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ABSTRACT. During the austral summer of 1993- 94 a number of 1- 2 m deep snow 
pits were sampled in connection with firn-coring in western Dronning Maud Land, Ant­
arctica. The traverse went from 800 to about 3000 m a.s.l. upon the his;h-altitude plateau. 
Profiles of cations (Na+, K +, Mg2+, Ca2+), anions (Cl- , N03- , S04 - , CH3S03- ) and 
stable oxygen isotopes (8180 ) from 11 snow pits are presented here. Close to the coast 2 m 
of snow accumulates in about 2- 3 years, whilst at sites on the high-altitude plateau 2 m of 
snow accumulates in 10- 14 years. The spatial variation in ion concentrations shows that 
the ions can be divided into two groups, one with sea-salt elements and methane sulfonate 
and the other with nilrale and sulfate. For the sea-salt elements and methane sulfonate the 
concentrations decrease with increasing altitude and increasing distance from the coast, 
as well as with decreasing temperature and decreasing accumulation rate. For nitrate and 
sulfate the concentrations are constant or increase with respect to these parameters. This 
pattern suggests that the sources for sea-salt elements and methane sulfonate are local, 
whereas the sources for nitrate and suI fate are a mixture of local and long-range trans­
port. 

INTRODUCTION 

An understanding of the spatial variability and of the factors 
controlling the distribution of ions is essential for the inter­
pretation of ion chemistry records from deep ice cores 
drilled at a single site. Snow-pit studies are a useful tool for 
the study of the spatial variability since we can directly com­
pare variations in the snow chemistry with meteorological 
measurements and thus interpret variations in sources, 
transport and deposition processes. A number of different 
traverses and studies have been conducted to map the trends 
in chemistry over the Antarctic continent. Mulvaney and 

Wolff (1994) compiled the spatial variability of concentra­
tions ofmcyor anions (Cl- , N03

- , SO/-) in Antarctic snow 
and firn. This study shows that there are still large areas of 
the continent where data are lacking. 

In order to improve the coverage of data, a Swedish ex­
pedition visited the coastal area and the polar plateau in 

western Dronning Maud Land (DML) during the austral 
summer of 1993-94 (Fig. I). This area ofDML is ofparticu­
lar interest because it has been selected as a potential deep­
drilling site by the European Project for Ice Coring in Ant­
arctica. The traverse was performed as a part of the Inter­
national Trans-Antarctic Scientific Expedition. The major 

objectives of the program include study of the spatial varia­
bility of ions, stable oxygen isotopes and snow accumulation 
and also the climate variability during the last 100-
200 years using shallow firn cores. Both firn cores and snow 
samples from pits were collected during the expedition, and 
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Fig. 1. }v[ap showing locations if the snow pits in western 
Dronning Maud Land, Antarctica. 
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in this paper we report the results from the snow pits. The 
aims of the snow-pit study were to investigate the spatial 
variability of ions (Na+, K +, Mg2+, Ca2+, Cl- , N03

- , 

S042- , CH3S03 -) and oxygen isotopes and to study the in­
fluence of different parameters such as a ltitude, distance 
from sources, temperature, snow-accumulation rate and 
aerosol properties on the spa tial variabil ity of the different 
ions. The spatial variability is particul a rly important when 
looking at different ratios such as the ratio between 
CH3S03- and SO/- . 

Only a few studies of snow chemistry have been con­
ducted in western DML. Major ions were measured from 
the coast to 120 km inland on the Rii ser-Larse ni sen ice shelf 
(Gj essing, 1984). One 20 m long firn core from the high-alti­
tude plateau (75 ° S, 2° E ) has been analyzed for major an­
ions and cations (Isaksson, 1994). At a few stations along 
the coas t of Anta rctica, air samples of m ajor chemical com­
ponents have been measured in order to study seasonal 
cycles. At the German coastal station Georg von Neumayer 
in DML (Fig. I) year-round measurements have been 
conducted since 1983 (Wagenbach and others, 1988). 

SITE DESCRIPTION 

The traverse started in the coasta l a rea on the Oat Riiser­
Larseni sen ice shelf (Fig. I) and continued over the undulat­
ing ice surface northwest of the mountain range Heimefront­
fjella. There is an increase in altitude at Heimefrontfjella of 
about 1000 m up to the high-altitude plateau, Amundsenisen. 
At Amundsenisen the surface topography is relatively Oat, 
and in part of this area sastrugi, typically a few meters long 
and I~-50 cm high, are frequent. 

