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Abstract

Let / be a transcendental entire function and denote the n-th iterate of/ by / „ . For n > 2, we give an
explicit estimate of the number of periodic points of/ with period n, that is, fix-points of/„ which are
not fix-points of ft for 1 < k < n.
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1. Introduction and results

We begin by introducing the following fundamental notation and definitions. Let/ (z)
be a transcendental entire function. We denote by fn{z) the n-th iterate of/ (z) which
is defined by/o(z) = z, / ,(z) = / ( z ) , fn(z) = /(/„-!(z)) =/„-• ( / (z) ) . A point
z0 is said to be a periodic point with period n if fn(zo) = Zo but for 0 < k < n,
fk(zo) ^ Zo- And according as the modulus of its multiplier, k = /n'(zo), satisfies
|A.| < 1, |A.| = 1, or |A| > 1, we classify the periodic point zo of period n into,
respectively, attracting, indifferent or repelling. We denote by p (f) the order of/ (z);
by F a set on the positive real axis with finite logarithmic measure, not necessarily
the same at each occurrence; and by v(r,f) the central index of the power series of/
expanded at z = 0. We shall use the standard notation of Nevanlinna theory, such as
nr,f),Jf(r,f) and N(r,f) (see [7]).

The following is the main result of this paper.
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[2] Value distribution of iterated entire functions 19

THEOREM 1. Let f (z) be a transcendental entire function. Then for n > 2, there
exists an unbounded sequence of r such that either

1 — / 1
(1) (1 - o ( l ) ) l o g M ( r , / n ) < Nn[(e+ l)r,

or for every finite complex number a,

V fn-aj \ fn-Zj

where Nn (r, l /( /n — z)) w f/ie counting function corresponding to the number
*h,(r, l/(fn — z)) of periodic points of f with period n, ignoring multiplicities, in
\z\ <r,andd> (1/1500)2.

We remark that Theorem 1 gives an estimate of the number of periodic points of
period n of f and confirms the conjecture, posed by Baker ([8, Problem 2.20]) and
proved by Bergweiler [5], that for n > 2, there exist infinitely many periodic points of
period n. For references of the background of this subject we refer the reader to [2],
[3] and [5].

The method used in this paper, and which is in essence due to [5] and [11], enables
us to prove the following theorem.

THEOREM 2. Let f (z) be a transcendental entire function and P(z) a non-constant
polynomial. Then for n > 2, there exists an unbounded sequence ofr such that

(2)

where d > 1/1500.

We remark that under the assumption of p(f) < 1/2, Baker [2] showed that the
inequality

logM(rd,fn) <N[r, + O(logr)
V fn-Z/

holds for all sufficiently large r, where d depends on n and p(f), and d —>• 0, as
n -*• oo.

Finally, from the proof of the above theorems given below, we immediately deduce
the following theorem.
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20 Zheng Jian-Hua [3]

THEOREM 3. Let f (z) and g(z) be two transcendental entire functions and P(z)
a non-constant polynomial. Assume that f (z) has a finite deficient value or a finite
asymptotic value. Then we have

O(logrv(r,g))
, f

(3) < 77 (eX, *f(g)-p

where x — r + cr/v(r, g), c = 20(4 + n).

Note that each of the conditions which/ (z) satisfies in Theorem 3 implies p(f)>
1/2.

THEOREM 4. Let / (z ) , g(z) and P(z) be given as in Theorem 3. Assume that
p{f) < 1/2. Then there is a constant c > 1 such that for all sufficiently large r, we
have

(4) (l(l))T(df()) - 'N (r,
d y " V 6 " \'f(g)-Pj'

where d = min{l/1085, c/(cos7rp — e)}, in which e > 0 is chosen sufficiently small
so that cos np — s > 0.

2. Some results needed in proofs

First of all, let us establish a different form of Nevanlinna's second fundamental
theorem. It is well-known that the second fundamental theorem of Nevanlinna can be
re-expressed as follows:

Let F(z) be meromorphic in \z\ < R. / /F(0) ^ 0, 1, oo and F'(0) / 0, then for
0 < r < R, we have

— _ / 1 \ _ / 1 \ / F'
T(r, F) < N(r, F) + N Ir, — \ + N lr, I + m I r, —

F(0)(F(0) - 1)
- log 2.(5) +m[ r, - ^ - j - ) + log

F'(0)

From (5) and by the same argument as in Yang [ 10, p. 64], we deduce the following
lemma.
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LEMMA 1. Let F(z) be meromorphic in \z\ < R(< oo). If F(0) ^ 0, 1, oo and
F'(0) # 0, then for 0 < r < R,

T(r, F)<2 IN(R, F)+N (R, J \ + N U, -^—\ j + 191

+ 4 log+ | F(0) | + 2 log+ — i — + 12 log+

R\F'(0)\ ° R-r

We further deduce the following consequence of Lemma 1.

