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Abstract. I conclude the SCCC21 conference highlighting some of the contrasts we heard about,
some specific topics (the statistics of random fields), and discuss how some of these play out in
the analysis of cosmic microwave background data. I conclude with a hopeful look at the efficacy
of blind analyses in the CMB and elsewhere in cosmology.
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1. (False?) Dichotomies
Throughout this meeting, we saw contrasts between different groups of researchers,

different philosophies, and different techniques to attack the same problem. Some of
these distinctions are real, but we often find that they are not as sharp as we might
initially think.

Cosmologists & Statisticians. By their very presence, pretty much everyone here
straddles this line, no matter what our formal training might be.

Inference & Algorithms. Perhaps this is a better distinction than the previous: do
you come with science questions to answer, looking for the right tool? Or do you start
with the tools, and look for applications?

Theorists & Observers. Astronomy has always been a discipline straddling obser-
vation and theory. Although there have always been observers who put a lot of theory
into the interpretations of their data, astronomy has traditionally been led by data, from
the purely observational beginnings of the Hertzsprung-Russell diagram and the Morgan-
Keenan-Kellman system of stellar classification, both of which only latterly gained the-
oretical underpinnings. Nowadays, that tendency has only got stronger, with the rise of
a group of theoretically trained astrophysicists who spend much of their time wondering
about how to analyze data. They (we) are perhaps the equivalent of the phenomenol-
ogists of particle physics, charged with making predictions for what will be seen by
experimenters.

Bayesians & Frequentists. Historically, the interpretation of probability has been
a contentious point. This remains so in the statistics community as well as amongst
practicing scientists. There is no need to rehearse the controversies here; rather, it’s
important to point out that we practicing scientists cannot really afford idealogical purity
(see also Section 3) — it is more important to get some sort of answer out even if lacking
a principled statistical basis. It is also important to remind ourselves that “Bayesian”
and “frequentist” are themselves catch-all descriptions which can hide vast philosophical
and practical differences — see, for example, Good (1971) and his “46,656 varieties of
Bayesians”.

Laggards & Leaders. See astronomer-turned-statistician Ewan Cameron’s talk and
his contribution to these proceedings, “What we talk about when we talk about fields,”
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Cameron (2014) in which he gently berates the cosmology community for lagging behind
the statisticians.

Humans & Machines; Supervised & Unsupervised. Many algorithms discussed
here require human intervention: we come with particular parameterizations of the phe-
nomena we are studying. But in the coming “big data” era, that may not always be
possible: we want the data to teach us what’s in it. Of course, these dichotomies are par-
ticularly false: any unsupervised algorithms is written by humans, able to make certain
kinds of classifications more easily than other.

Real & Idealized. It is heartening to see even the statisticians working with real
data, eschewing the caricature of simplifying our real scientific problems to ones that
are mathematically tractable but unrecognizable and scientifically uninteresting. (When
I first starting learning more formal statistics than I had managed as an undergraduate,
I was amused to learn the polysyllabic term “heteroscedastic”, so complicated it was
clearly seen as a special case — we just call them “errors”.)

Statistics & Systematics. If we think we can describe the distribution of some quan-
tity contributing to our data, we call it a “statistical error”; otherwise, we call it a “sys-
tematic”. As CMB experimentalist Paul Richards from UC Berkeley once said, systematic
errors are what can make a good experiment get worse instead of better when you get
more data.

Sparse & Dense. The first thing a physicist will do with almost data she can get her
hands on is to Fourier transform it. We do this because in many cases the properties of
the data are simpler — more sparse — in the harmonic domain. In recent years, the idea
of sparsity has taken hold: can we find general methods for finding transformations of
the data into a sparse basis?

Blind & Open. At a higher methodological level, cosmologists are beginning to re-
alize that we are not without our own unacknowledged prejudices: sometime we find the
answer we are looking for. To combat this, blind analysis, a tool that has a long tradition
in the particle physics community, is finding its place in cosmology (see Section 3.1).

2. Random Fields
Although pioneering cosmologists like Peebles (1980) had clearly been thinking of the

distribution of matter in the Universe as realizations of a random field, it took the work of
Adler (1981) and its subsequent use in a cosmological context by the immense and much-
cited (if less often read) Bardeen et al. (1986) to bring this formulation into broader use,
specifically for the calculation of the distribution of extrema, as proxies for the location
of galaxies and clusters as well as voids.

Those works were largely concerned with Gaussian fields — luckily for us, this seems
like a good description of the distribution of matter on large scales. We may well ask
ourselves why this is the case. There are two somewhat obvious, but not necessarily
equivalent, routes. The first is through the central limit theorem: if we can describe
the distribution of matter by a suitable combination of individual processes, we can
expect the result to be well-approximated by a Gaussian distribution (at least far from
the tails. . . ). But in fact we know more about the distribution than this: it seems to
be an isotropic field, described by an approximately scale-invariant Harrison-Zeldovich-
Peebles-Yu power spectrum (Peebles & Yu 1970; Harrison 1970; Zeldovich 1972). To get
this, we need more physics. A free (non-interacting) quantum field will have an isotropic
Gaussian correlation function, and cosmic inflation is one way to embed such a field in an
expanding Universe and get a (nearly) scale-invariant power spectrum (see, e.g., Planck
Collaboration XXII 2014, and references therein).
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Furthermore, we know that the Gaussian description isn’t enough: late-time effects
such as nonlinear gravitational evolution and lensing certainly modify the statistical
properties of the field, as do any departures from a free quantum field. The former effects
have already been observed (Planck Collaboration XXIV 2014); the latter, which would
give us a hint about the nature of the interactions experienced by the field, were the
subject of much discussion at the conference, and the target of ongoing observations.

