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Combinatorial proofs of properties of
double-point enhanced grid homology
Ollie Thakar
Abstract. We provide a purely combinatorial proof of a skein exact sequence obeyed by double-point
enhanced grid homology. We also extend the theory to coefficients over Z, and discuss alternatives
to the Ozsváth–Szabó τ invariant.

1 Introduction

Knot Floer homology [6, 7] is a powerful knot invariant defined similarly to Heegaard
Floer homology, exhibiting many desirable properties such as detecting Seifert genus
and fiberedness sharply. The definition and subsequent computations rely heavily
on holomorphic geometry. However, in [2], Ciprian Manolescu, Peter Ozsváth, and
Sucharit Sarkar define a combinatorial knot invariant known as grid homology,
denoted GH−, using a grid diagram of a knot (see also [3, 5]). This associates to
each knot a bigraded module over F[U] (where F is the field of two elements). Grid
homology provides a more concrete way to compute knot Floer homology. Indeed, this
invariant is in fact isomorphic to knot Floer homology, but many of its topological
virtues can be proven purely combinatorially, such as lower bounds it provides on
unknotting number and 4-ball genus.

A slight variation on their definition, by Robert Lipshitz, is known as double-point
enhanced grid homology, which we notate GHL− (see [1] and [5, Chapter 5]), and
associates to each knot a bigraded module over F[U , v]. It remains unknown whether
the double-point enhanced grid homology actually encodes new information beyond
what is accessible to regular grid homology. Specifically, it is conjectured that for all
knots K , we have GH−(K)[v] ≅ GHL−(K) as bigraded F[U , v]-modules. While we
do not settle this question in the paper, we do prove two properties of double-point
enhanced grid homology that we already knew to be obeyed by grid homology. Earlier
work of Timothy Ratigan, Joshua Wang, and Luya Wang finds a purely combinatorial
proof that GHL− is indeed a knot invariant, and conjectures both properties of double-
point enhanced grid homology that we prove in this paper as Theorems 5.6 and 6.3
(see [9]).

The first section of the paper reviews grid homology as defined in [5] with a few the-
orems that are relevant to our later pursuits. Sections 3 and 4 define the double-point

Received by the editors October 12, 2022; revised October 1, 2023; accepted November 27, 2023.
Published online on Cambridge Core December 5, 2023.
AMS subject classification: 57K18.
Keywords: Knot theory, grid homology, skein exact sequence.

https://doi.org/10.4153/S0008414X23000809 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X23000809
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3241-6636
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X23000809&domain=pdf
https://doi.org/10.4153/S0008414X23000809


2 O. Thakar

enhanced grid homology of a knot and provide useful definitions and lemmas. The
goal of the paper is to prove two important theorems. The first, stated below, proves
that double-point enhanced grid homology admits an integer-coefficient version
which is a knot invariant. We will prove a slightly stronger statement in Section 5
along the way.

Theorem 5.6. For each grid diagram of a knot, there exists a homology group
GHL−S (G;Z), which, as a bigraded Z[U , v]-module, is also a knot invariant.
Furthermore, GHL−S (G;Z) is the homology of a chain complex, which when we take
the homology of the mod 2 version gives us the double-point enhanced grid homology
GHL−(G).

The subscript S in this notation refers to a sign assignment, a function on certain
rectangles in G. We will initially define GHL−S (G;Z) in terms of one such function S
and then prove it is invariant under change in S .

The second theorem we prove shows that this homology GHL−S (G;Z), which we
call integral double-point enhanced grid homology, obeys a skein exact sequence. We
extend GHL− to a link invariant cGHL−m(L, a). Omitting the subscript S and Z from
the notation, we may state the theorem.

Theorem 6.3. Let (L+, L− , L0) be an oriented skein triple, with � and �0 the number of
components of L+ and L0, respectively. If �0 = � + 1, then there is a long exact sequence
of bigraded Z[U , v]-modules:

→ cGHL−m(L+, s) → cGHL−m(L−, s) → cGHL−m−1(L0 , s) → cGHL−m−1(L+, s) →

Let J be the four-dimensional bigraded abelian group J ≅ Z
4 with one generator in

bigrading (0, 1), one generator in bigrading (−2,−1), and two generators in bigrading
(−1, 0).