LEMMA 2. Let F(z)be holomorphic in \z\ < R and let

w/iere «(/?,*) denotes the number of distinct poles of * in \z\ < R- Then for
0 < r < R, we have

log M(r, F) < - | ^ - (2N log - ^ - + 195 + 41og+ \F(zo)\ + 121og+

A — r \ K — r 4
K — r

for all Zo in \z\ < (R — r)/5, except possibly for the points in the union (y) of certain
disks, the total sum of whose radii does not exceed (R — r)/20.

PROOF. Let av (v = 1 , . . . , N) be all the distinct zeros and distinct 1-points of
F(z) in |z| < R. By the Boutroux-Cartan theorem, we have

N

(6) Y\\z-av\>nN, fi =

except for the points in the union (y) of certain disks, the total sum of whose radii is
at most leu < (R - r)/20.

Letzo ¥ (y) be a point in \z\ < (R — r)/5, and in the annulus / := {r + | (R — r) <
\z — Zo\ < r + |(n* — r)}, we can find a circle |z — zol = ' which does not intersect
with (y). We can do this because the distance between the inner and outer circles of
/ is (R - r)/5 > Aetx. Set

|F(u;)| = max \F{z)\
\z-zo\=t

and draw a segment low connecting zo and w. Then we can construct a curve L from
Zow by replacing the part of zow in the interior of (y) by the corresponding boundary
arcs of the discs. Obviously, the length of L does not exceed
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We need to consider two cases.
Case(a). The inequality \F'{z)\ < l/R holds uniformly on L. Obviously,

\F(W)\<\F(ZQ)\
JL

(z)dz

Since [z : \z\ < r] C {z • \z - Zo\ < t], we have

logAf (r, F) < log M(t, zo, F) < log+ |F(zo)| + log2.

Case(b). There exists a point z\ on L such that |F'(zi)| = 1//? and |F'(z)| < l/R
holds uniformly on L from zoto Z\. If |F'(zo)| > l/R, we define zi = zo- Then

<|F(zo)| + l.

Setyo= \w-zA + (R-r)/lO,Yi = \w-z
It is easy to see that {z : \z — Zil < Yi) C {z : \z\ < R}- Let av (v = 1, 2 , . . . , iVi)
be all the distinct zeros and distinct 1-points of F(z) in \z — z\ I < Yi- Since Zi ^ (y),
from (6) it follows that

N, / N, \ / N \

(2R)N-">Y\^-a»\> \ t \ ^ - a A ( f l \zl-av\)>nN,l l ' 1 ' — i l l 1 1 ' / i l l ' ' / ^

and further

R

Thus we have

80e/?
(7)

From (7), and using Lemma 1 in the disk {\z — Z\ \ < yi\, it follows that

logM{r,F) <log|F(u>) | < logM(y0, Zi, F)

Y\ + Yo
<

Y\ ~Yo

R-r

&0eR , y2 \
log h 191 + 4 log+ | F(zi) | + 121og+ — - —

R-r Yi~Y\)
195 +41og+ |F(zo)| + 121og

Thus Lemma 2 follows. •
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LEMMA 3. Let g(z) be a transcendental entire function. Assume that c > 0, K > 0
and T) > 0. Suppose that \zo\ = r 4 F, \g{zo)\ > r)M{r, g) and \a\ < K. Then there
exists a unique s such that \v(r, g)s — a\ — o{\) and

g(zoes) = g(zo)e
a,

and a function z(z) defined and analytic on \z — Zo\ < cr/v(r, g), and satisfying

\T(z)v(r,g)-2ni\ = o(l)

such that

g(ze^) = g(z).

Lemma 3 is in essence proved by using Wiman-Valiron theory [9] and was explicitly
developed by Bergweiler [4]. The following lemma is due to Clunie [6].

LEMMA 4. Let f(z) and g(z) be two transcendental entire functions. Then

M(r,f(g)) = M((l - o(\))M{r, g),f), r ft F.