The statistical challenge lies in what infinitesimal subset of the ways in which a distri-
bution may depart from an isotropic Gaussian are of cosmological interest. Some of those
may be driven by particular theoretical ideas, such as the weak non-Gaussianity induced
by the coupling of the inflationary potential (Planck Collaboration XXIV 2014), while
others may just be convenient phenomenological descriptions of non-Gaussian distribu-
tions (Planck Collaboration XXIII 2014). During this meeting, we heard about many
different versions of these:
• simple phenomenological parameterizations, driven by even simpler models (fNL);
• going beyond point estimators to various ansätze for the distribution Pr(fNL |data);
• going beyond single numbers to full n-point polyspectra;
• Minkowski functionals and the beautiful Gaussian Kinematic Formula (Taylor 2006);
• physical reconstruction vs nonlinear transformations and clipping; and
• going beyond the CMB — today: QSOs, tomorrow: Euclid, 21cm, and the coming

age of photo-z.

3. Case Study: The CMB
Almost all of these topics show up in the study of the Cosmic Microwave Background.

Indeed, several of the first theorists to investigate the details of the distribution of the
CMB on the sky (Bond & Efstathiou 1984) went on to pioneer the analysis of CMB data
from real experiments (Bond et al. 1998; Efstathiou 2006).

A simple flowchart for CMB data analysis is shown in Fig. 1: we start with raw time-
ordered data, average these into a map of the sky, evaluate the angular power spectrum,
C� of this map, and determine the set of cosmological parameters responsible for this spec-
trum. Each step represents significant data compression. For Planck, there are trillions of
initial samples, tens of millions of pixels in a map, 2500 multipoles in the power spectrum
which is finally represented by six parameters (Planck Collaboration XVI 2014). At each
step, the intermediate result (i.e., the map or the power spectrum) can be thought of as
a sufficient statistic — in a Bayesian sense we don’t really need to even specify a prior
for them as they are just convenient representations of our original data. For the map,
we only need to assume that the signal is fixed on the sky (so any time evolution violates
the model); for the power spectrum, we need to further assume isotropy and Gaussianity.

Even without further complications, this is a computationally daunting task. If the
noise is not white, the time for the mapmaking step (see, e.g., Cantalupo et al. 2010)
naively scales as the cube of the number of pixels, as does the power spectrum step (Bond
et al. 1998). Both of these can be simplified by clever numerics (Ashdown et al. 2007)
or by using frequentist methods (Hivon et al. 2002) but these result in approximate or
incomplete solutions. For mapmaking, it is impossible to calculate the full noise covari-
ance of the resulting Gaussian distribution, while for power spectra even the form of the
distribution is not well determined.

And even this picture is quite a bit simpler than what is needed in practice. A raft
of “systematic effects” need to be accounted for, usually only in an approximate or
parameterized way. The most important is probably the effect of astrophysical fore-
grounds which contaminate the primordial signal. Much of this can be taken care of by
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Figure 1. The flow of data in the analysis of CMB experiments — the simplified version.

conservative masking of the sky but the low-level remnants of foreground emission re-
main throughout the sky and must be accounted for (e.g., Planck Collaboration XII
2014). Similarly, the data-flow described above assumes axisymmetric beam-shapes (i.e.,
the point-spread function in the usual astronomical parlance) and dense, uniform sam-
pling of the sky in the time domain. Except in special cases (Armitage-Caplan & Wandelt
2004), this cannot be accounted for exactly.

In practice, then, we cannot afford idealogical purity — the cosmological community
is largely Bayesian in its outlook, but in fact many of our algorithms are essentially fre-
quentist, assuming that the asymptotic correspondence between Bayesian and frequentist
results holds at least at small scales (high �). We further remove at least some systematic
effects by measuring some appropriate set of instrumental parameters and fixing their val-
ues, or in some cases use forward Monte-Carlo modeling to approximately parameterize
the posterior distribution (e.g., Planck Collaboration VII 2014).

3.1. Blind Analyses

We never have enough information to give a complete statistical description of a realistic
experiment: there are always systematic effects for which we have not accounted. When
do we stop looking? At this meeting, in talks from Hiranya Peiris and others, we were
admonished to do something other than just stopping when we thought we had the right
answer. One way to ensure this, used very often in the particle physics community, is to
use a blind analysis: perfect the tools on simulations and on subsets or combinations of
the data which are expected to have none of the signal being sought after.
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We attempted such an analysis for the recent publications from Polarbear (The Polar-
bear Collaboration 2014, 2013), an experiment measuring the polarization of the CMB,
in particular searching for the so-called B-mode pattern which results from a background
of inflationary gravitational waves and/or lensing of polarized CMB photons along the
line of sight. The Polarbear Collaboration (2014) gives the first direct detection of the
B-mode power spectrum due to the latter lensing effect, analyzed using largely blind
techniques. These are especially useful during the initial discovery phase during which
it would be very easy to confuse an instrumental or foreground systematic effect for the
sought-after signal.
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