If �0 = � − 1, then there is a long exact sequence where the maps below fit together to
be homomorphisms of Z[U , v]-modules:

→ cGHL−m(L+, s) → cGHL−m(L− , s) → cGHL−m−1(L0 , s) ⊗ J → cGHL−m−1(L+ , s) →

Finally, for the last two sections, we return to F coefficients for simplicity.
Section 7 presents some more concrete invariants that can be extracted out of double-
point enhanced grid homology, and their potential use in proving that regular and
double-point enhanced grid homology do not encode different information. Section 8
computes the double-point enhanced grid homology of alternating knots and torus
knots over the field of two elements using a spectral sequence, and shows that in these
cases the conjecture that GH−(K)[v] ≅ GHL−(K) holds with one caveat. The spectral
sequence loses information about the v action, hence these two theorems below give
only isomorphisms of F[U]-modules, not F[U , v]-modules.

Theorem 8.1. If K is a quasi-alternating knot, then GHL−(K) ≅ GH−(K)[v] as
bigraded F[U]-modules.

Remark 1.1 The family of quasi-alternating knots is a family that contains the
alternating knots but is strictly larger (see [5, Chapter 10]).
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Combinatorial proofs of properties of double-point enhanced grid homology 3

Theorem 8.2. If K is a torus knot, then GHL−(K) ≅ GH−(K)[v] as bigraded
F[U]-modules.

2 Background on grid homology

We begin with a brief summary of grid homology, a knot invariant first defined
in [2]. For this section, fix an oriented link L ⊂ S3. (For the majority of the paper,
we will not worry too much about orientations as the grid homology of an oriented
knot and that of its reverse are isomorphic.) A grid diagram is an n-by-n grid of
squares such that there is one X and one O in each row and each column. We may
retrieve a link from a grid diagram as follows. For each row and each column of
squares, draw a line segment connecting the X to the O within that row or column,
respectively. We assign each segment an orientation by specifying that vertical line
segments point from X to O while horizontal line segments point from O to X . Specify
further that whenever two such segments intersect, the vertical segment crosses over
the horizontal segments. Then, it is clear that the union of all these segments is an
oriented planar link diagram. There exists a grid diagram representing any oriented
link, in particular L, as guaranteed by [5, Theorem 3.1.3]. Let G be such a diagram.

Denote by X the set of all the center points of the X-marked squares, and likewise
denote by O the set of all the center points of the O-marked squares. We consider G to
be a fundamental domain of a torus T constructed by gluing opposite sides of G. It is
clear that different fundamental domains of this torus represent isotopic links. Fix a
coordinate system on a fundamental domain corresponding to the cardinal directions
North, South, East, and West.

Call the horizontal circles formed by the edges of the grid of squares as α1 , . . . , αn ,
moving further north, and the vertical circles formed by the edges of the grid of
squares as β1 , . . . , βn , moving further east. Let α denote α1 ∪ ⋅ ⋅ ⋅ ∪ αn and β denote
β1 ∪ ⋅ ⋅ ⋅ ∪ βn .

Definition 2.1 A grid state x of G is a set of n points on T such that ∣x ∩ α i ∣ = 1 for
all i ∈ {1, . . . , n} and ∣x ∩ β i ∣ = 1 for all i ∈ {1, . . . , n}. (In other words, x is a set of n
intersection points of the α and β curves, such that each curve is represented once.)

We denote the set of all grid states of G by S(G).

If x and y are two grid states of a grid diagram G, then we let the difference x − y
denote the oriented 0-manifold whose positive points are the points of x − x ∩ y and
whose negative points are the points of y − x ∩ y.

Definition 2.2 A rectangle r in G is an embedding of the closed unit disk D2 into G

with four sides such that ∂D2 gets mapped into the union of the α and β curves. Let

A ∶= ∂r ∩ α.

Then A is a 1-manifold with boundary consisting of two line segments, and has an
orientation induced from r by moving counterclockwise around the boundary ∂r.
We say the rectangle r connects two grid states x, y ∈ S(G) (or goes from x to y) if
∂A = y − x as oriented 0-manifolds.

The set of all rectangles from x to y is denoted by Rect(x, y).
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4 O. Thakar

We wish to create two functions M and A from S(G) to Z, which we define as
follows.

Definition 2.3 Let P and Q be finite sets of points in a fundamental domain for
G, which we may embed in R

2 with standard Cartesian coordinates as the rectangle
[0, n) × [0, n) such that each square in G is a unit square with integral coordinates for
its corners. Let � be the number of components of the link described by G. Then,
we define I(P, Q) to be the number of pairs of points (p1 , p2) × (q1 , q2) ∈ P × Q
satisfying p1 < q1 and p2 < q2 . Now, let

J(P, Q) = 1
2
(I(P, Q) + I(Q , P)).