Table 1. Site locations and generalfield data 

Site Latitude Longitude Altitude Distance Pit 10 III Approx. 
from coast depth temp. accum. 

ma.s.1. km m °C cmw,e, I- I 

1 73°27.5' S 12°33.7' W 800 150 2 - 22.i 28 
2 74°57.7 ' S 11 '48.1' W 2150 330 2 - 33.4 12 
3 78 01.5' S 10 '59.2' \\' 2151 520 2 ND 9 
4 75 312' S 0945,9' W 2400 380 2 - 37.4 7 
5 75°28.8' S 09°05.4' W 2600 400 2 - 39.5 6 
7 75°30.2' S 04°35.2' W 2750 510 2 - 42.0 6 
9 75 30.0' S 0240.6' E 3100 710 2 - 45.0 5 

10 73°57,0' S 12°04.5' W 1100 218 - 22.8 15 
11 74° 15.6' S 11 '45.5' W 1350 280 - 22.4 15 
12 73 °39.0' S 09°42.9' W 1300 220 1.2 - 26.4 13 
13 72"01.1 ' S 08°45.1'W 850 130 2 - 19.7 39 

The coring sites were chosen to cover as much distance 
as possible bet ween the coast and the pola r plateau in order 
to determine the spatial variability of ions and oxygen iso­
topes. Altogether, 14 cores were drilled to a depth of 10-
30 m, and 1- 2 m deep snow pits were dug at each dri lling 
site. In this paper we present data from the 11 snow pits that 
have been analyzed so far, from 800 up to 3000 m a.s. l. d is­
tributed over a distance of about 700 km (Fig. I; Table I). Site 
altitudes vs distance from the coast are shown in Figure 2. 

Previous glaciological studies in this coastal area have 
shown that the snow-accumulation rate decreases rapidly 
with increasing distance from the sea, from about 40 cm w.e. 

a 1 on the Riiser- Larsenisen ice shelf to < 8 cm w.e. a- I a t 
3000 m a .s. !. (Isaksson and K a rlen, 1994a, b; Isaksson and 
others, 1996). Continuous snow radar measurements made 

along the same traverse route have revealed a large spatial 
variability in snow accumulation rate (Richardson and 
others, 1997). The radar surveys showed that the acc umul a­
tion rate vari es considerably in the coas ta l region, which has 
an undulating topography. Even la rger variations can be 
found in areas with a large altitudinal gradient, such as the 
grounding line and around H eimefrontfj ella. On the flat , 
high-altitude plateau the variations in accumulation a re less 
pronounced (Richardson and others, 1997). The seasonal 
variation and frequency of precipitation is of importance 
for the snow record of wet scavenged atmospheric compo­
nents. Accumulation rates from stake measurements in this 
area have indicated that only 3- 23% or the total accumula­
tion can be at tributed to the summer season from December 
to February (Naslund and others, 1991). 
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Fig. 2. Site aLtitudes (m a.s.L) vs distance from coast (km). 
Locations ofsites are given in Figure 1. 

SAMPLING 

At each coring site a shallow (1- 2 m) snow pit was dug 
100 m upwind from local contamination sources. The spoils 
were dumped in the downwind direction in order to avoid 
direct contamination. The sampling wall, at the upwind 
side of the pit, was cleaned by removing IS- 20 cm with a 
shovel and an additional 4- S cm with a scraper. The 
samp li ng was performed by personnel wearing clean suits, 
polyethylene gloves and face mas ks. All tools used for dig­
ging and sampling were made of Plex iglas or polyethylene, 
and were thoroughly washed with double-deionized water 
(resistivity > l8MD) from a Mil li-Q system. Samples for 
ion analysis and stable oxygen isotope analysis were taken 
at 2 cm intervals, and for density measurements at 3 cm in­
tervals. Samples for chemical analyses were collected in pre­
cleaned (double-deionized water) 60 ml polypropylene bot­
tles (Nalgene). The bottles were stored in a freezer (- IS°C) 
during subsequent transport by ship to the freeze room 
(-2S°C) at the Department of Meteorology, Stockholm 
University. Some of the samples for ion a nal ysis were flown 
directly from Cape Town to the University of New H amp­
shire. All samples were kept frozen during transport and 
were meltedjust prior to analysis. 