The following lemma is due to Baker [1]. It is often used in the proof of the main
theorem of Bergweiler [5], as well as in this paper.

LEMMA 5. Let f (z) be an entire function. For any B > A, if \f (z)\ < R
in \z\ < A, but \f (z)\ > R on \z\ — B, then there exists a simple curve F in
{A < \z\ < B] going around the origin once such that \f (z)\ = R on F

By analyzing the proof of [2, Theorem 1], we are immediately able to prove the
following lemma.

LEMMA 6. Let F(z) be a transcendental entire function and P(z) be a polynomial
with the first term amzm (am ^ 0). Assume that, for some a > 1 and some r satisfying

2\am\rma > |P(Z) | , on \z\ = r\

there exists a simple closed curve F C [r < \z\ < r"} going around the origin once,
on which

\F(z)\ >M> 2\am\rm°.

Then

>log(M-2K|rmo)-0(logr).
f-
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3. Proofs of theorems

We begin with the proof of Theorem 2. Put g = /„_i, so that f (g) — /„• Assume
that for sufficiently large r g F, where F is the set arising from Lemmas 3 and 4, we
have

(8)

where x = r + 2R, R = 20(4 + n)r/v(r, g).
We want to prove the following

CLAIM. In

(9) e~3M(r, g) < \w\ < e3M(r, g),

there exists a circle Fo : \w\ = %r on which we have

(10) (1 - 0 ( 1 ) ) ^ log Af(r , / (*))< log |/(u;) | .

The same inequality still holds with f and g interchanged.

Now we choose a point ZQ on \z\ = r such that

\f(g(zo))\ = M(r,f(g)) =

then M(r, g) > \g(zo)\ > (1 — o(l))M(r, g). Application of Lemma 3 to z0 and g
implies the existence of an analytic function r(z) defined in |z — Zol < R, where
R = 20(4 + n)r/v(r, g), such that

(11) \r(z)v(r,g)-2ni\<l

and

(12) g(zezlz)) = g(z).

Set k(z) - zeT(z) and

f(g(z))-P(z)
(13) h(z) =

P(k(z))-P(z)'

in \z - zol < R- It is easy to prove that h(z) is analytic in \z - zo\ < R. Let (y) be
the union of exceptional disks, the total sum of whose radii does not exceed /?/80,

https://doi.org/10.1017/S1446788700036247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036247


[8] Value distribution of iterated entire functions 25

the existence of which follows from Lemma 2, taking F = h, r = |/? and the disk

Iz-zbl < R-
For w satisfying (9) we can write w = e"g(zo), where | Re a\ < 3, | Im a\ < n.

From Lemma 3, we can find a unique s such that v(r, g)s = a + o(l) and g(zoes) =
g{zo)ea = w. Put u — zoes, then

'" •*" • - - - v(r,g) 20

It is obvious that the mapping w = e"g(zo) maps the segment

L{ = [w : arg w = 6 and e'3M(r, g) < \w\ < e3M(r, g)}

into a segment which contains the segment

I 8 8]
L2 = \ a : argg(z0) + Im a = 0 and — - < Re a < - \ ,

and that L2 is mapped by u = zx>es, v{r, g)s = a + o(l), into a curve L3, the diameter
of which is at least /?/30. And therefore we can find a circle Fo : |io| = t;r in
{e~3M(r, g) < \w\ < e3M(r, g)) which is such that u corresponding to w on Fo is not
contained in (y).

Obviously, by (11), a simple calculation implies that

{z: \z-Zo\<R}C{z: \z\ < r + R]

and

{k(z) : \ z - Z o \ < R } C { z : \ z \ < r + 2 R = x ) .

Thus it follows from (12) and (13) that

1

''fig)-Pj'
By applying Lemma 2 to h(z) in \z — Zol < R, for u g (y) satisfying \u — za\ <
(R - \R)/5 = R/20, we have

loglMzo)! <logM -R,zo,

R - I R [
5R

+ 121og+

< 1083n ( X, f(g)_p ) + °(D + 3201°g+
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26 Zheng Jian-Hua [9]

On the other hand, from (13) it follows that

log|/i(zo)l > l o g M ( r , / ( £ ) ) - O(\ogrv(r,g)).