Then, we let

M(x) ∶= J(x, x) − 2J(x,O) + J(O,O) + 1,
MX(x) ∶= J(x, x) − 2J(x,X) + J(X,X) + 1,

A(x) ∶= 1
2
(M(x) − MX(x)) − n − �

2
.

We call M(x) the Maslov grading and A(x) the Alexander grading, and we call the
pair (M , A) the bigrading of x.

The below proposition is greatly helpful to our future ventures.

Proposition 2.4 • Both M and A are integral-valued functions (note it is only clear
from their definitions that they are half-integral valued).
Suppose x and y are two grid states with some rectangle r ∈ Rect(x, y). Then, their

Maslov and Alexander gradings are related by the following formulas:
• M(x) − M(y) = 1 − 2∣r ∩O∣ + 2∣x ∩ Int(r)∣.
• A(x) − A(y) = ∣r ∩X∣ − ∣r ∩O∣.

The proof is found in [5, Section 4.3], and is elementary but rather long.

Definition 2.5 Let a domain ψ inG be any formalZ-linear combination of squares in
G (which may be defined as the closures of the connected components of T − α ∪ β).

Again, the boundary of a domain inherits a counterclockwise orientation. We say
a domain connects two grid states x and z in S(G) if

∂(∂ψ ∩ α) = z − x,

as oriented 0-manifolds. Let the set of all domains from x to z be denoted as π(x, z).
For a domain ψ and a point p ∈ T − α ∪ β, let ψ(p) be the multiplicity of ψ at the

point p.
We say a domain ψ ∈ π(x, z) can be decomposed as a juxtaposition of two rect-

angles r1 ∈ Rect(x, y) and r2 ∈ Rect(y, z), and write ψ = r1 ∗ r2, if ψ = r1 + r2 as linear
combinations of squares.

We are now ready to define grid homology. For the remainder of this paper, let F
represent the field of two elements Z/2Z.

https://doi.org/10.4153/S0008414X23000809 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000809


Combinatorial proofs of properties of double-point enhanced grid homology 5

Definition 2.6 Let G be a grid diagram. We define the chain complex GC−(G) to
be the free F[V1 , . . . , Vn]-module generated by the grid states of G, with V k1

1 . . . V kn
n x

having bigrading

(M(x) − 2k1 − ⋅ ⋅ ⋅ − 2kn , A(x) − k1 − ⋅ ⋅ ⋅ − kn).

Let ∂0 ∶ GC−(G) → GC−(G) be given as

∂0x = ∑
y∈S(G)

∑
r∈Rect(x,y)

r∩X=Int(r)∩x=∅

V O1(r)
1 . . . V On(r)

n y.

[5, Chapter 4] demonstrates that ∂0 is a homogeneous map of bidegree (−1, 0) and
∂2

0 = 0, hence ∂0 is a differential on GC−(G) and the homology of the chain complex
(GC−(G), ∂0) is well-defined. We denote this homology as GH−(G).

[5, Chapter 5] proves that the action of each Vi is identical on the level of homology.
Calling this action by U , that the bigraded F[U]-module isomorphism type of
GH−(G) is an invariant of the (unoriented) knot K; we may write it as GH−(K).

We also may create a variant of this construction that gives us a bigraded F-vector
space. For a knot, consider the quotient complex GC−(G)/(Vn = 0) as a vector space
over F, and let the differential ∂̂0 on this complex be induced from ∂0 . For a link
of � components, first label the components from 1 to �. On the ith component,
choose an O-marking On i on that component. Now, consider the quotient complex
GC−(G)/(Vn i = 0 for all i) as a vector space over F, and let the differential ∂̂0 on this
complex be induced from ∂0 .

Definition 2.7 The homology of the complex (GC−(G)/(Vn = 0), ∂̂0), (or the more
general version for links) as a bigraded F-vector space, is referred to as ĜH(G).

[5, Chapter 5] proves that the bigraded F-vector space isomorphism type of
GH−(G) is also an invariant of the knot K, and a similar argument shows this remains
true for links.

2.1 Grid moves

We would like a way to relate any two grid representations of the same (oriented) link.
We define three types of grid moves: commutations, switches, and stabilizations.

Definition 2.8 Consider two adjacent rows (resp., columns) of a grid diagram in
a fundamental domain, and draw the (closed) line segments joining the X- and O-
markings in each row (resp., column). Project these two line segments onto the
horizontal (resp., vertical) axis. If either (1) the two projected line segments have
disjoint supports or (2) one of the projected line segments lies in the interior of the
other, then swapping the two adjacent rows (resp., columns) is called a commutation.