ANALYTICAL METHODS 

Ion concentrations were measured by ion chromatography 
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(Dionex). Samples from snow pits 1-4 were analyzed at the 
University of New Hampshire, and samples from snow pits 
5- 13 were analyzed at the Department of Meteorology, 
Stockholm University. Comparisons were made between 
the two laboratories, a nd the results showed good agree­
ment. Separator columns (AS4A), eluent 1.8 mM Na2C03 
and 1.7 mM NaHC03, were used for analyses of anions 
(CI- , N03

- , S042-), and CSI2 columns with eluent 20 mM 
methane sulfonic acid were used for analyses of cations (Na +, 
K +, Mg2+, Ca2+). M ethane sulfonate (CH3S03 , also com­
monly abbreviated MSA ) was analyzed separately on AS4 
columns with eluent 7 mM NaOH and 100 mM NaOH or 
0.5 mM NaHC03. The average analytical error was esti­

mated to be less than + 10% for all ions reported. 
Potassium concentrations are not reported for snow pits 

5- 13 due to insufficient separation from an unknown peak 
in the chromatogram. Neither are Ca2+ values reported for 
those pits, due to too high background concentrations. 

The stable oxygen isotope analysis was performed by 

mass spectroscopy at the Department of Geophysics, Uni­
versity of Copenhagen. The 0'180 value, expressed in %0, 
describes the relative deviation of IBO in the precipitation 
compared to Standard Mean O cean Water (Dansgaard, 
1964). The measuring accuracy is better than 0.1 %0. 

RESULTS AND DISCUSSION 

General information for each snow pit is presented in Table 
I, and chemical data for eight ions and 0'180 are given in 
Table 2. Dating of the snow stratigraphy was performed 
using all available data on seasonal chemical variat ions. 
The depth of the snow pits varied between I and 2 m. At 
the coast 2m of snow accumulate in about 2-3 years, while 

at high-a ltitude sites 2 m of snow accumulate in about 10-
14 years. Thus, the mean concentrations represent snow ac­
cumulated over 2- 14 years. In order to compare data from 
the same time period, a mean value for the two most recent 
years was calculated for each snow pit (in parentheses in 
Table 2). This 2 year mean value was found not to deviate 
more than 30 % from the overall mean value, except for ele­
vated mean values for N03 - , S042

- and CH3S03 - in the 
snow pits from the high-alti tude plateau (pits 2- 5, 7 and 9). 
For N03 - this is in accordance with suggested post-deposi­
tional losses of HN03 (Neubauer and H eumann, 1988) 
which lead to an increase of the N03- concentration toward 
the surface. The elevated concentrations of S042

- in the 

upper snow layers can be attributed to the eruption of 
Mount Pinatubo in 1991, which greatly increased the strato­
spheric loading of S042 aerosols over Antarctica during 
1991 - 93 (e.g. Caccianni and others, 1993; Hoffmann and 
others, 1994; Saxena and others, 1995), or to the change in 

circulation pattern during the 1991 - 93 El Nino event. The 
elevated concentrations of CH3S03 can be attributed to 
the El Nino event. This connection between elevated 
CH 3S0 3 concentrations in Antarctic snow and El Nino 
circulat ion pattern was first suggested by Legrand and 
Feniet-Saigne (1991) based on a record from the South Pole. 
Both the volcanic signal and the signal attributed to the 
1991- 93 El Nino event have been observed in snow pits at 
the South Pole (Dibb and Whitlow, 1996). 

The ratio between Cl and Na + (Fig. 3) varies from a 
minimum of 1.16, close to the sea-water molar ratio, up to 
single maximum values of 14 at some sites. No surplus of 
Na + compared to CI- is noted in any sample. We chose to 
use Na +, in accordance with most other investigators of Ant­
arctic snow and ice chemistry, as the sea-salt indicator for 
calculation of the non-sea-salt (nss ) fraction of the total con-

TabLe 2. ChemicaL data with mean ion concentrations (in !LeqII) and 0'180 (in %o). R is the moLar ratio qf (CH3S03-/ 

CHsSO 3- + nssSO 4 2-). This ratio and the Cl / Na + moLar ratio are given as mean values qf individuaL ratios. In parentheses 
are the mean vaLues Jor the years 1992 and 1993 

Siie Na+ K" nssK" Ml' nssNl/+ Ca2+ IlssCa2+ Cl nssCI NO, 50/ nssSO/ CH';>03 Rl- Cl/ Na+ 8180 