Hence, by (13) we have

(v, IlogM(rJ{g)) < 1083n (v, I p) + °(logrv{r, g)) + 3201og+

(14) < 1O837F (x, . * p ) + O ( l o g rv(r, g)) + 3 2 0 1 o g + \f ( w ) \ ,

and further from (8)

1
1403

logM(r,f(g)) < log+ \f(w)\ + O(\ogrv(r,g)),

on Fo. Thus the claim is proved.
Now choose a t <jL F in the interval ((M(r,/)/2)1/l425, (M(r,/)/2)"), where

^ = | (1/1403 + 1/1425). Then from the claim, with alternation of/ and g, and
the fact that log M(r, g) is convex with respect to log r, we have on Fo : \w\ = %r c

so that

\g(w)\ > e3M(t,g) >$,.

On the other hand, obviously for \w\ < ta, a = 29/30, we have

\ g ( w ) \ < e 3

Then there exists a simple curve F c {ta < \w\ < ijr] c {r" < |w| < f1450} = [i <
\w\ < F500}, t = ?", which goes around the origin once and on which |g(ii>)| = £,.
Applying the claim once more implies that

(15) l o g + | / ( £ ( u ; ) ) | > ( l - o ( l ) ) — l o g M ( / , / ( g ) ) , onT.

Then by Lemma 6, we get (2).
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[10] Value distribution of iterated entire functions 27

If for an unbounded sequence of r $ F, (8) does not hold, it is easy to deduce (2)
from the convexity of log M(r, g) with respect to log r and the fact that

Thus the proof of Theorem 2 is complete.
Now we are in position to prove Theorem 3. Conversely, suppose that for r g F,

we have

\ ) ^ a M ( , f (g)) - O(\ogrv(r, g)) -320logr),

where O(log rv(r, g)) is the quantity occurring in (14). By the same argument as in
the proof of the claim , from (14) and (16), we can prove that there exists a circle
Fo : | if | = %r on which we have

(17) logr<log|/(u>)| .

In fact, first of all, we deduce (14), and by (16) deduce (17). Obviously for any finite
number a, it follows from (17) that for sufficiently large r

\og\f{w)-a\ > 1, that is, mUr, ) =0,

where |iu| = £r, so S(a,f) — 0 and it is easy to see from (17) that/ has no finite
asymptotic values, which is a contradiction. Thus (16) does not hold, and Theorem 3
follows.

Before proving Theorem 4, we need a well-known result on transcendental entire
function with order less than 1/2.

LEMMA 7. [1, p. 131, formula (25)]. Let e > 0 be a given number and h(z) an
entire function of order p < 1/2. Then there exists a constant c > 1 such that, for all
sufficiently large R, the interval (R, Rc) contains an Ro with

m(R0,h)

where m(Ro, h) denotes the minimum modulus ofh(w) on \w\ = Ro-

Now we prove Theorem 4. Let e > e0 > 0 be sufficiently small such that
cos7rp - e > 0. Putp = (cos7rp - e)"1, p0 = (cosnp — EO)~1. By the convexity of
log M(r, g) as a function of log r, we have

M{rp,g)>{eiM{r,g)Y\
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Application of Lemma 7 to £0 and g implies the existence of c > 1 which is such that
the interval (rp, r^) contains an Ro such that on \z\ = Ro,

\g(z)\>m(R0,g)>M(R0,g)i^

> M(rp,g)l/P<> > e3M(r,g)

On the other hand, it is obvious that \g(z)\ < Mir1'6, g) < e~3M(r, g) < £r in
|z| < rl~s, where S is a sufficiently small positive number. Then it follows from
Lemma 5 that there exists a curve F c {rl~s < \z\ < rcp] which contains the origin
in its interior and on which \g(z)\ — %r-

If for r $ F, (16) with 320cp(degP + l)logr instead of 320 log r does not
hold, then (4) immediately follows. Now we assume such (16) holds, then we have
(17) with qy(dcgP + l)logr instead of logr on \w\ = £r, that is, log+ |/(u>)| >
cp(deg P + 1) log r, |iu| = £r. Then on F we have

log+ \f(g(z))\ > cp(degP + l)logr > log(|P(z)| + 1 +a),

where a is a complex number such that N(r, \/(f (g) — a)) = (1 — o(l))T(r,f(g)).
By Rouche's theorem, we deduce that / (g) — P has as many zeros as / (g) — a does
in the interior of F, and therefore for all sufficiently large r > r0,

