2000). Throughout this section,
unless explicitly mentioned, we retain the spatial resolution and numerical dissipation
parameters used in § 3.

4.1. Collisionless ITG linear threshold
In order to investigate the convergence of the Dimits shift, we define the linear instability
threshold as the maximum value of the background temperature gradient for which no
growth rates exceeding 0.001 can be observed for 0.05 ≤ ky ≤ 1.0. This criterion is
chosen both due to the inherent difficulty in accurately measuring marginal stability
and the acknowledgment that turbulence emerging from such low growth rates, requiring
thousands of time units to develop, is expected to have a negligible impact on the plasma
dynamics.

Figure 4(a) presents the results of a parameter scan involving the temperature gradient
strength κT and the number of GMs, having fixed P = 2J, ηv = 0.001 and all other
parameters as in § 3. Our findings indicate that the GM approach tends to overestimate
the ITG threshold when a reduced velocity basis is used, which is in agreement with
the observations of Dimits et al. (2000) for GF codes. However, for (P, J) � (12, 6), the
GM approach yields the threshold value from GK codes reported by Dimits et al. (2000),
i.e. κT ∼ 4. Furthermore, convergence is faster when the gradient level is larger, a trend
consistent with Hoffmann et al. (2023). We recall here that this behaviour is a consequence
of the relative increase of the importance of gradient drift terms (see (2.25) and (2.26)),
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(b)(a)

FIGURE 4. (a) The ITG growth rate at kyρs = 0.3 for different background temperature values
R0/LT and (P, J), with J = P/2, R0/LN = 2.22 and ηv = 0.001. (b) Heat diffusivity obtained
with the GM approach and the threshold for the ITG linear growth rate (black dashed line). The
gap in the R0/LT values between the ITG linear threshold and the non-zero χ values represents
the Dimits shift.

compared with the parallel and perpendicular linear terms (see (2.23) and (2.24)), resulting
in reduced coupling of high-degree moments.

4.2. Dimits shift and nonlinear convergence study
Turning now to the nonlinear dynamics, we perform a set of simulations to investigate
the dependence of the heat transport on the temperature gradient values. We consider
the following five sets of GMs: (P, J) = (2, 1), (4, 2), (8, 4), (16, 8) and (30, 15). In
addition, we examine the convergence properties of the continuum code GENE by
varying the velocity grid resolution, specifically (Nv‖,Nμ) = (8, 4) and (16, 8) with
parallel velocity and magnetic moment domain of size Lv‖ × Lμ = 4.5 × 1.5. We also
consider the (Nv‖,Nμ) = (32, 16) and (Nv‖,Nμ) = (42, 24) grids in the velocity domain
for Lv‖ × Lμ = 9 × 3. We measure the radial heat transport by evaluating the ion heat
diffusivity, χ = 〈Qx〉t/(κTκN), with the heat flux averaged over time during the saturated
phase of the nonlinear simulations.

Figure 4(b) displays the heat diffusivity obtained using the GM approach as a function
of the background temperature gradient and the number of evolved Hermite–Laguerre
moments. By comparing the heat diffusivity with the linear instability threshold
determined in the linear case, we also quantify the Dimits shift. In addition, while the
critical gradient is influenced by the number of Hermite–Laguerre moments, the width
of the shift is not. This provides further support to the observation made in the study of
the entropy mode (Hoffmann et al. 2023), which suggests that the constraints on the GM
approach convergence are related to the resolution of the primary instability (here, the
ITG) and not the secondary (the Kelvin–Helmholtz instability) or a possible tertiary one
(zonal flow destabilization).

Finally, we investigate the effect of numerical dissipation in velocity space with a
convergence study focused on the heat diffusivity, carried out using three different
dissipation intensities: ηv = 0.05 (figure 5a), ηv = 0.01 (figure 5b) and ηv = 0.001
(figure 5c). We compare the results with those obtained using GENE (figure 5d) as well as
the results reported in Dimits et al. (2000) for PIC and GK codes. Figure 5 shows that the
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FIGURE 5. Heat diffusivity as a function of the temperature gradient strength R/LT obtained
with the GM approach varying the intensity of the numerical velocity dissipation, ηv = 0.01,
ηv = 0.005 and ηv = 0.001 and obtained with GENE. The colours indicate the number of points
in the velocity space, Nvp = (P + 1)× (J + 1) with (P, J) = (2, 1), (4, 2), (8, 4), (16, 8) and
(30, 15) for the GM approach and Nvp = Nv‖ × Nμ = 8 × 4, 16 × 8, 32 × 16, 42 × 24 for GENE.
The results of GK and PIC simulations in Dimits et al. (2000) are reported in black.

lowest GM sets, (P, J) = (2, 1) and (4, 2), significantly overestimate the transport values
compared with Dimits et al. (2000) and GENE, for all dissipation levels and particularly
for the lowest background gradient considered. This can be attributed to the overestimation
of the linear growth rate, observed in particular at the lowest gradient levels. On the other
hand, GENE linear results do not exhibit this overestimation at low resolution, which
explains why the GENE results do not overestimate the transport at low resolution.