2.28 0.06 0.01 0.58 0.06 0.12 0.02 2.98 0.33 0.73 1.45 1.17 0.18 0.27 1.5 -26.0 

(1.67) (0.05) (0.42) (0.09) (2.32) (0.81) (1.45) (0.20) (-26.0) 

2 0.80 0.04 0.02 0.20 0.04 0.06 0.03 1.14 0.22 0.83 1.48 1.38 0. 11 0.17 1.9 - 37.7 
(081) (0.04) (0.20) (0.06) (1.08) (Q.79) (1.90) (0.15) (-37.9) 

3 0.47 0.02 0.01 0.12 0.02 0.06 0.04 0.78 0.22 0.79 1.28 1.22 0.09 0.14 1.9 ND 
(0.54) (0.03) (0.15) (0.05) (0.86) (0.95) (1.93) (0.16) 

4 0.92 0.03 0.01 0.25 0.Q4 0.06 0.02 1.33 0.27 0.89 1.50 1.39 0.09 0.11 2.0 - 40.2 

(0.67) (0.03) (0.18) (0.06) (1.09) (1.67) (2.08) (0.09) (-38.7) 

5 NO NO NO ND NO NO NO 1.49 ND 1.0 1.66 NO om NO NO - 41.1 
(1.22) (1.36) (2.0\) (0.13) (-41.2) 

0.64 NO NO 0.22 om NO NO 1.1 7 0.78 1.1 0 2.08 2.0 0.06 0.03 2.5 - 43.9 
(0.46) (0.17) (1.31) (2.67) (2.76) (0.07) (-44.7) 

9 0.60 ND NO 0.21 om NO ND 0.98 0.33 0.93 2.05 1.98 0.08 0.07 2.1 -46.1 

(0.65) (0.25) (1.07) (1.47) (2.49) (0. 11) (-44.7) 

10 2.4 NO NO 0.70 0.15 NO NO 3.52 0.78 0.88 2.51 2.23 0.1 2 0.12 1.5 -28.1 

(1.78) (0.53) (2.44) (0.93) (2.85) (0.18) (-27.1 ) 

11 1.46 ND NO 0.35 0.21 NO NO 2.21 0.43 0.90 1.79 1.52 0.08 0.09 2.0 - 31.5 
(1.40) (0.36) (2.20) (0.94) (1.97) (0.09) (-31.4) 

12 1.15 NO NO 0.36 om NO NO 1.67 0.28 1.13 2.10 1.96 0.12 0.12 2.2 -31.0 
(1.14) (0.31) (1.45) (1.13) (2.16) (0.15) (-27. 1) 

13 4.49 NO NO 1.18 0.1 4 ND NO 6.64 1.40 1.28 2.92 2.38 0.25 0.23 2.0 -22.7 

(4.71) (1.23) (6.95) (1.26) (2.75) (0.22) (-22.9) 

ND, no data. 
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Fig. 3_ CL / Na + molar ratio vs depth Jar a coastal site (1) and 
a high-altitude plateau site (4). The summer seasons in the 
oxygen isotope record are mm'ked with vertical lines. 

centrations of K +, Mg2+, Ca2+, Cl and S042 . The non­

sea-salt fraction for each ion is calculated by assuming a 
mean sea-water molar ratio of 0.022 for K + /Na +, 0.23 for 
Mg2+ /Na +, 0.044 for Ca2+ /Na +, 1.16 for Cl /Na + and 0.12 
for sol /Na + The ratio is multiplied by the actual Na + 
concentration in each sample, and the product is then sub­
tracted from the total concentration of the specific ion (with 

all concentrations expressed in J.leq I \ yielding the nss frac­
tion of the specific ion. The calculated average sea-salt frac­
tion at sites northeast of Heimefrontuella is 80% for K +, 
Mg2+, Ca2 + and Cl and 15% for S042 

. At sites on the 
polar plateau the calculated sea-salt fraction is less, on aver­
age 50% for K + and Ca 2+, 80% for Mg2+, 70% for Cl and 

5% for S042 . This implies that other sources than sea spray 
may be important not only for S042 but also for K + , Mg2+, 
Ca2+ and Cl , or that fractionation of sea-salt aerosol occurs 
during transport in land (Mulvaney and others, 1993). A re­
action between acid aerosols and sea sa lt producing gaseous 
HCI, combined with more efficient transport and deposition 
of HCI gas to the snow, has been suggested as the major 
source ofnss-Cl- in Antarctica (Legrand and Delmas, 1988). 