=n

> n

where n(F, *) is the number of poles of * in int F. Further for r > r0,

' f(g)-P) " 1 - 5 V ' / ( « ) " «

since for arbitrary positive s,

By choosing a smaller e than the one in the above, we deduce (4). Thus Theorem 4
follows.
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Finally, we prove Theorem 1. For 0 < k < n and arbitrarily large K, we have

log M(r,fn) > logM Q M (\r,fn_,\ ,fk)

>logM(((e+l)r)K+l,fk)

and hence

N ({e+\)r, -^—\ < T{{e+\)rJk) + O(logr)

On the other hand, it is easy to see that

fn-Zj \ fn-Z

Set g = fn_x, so that/ (g) = /„ . Therefore, if (8) does not hold for some unbounded
sequence of r & F, then we easily deduce that

(e r,

This is (1). Now, we can assume that for all r g F, we have (8) and further
deduce the claim. By the same argument as in the proof of Theorem 2, we can
find a simple curve F C [t < \w\ < p500} going around the origin once and on
which (15) holds. Then the argument of Lemma 5 implies the existence of a simple
curve Fo C {f1/l406 < \w\ < P500} which surrounds the origin once and on which
\f(g(z))\ = M(RJ(g)), where R = P $ F, 1/1406 < /3 < 1/1403. Define
Go = intF0, G, = g(G0), G2 = / ( G , ) and F, = dGj (0 < j < 2). Obviously,
by the Maximum Principle, all the G; are simply connected and all the F̂  are simple
curves and surround the origin once. Assume that g(z) (respectively, / (z)) describes
Px (respectively, pi) times the curve F! (respectively, F2) as z describes the Fo

(respectively, Fi) once. Then/ (g) has P2 = P\Pi zeros in Go. By Rouche's theorem,
/ (g(z)) — z also has P2 zeros in Go. From the main ideas in Bergweiler [5], by a little
modification of his proof, we can prove that

(18) ~P2 = (l-o(l))P2,

where P2 denotes the number of distinct zeros of/ (g(z)) — z in Go. For completeness,
we shall give the proof of (18). First of all, we want to prove that

(19) fj(G0)CGl,0<j
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It is obvious that G\ is a domain and contains the origin. By the maximum prin-
ciple, JJTGo) C {M < M(P500,fj)}, 0 <j < n - 1. Since on Fo, \f(g(z))\ =
M(RJ(g))>MC-M(R,g)J),wehwethal\g(z)\>M(?5OO,fj),0<j <n-\,
on Fo, noting that / is transcendental. Thus (19) follows from Fi C g(r0) C
{M(P500,fj) < \w\},0<j < n - l .

Let zo £ Go be a zero of/ (g(z)) — z with multiplicity m + 1. Then we have that
/n'(zo) = 1 and Zo is a periodic point with period k < n. Let/? be the smallest positive
integer such that (/t'(zo))p = 1. and further kp < n, and let m{ + 1 be the multiplicity
of the zero zo oif^ (z) — z. Then it is easy to see that s = n/(kp) is a positive integer,
and /„ = (fkp)s, and therefore m = mx. By a result of Fatou (see [5, Lemma 6]), it
follows that there exist m/p cycles of Leau domains, each of which contains at least
one singularity of the inverse function of/, and which are in G\, by [5, Lemma 8]
and (19). Therefore G\ contains at least m/p critical points of/, for from the claim it
is easy to see that/ has no asymptotic values. However, / has at most p2 — 1 critical
points in G\. Hence we have

Pi -Ti

where J^is taken over all the zeros of f (g(z)) — z in Go. This implies (18), since
/?, ->• oo, as r ->• oo.

By (P2)j we denote the number of zeros of / , (z) — z in Go. Obviously, it follows
from |/n(z)| = M(R, /„) on To that | / ; (z)| > \z\ (0 < j < n - 1) on To, and hence
(P2)7 is equal to the number of zeros of/y (z) in Go, that is, the winding number of
fj(r0) around the origin. Obviously, (P2)y < (^2)«-i = P2- Since

< T2 < TP& + £ ( P 2 ) , < (PA, + ( n - l)p2,
7 = 1

we have

- > (1 - o(\))P2,

where (P2)n denotes the number of distinct periodic points of period n off (z) in Go,
and further we have for arbitrary a e Go

/»-Z/ V fn-Zj \ fn-Z
1

fn-aj

where v = 15OO2, and «^(F0, l / ( / n — z)) is the number of distinct periodic points of
period noif in int Fo.

Thus Theorem 1 follows.
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