For the (8, 4) and larger GM sets, a good agreement with the results obtained by the
various GK codes presented in Dimits et al. (2000) and GENE is observed only for ηv =
0.001. In scenarios with low velocity dissipation and close to marginal stability, the GM
approach does not outperform GENE in the low resolution limit. This implies the existence
of non-Maxwellian velocity space structures in the perturbed distribution function, which
are challenging to resolve with only a few Hermite–Laguerre modes. This aligns with
our previous study on the Dimits shift in a Z-pinch, where the velocity distributions are
compared in more details (Hoffmann et al. 2023). At higher dissipation levels, the GM
approach converges faster but yields inaccurate values, in particular when the gradient
level becomes smaller than in the CBC. It is worth noting that the nonlinear GM results
converge faster as the gradient is increased, similarly to the linear growth rate.

5. Collisional effects on the Dimits shift

We explore the impact of collisions on the Dimits shift using advanced GK linearized
collision operators. We compare the effect of the linear GK Dougherty, Sugama and
Landau collision operators on the transport level. We first consider the same parameters
as the CBC and set the temperature background level to κT = 5.3. We vary the collision
frequency parameter around ν ∼ 0.005, which corresponds to experimental value of the
DIII-D discharge considered for the CBC (Lin et al. 1999). We then consider the impact
of collisions for different values of κT , setting ηv = 0.

Motivated by the observed correlation between the level of heat transport and the ITG
linear growth rate observed in the collisionless case (see § 5), we first study the impact of
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FIGURE 6. Collisional study of the ITG growth rate at κT = 5.3 with the (P, J) = (4, 2) (blue),
(P, J) = (8, 4) (orange) and (P, J) = (16, 8) (green) bases. Different collision operators are
compared with collision frequencies ν = 0.05 (dashed) and ν = 0.005 (solid). The converged
collisionless result are also shown (black circles).

our different collision models on the linear growth rates. These are presented in figure 6,
with the collision frequency ranging from ν = 0.05 to ν = 0.005, and the polynomial
basis varying from (P, J) = (4, 2) to (16, 8). In agreement with the collisionless case,
we observe that the (4, 2) basis tends to overestimate the growth rate for both collision
frequencies across all three collision models. However, faster convergence is observed
compared with the collisionless scenario, which is a consequence of the fact that the
GK model tends towards a fluid limit at high collisionality. Specifically, the growth rates
obtained with the (P, J) = (8, 4) basis closely approach those obtained with the (16, 8)
basis. This is not the case in the collisionless regime. Notably, we find that the growth
rates do not exhibit significant variations among the different collision operators and are
weakly sensitive to the collision frequency for large GM sets. We now perform nonlinear
simulations with the GM code at κT = 5.3 for a set of collision frequencies, namely
0.005 ≤ ν ≤ 0.05 with the (P, J) = (16, 8) polynomial basis. In figure 7(a), we present
the heat flux time traces obtained by Lin et al. (1999), and the GM approach using the
three collision operators considered here. Remarkably, we observe similar results across
all collision models, with bursts increasing the transport by a factor five with respect
to the baseline level, as also observed by Lin et al. (1999). It is worth mentioning that
these bursts are also observed in GK simulations (Kobayashi, Gürcan & Diamond 2015;
Peeters et al. 2016; Hallenbert & Plunk 2022) as well as reduced turbulence modelling
(Ivanov et al. 2020; Qi, Majda & Cerfon 2020; Ivanov, Schekochihin & Dorland 2022).
Figure 7(b) shows the average heat diffusivity as a function of collision frequency for the
different collision models, compared with the results from Lin et al. (1999). We note a
good agreement in terms of trend and transport amplitude, particularly considering that
the results from Lin et al. (1999) are based on global PIC simulations performed with the
GTC code (Lin et al. 1998).