Oxygen isotopes and snow acculllulation rates 

Annual dating of the snow stratigraphy with the help of the 
8180 profiles was performed by counting the less negative 
8 180 summer peaks. The seasonal amplitude is typically 4-
10%0, which is acceptable for dating in most cases. However, 
data from pits 2- 9 show signs of diffusion due to the snow 
densification process which is typical for sites with low 
annual accumulation and large temperature differences 
between summer and winter Uohnsen, 1977). Since the rela-

tive amounts of the different stable oxygen isotopes in the 
snow are to a large degree dependent on the temperature 
during formation of the precipitation (Dansgaard and 
others, 1973), the mean 8180 value for each pit is an indicator 
of the mean annual temperature at that site. The mean 8180 
and the 10 m borehole temperature at each site are plotted vs 
altitude in Figure 4. The sign ifi cant correlation (1'2 = 0.98, 
cY = 9.22) between the mean 81HO and the 10 m borehole 
temperature suggests that the 8180 mean values from this 
area are suitable as proxy-temperature indicators. 
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Fig. 4. The 10111 dejJth temperature ( OC), mean {5180 (%o) 
and mean accumulation rate (cm w.e. a ) at each site vs 
altitude. 

The mean 8180jlO m temperature gradient for this data­
set is 0.91 %0 QC I. In another dataset using IOm firn cores 
from the Riiser- Larsenisen ice shelf and up to Amundsen­
isen, the gradient was 1.16%0 °C 1 (Isaksson and Karien, 

1994a, b). This is higher than the 0.75%0 °C 1 gradient that 
is generally used in East Antarctica (Lorius and Merlivat, 
1977). If only the sites above 2000 m are used, the mean 
8 180 /10 m temperature gradient becomes 0.74%o OC 1 

(1'2 = 0.98, er = 3.11). In agreement with our previous 
studies in the area, we find the better-defined 10 m tempera­
ture/mean 8180 relationship at high-altitude sites the result 
of a more stable (i.e. better-mixed ) moisture source than at 
more coastal sites (Isaksson and K arien, 1994a, b; Isaksson 
and others, 1996). In a study by Qin Dahe and others (1994) 
it was also observed that on the polar plateau the gradient of 
the mean 8180 /10 m temperature regression line could shift. 
These studies show that it is important to be aware of the 
regional character of the mean 8180 /10 m temperature gra­
dient when using 8180 mean values as proxy-temperature 
indicators. 

Calculation of the annual accumulation was done using 
the summer peaks in the 8180 record or, when this was in­
distinct, the seasonal variation in the ion records. There was 
a large variation (60% ) in accumu lation between years. 
However, the mean accumulation for each pit (Table I) was 
in agreement with previous accumu lation measurements in 
the area (Isaksson and Karien, 1994a, b; Isaksson and 
others, 1996). The spatia l trend shows decreasing values with 
increasing altitude (Fig. 4). 
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Fig. 5. Relative concentrations cif ions at each site vs altitude. 

Spatial variability of ions 

Spatial vari abili ty of the ion concentrations in the snow are, 
except for post-depositiona l processes, determined by the 
relationship between different parameters such as a ltitude, 
distance from coast, temperatu re, accumulation rate and 
aerosol properties. In this area the di stance from the coast 

and the a ltitude are positively correlated, as shown in Fig­
ure 2. The relationship between temperature (and 8180 ), ac­
cumulation rate and alti tude is evident from Figure 4. T he 
higher the a ltitude, the lower the temperature and the lower 
the accumulation rate. Thus, the pa rameters are not inde­
pendent of each other. 

The different ions have very different absolute concen­
trations and they have therefore been plotted as relative 
concentrations and deposition Duxes in order to compa re 

the spatial trends. The deposition flu xes were calculated 
based on the accumulation rate at each site. The concentra­
ti ons have been normali zed (conc. a t site X /cone. at site I) to 
the most coastal site. Relative mean concentration against 
altitude for each snow pit and ion is shown in Figure 5. The 
ions can be divided into two different groups, the sea-salt 
elements (Na +, K +, M g2 +, Ca2+, Cl- ) and CH3S03- in 

one group, and 0 3- and S042- in the other group. The 
sea-salt elements and CH 3S03- show a decreasing trend in 
concentration towards the high-altitude plateau, with a 
more rapid decline at the mountain range H eimefrontfj ella 
(Fig. 5), which most likely acts as an abrupt ba rrier for the 
maritime a ir masses. Nitrate and sulfate show a constant or 
slightly increasing trend with increasing altitude. The same 
division into two groups of ions is evident when looking at 
the relative deposition Duxes (Fig. 6). Because of the almost 
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linear relationship in thi s a rea between the a lti tude and the 
di sta nce from the sea (Fig. 2), the same pattern is obtained 
when plotting the concentrations against the di sta nce from 
the sea. Mulvaney and WoHT (1994) found a more rapid 

decrease in concentrations with distance from the sea in an 
a rea with steep coasta l topography compared to an a rea 
with open topography as on an open ice shelf. T his indicates 
that the altitude has more influence on the concentrati ons of 
ions in the snow than the di stance from the sea, which can 

be interpreted as meaning that different air masses a re in­

fluencing different a ltitudes. The local marine air masses 
a re only reaching a certain altitude, while long-range trans­
ported air masses are influencing the high-altitude pla teau. 

Both S042 and CH 3S03 a re products of marine bio­
genic production through the oxidation of dimethyl sulfide 
(DMS) released from phytoplankton. Sulfate may also ori­
ginate from sea spray, volcanic emissions and stratospheric 
input, while CH3S03 only originates from DMS oxida tion. 
The CH 3S03 frac tion of the sulfur species, commonly de­
noted R (defined as CH3S03 /( CH 3S03 + nssSO/ -) 
(Whung and others, 1994)) varies within a range of 0.04-
0.9 on the coast, a nd of 0.01 - 0.5 on the high-altitude plateau. 

The value of R in Antarctic snow has been suggested 
(Saigne and Legrand, 1987; Legrand and others, 1992) to in­
dicate the location for the influencing ma rine source a rea at 
each site. The pa rtitioning between CH 3S03 and SO / 
during DMS oxidation is inferred (Berresheim, 1987) to be 
temperature-dependent from laboratory oxidation studies 

(H ynes and others, 1986). This temperature dependency is 
thought to be responsible for the observed latitud inal g radi­
ent of R (Bates and others, 1992), with higher R values found 
at higher latitudes. 

The highest mean va lues for R are found at the most 

coastal sites, with a maximum during summer, and the low­
est furth est inland (Fig. 7; Table 2). This is in accordance 
with a local source for coastal sites, a high-latitude source 
which gives rise to a high R value and a maximum during 
summer. The intensity of the sunlight is probably more 
important than a compl ete di sappearance of the sea ice, 

which explains why the peak season is earlier th an for the 
sea-salt elements. T he high-a ltitude plateau is influenced by 
long-range transport, a nd thus the lower R value could be 
expla ined by a marine biogenic source at lower latitudes. 
However, a lower R value could also be due to a larger influ-

ence of other sources fo r sui fate, like volca nic a nd anthropo­
genic sources at lower la titudes. The effect on the R value of 
the Mount Pinatubo eruption is clearly seen in the dataset. 
However, one should be aware of the total dominance of the 

1991- 93 El Jino event in the coastal records, which could 
bias our interpretation of spatia l differences. 

CONCLUSIONS 

"Ve have pre ented depth profil es of eight ions and 8180 

from 11 snow pi ts (1- 2 m deep) in western Dronning Maud 
La nd to reveal spati al variati ons in snow chemistry for this 
pa rt of Anta rctica where da ta a re spa rse. The depth profil es 
span 2- 14 yea rs. T he 8180 values from this area a re found to 

be suitable as proxy-temperature indicators wi th a 8180 / T 
gradient of 0.91 % 0 °C- I (r2 = 0.98). 

The spati a l variability of the ions can be divided into 
two groups: one wi th sea-salt elements (Na+, K +, M g2+, 
Ca2+, Cl ) and methane sulfonate, and the other with 
ni trate and sul Cate. For the first g roup the concentrations 
decrease, a nd fo r the second group the concentrations a re 
constant or increase with increasing altitude a nd increasing 

distance from the coast, as well as with decreasing tempera­
ture a nd decreasing accumulation rate. 

This pattern suggests that the sources for sea-salt 
elements and methane sulfonate a re more local, whereas 
the sources for ni trate and sui fa te a re a mixture of local 
and long range transport. Although methane sulfonate and 

suI [ate have one source in common, DMS oxida tion, they 
show different spatia l vari abilit y. T his means that the ratio 
be tween methane sulfonate and sulfa te should be used with 
caution to describe the location of the Dl\1S source. 
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