Our results show that the choice of collision model does not appear to significantly affect
the heat flux at collision frequencies close to the physical values observed in the core of
the DIII-D tokamak. The choice of collision models impacts the transport only when the
collision frequency is ten times higher than the physically relevant value. This contrasts
with Hoffmann et al. (2023), where a noticeable effect of the choice of the collision
operator is observed also at low collision frequency. We attribute this difference to two
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(b)(a)

FIGURE 7. Study of collision effects on the heat flux with the GM approach and the Dougherty
(orange), Sugama (blue) and Landau (green) operators for κT = 5.3 for ν = 0.005. The heat flux
time traces (a) and the average heat diffusivity (b) are compared with the results from Lin et al.
(1999), reported in grey. The value of the heat diffusivity in the collisionless case is also shown
(black dashed line). The error bars represent the standard deviation of the heat flux.

FIGURE 8. Heat diffusivity as a function of the temperature gradient strength R/LT obtained
with the GM approach in the collisionless limit (blue circles) and for ν = 0.005 with the Landau
GK collision operator (green diamonds). We report the collisionless results (black dots) of Dimits
et al. (2000) and the fit used therein to obtain the threshold value κT = 6 (dashed line).

main factors. First, the ITG instability exhibits a stability spectrum with predominantly
stable small-scale wavelengths, thus is considerably less affected by collisions, with
respect to the entropy mode considered by Hoffmann et al. (2023) that develops also on
short scales. Second, the collision operators used here account only for ion–ion collisions
while electron–ion collisions are considered in the entropy mode investigations.

Finally, we study the effect of the Landau collision operator on the Dimits shift at
νLDGK = 0.005. As shown on figure 8, the collisionality tends to smooth out the transition
between fully developed turbulence (κT � 6) and zonal flows dominated saturated states
(κT � 6), where collisions have a stronger effect on the transport level. This observation
is also made in Peeters et al. (2016), where numerical dissipative terms are used to obtain
the smoothing of the Dimits shift. This suggests that advanced collision operators are not
required to accurately resolve the CBC with an adiabatic electron model, as zonal flow are
mostly damped through diffusion in the configuration and velocity spaces.
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6. Conclusions

In the present study, we report on a benchmark and convergence analysis of the GM
approach in the local flux-tube δf framework, with a specific focus on the CBC and
the Dimits shift. The GM approach converges faster than the GENE code in yielding
the correct linear growth rate of the low kyρs modes, and therefore a mixing length
estimate of the turbulent transport. In the nonlinear case, our findings highlight that
the GM approach accurately captures the nonlinear dynamics of the CBC, while using
significantly fewer velocity space points compared with the GENE code. We observe
that increasing the intensity of velocity dissipation improves the convergence rate, albeit
with a 30 % discrepancy in the saturated heat flux value. In addition, the GM approach
successfully replicates the GK results reported in Dimits et al. (2000), in contrast to
the GF models. The Dimits shift is obtained accurately with a comparable number of
moments as the number of GENE velocity grid points, observing slower convergence as
the system approaches marginal stability. Nonetheless, it is important to highlight that
the GM approach effectively captures the width of the Dimits shift also at low velocity
space resolution. This highlights that the primary limitation of the GM approach lies in
the convergence of the linear stability threshold rather than in the nonlinear dynamics.
Thus, evolving additional GMs in the CBC acts mostly as a fine tuning of the linear
ITG instability. It also confirms that a simple model based on the E × B advection, as
in Ivanov et al. (2022), is sufficient to predict correctly the dynamics in the Dimits
region. Consequently, the balance between Reynolds and diamagnetic stresses, present
in the E × B advected temperature assumption (Sarazin et al. 2021), is maintained when
increasing the number of evolved GMs in the CBC. However, one must recall that this
affirmation is challenged by GK simulations based on the global code GYSELA (Sarazin
et al. 2021), suggesting that the disagreement between GYSELA and the Ivanov et al.
(2022) simulations resides in features of the models such as the local assumption or the
boundary conditions.

In the collisional case, our analysis of transport within the Dimits window (κT = 5.3)
reveals a minimal influence of collision on the ITG growth rate around a physical collision
frequency of ν ∼ 0.005. This observation holds for all the three GK linear collision
models examined, namely Dougherty, Sugama and Landau. While the GM approach
exhibits good agreement with the global PIC results reported in Lin et al. (1999), when
varying the collision frequency, the collision model itself does not exhibit a significant
impact around the DIII-D core-relevant collision frequency. We attribute this result to the
long-wavelength nature of the ITG instability and to the adiabatic electron model, which
prevents the impact of electron–ion collisions on the plasma dynamics.

In a broader context, the present study is a stepping stone towards the efficient modelling
of plasma turbulence in the edge region. In fact, as confirmed by the present work, the high
collisionality, combined with large background gradients typical of the edge, are ideal
conditions to apply the GM approach.
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