If the two projected line segments share a vertex, then swapping the two adjacent
rows (resp., columns) is called a switch.
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6 O. Thakar

Here, we picture a commutation:

Definition 2.9 Consider a square marked with an X (resp., an O). Choose one
of the following four directions, NE , NW , SE , SW . Subdivide the row and column
containing the X (resp., O) so that G is now an n + 1-by-n + 1 grid diagram, and
the square formerly containing the X (resp., O) is now a 2-by-2 grid. Replace the X
(resp., O) with two X’s in the diagonal of this 2-by-2 grid that does not contain the
chosen direction, and an O (resp., X) in a third square of this 2-by-2 grid such that the
unmarked square is the one corresponding to the chosen direction. This operation is
known as a stabilization of type X:direction (resp., O:direction). Its inverse is known
as a destabilization of the corresponding type.

Here, we picture a stabilization of type X:SW :
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Combinatorial proofs of properties of double-point enhanced grid homology 7

The following theorem, which comes from [5, Corollary 3.2.3], will prove extremely
useful in showing invariance of double-point enhanced grid homology.

Theorem 2.10 (Generalized from Cromwell) Any two grid diagrams of the same
(oriented) knot are related by a finite sequence of commutations, switches, and stabi-
lizations and destabilizations of the form X:SW.

3 Double-point enhanced grid homology notation

Definition 3.1 Fix an n-by-n grid diagram G. We define a bigraded chain com-
plex of free F[V1 , . . . , Vn , v]-modules GCL−(G) as follows. As a bigraded module,
GCL−(G) = GC−(G)[v], where if ξ ∈ GC−(G) is homogeneous of bidegree (M , A),
then vk ξ is homogeneous of bidegree (M + 2k, A).

We define a differential

∂ξ ∶=
∞

∑
k=0

vk ∂k ξ,

where ∂k is defined on grid states by

∂kx = ∑
y∈S(G)

∑
r∈Rect(x,y)

r∩X=∅
∣Int(r)∩x∣=k

V O1(r)
1 . . . V On(r)

n y,

and extends by linearity.

Proposition 3.2 The map ∂ is indeed a differential, that is, ∂2 = 0.

We shall prove a more general version of this proposition later, see 5.5. For now,
we take this for granted, and let GHL−(G) denote the homology of the chain complex
(GCL−(G), ∂).

We will need to generalize some constructions in the proof of invariance of GH−
found in [5] in order to prove analogous results in the double-point enhanced case.
The issue arises as follows. To show ∂2

0 = 0 in the un-enhanced case, we start with
a grid state x ∈ S(G). Next, we compute that if z ∈ S(G) is another grid state with
∣x − x ∩ z∣ = 3, then the z-coefficient of ∂2

0(x) counts the number of decompositions
into two rectangles of L-shaped domains connecting x to z. Finally, we show that
each such domain has an even number of decompositions. This line of argument
works because every L-shaped domain of two empty rectangles, that is rectangles
r ∈ Rect(x, y) with Int(r) ∩ x = ∅, has exactly two decompositions in terms of empty
rectangles. We use this similar line of argument to prove that the actions of multiplying
by each Vi are all chain-homotopic to each other, to show the invariance of GH− under
commutation moves, and also to show vital lemmas in the proof of the skein relation.

While the proof that ∂2
0 = 0 proceeds as we would hope when the rectangles are

no longer required to be empty, many of the other proofs mentioned above break
down. Specifically, L-shaped domains of not-necessarily-empty rectangles do not
necessarily admit exactly two decompositions. For a counter-example, see [9, Section
2.2]. In order to treat this difficulty, I present a few definitions below of a new concept
known as “long rectangles,” which will recur throughout the paper. The essential idea is
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8 O. Thakar

that we introduce a larger class of rectangles such that every L-shaped decomposition
still has two decompositions into these generalized rectangles.

In contrast, the solution to this problem laid out in [9] is to use a four-fold cover
of the torus and consider rectangles in this larger space (they call these four-fold
toroidal grid diagrams.) My reformulation of this idea using “long rectangles,” a bit
more convenient for some of the applications later in the paper, but mathematically it
is equivalent to the treatment in [9]. Specifically, we will be able to define long polygons
in analogy with long rectangles, and when we discuss extending the coefficients
over Z, we will be able to assign signs to long polygons.

For any toroidal grid diagram on a torus T, we may consider the universal cover
of the torus, which we identify with R

2 and its standard (x , y) Cartesian coordinates.
Here, lifts of the α i and β j curves, which we may call α̃ i , β̃ j , respectively, are the straight
lines y = n and x = m as n, m range over Z.

Definition 3.3 Consider a rectangle R of width 1 or height 1 in R
2 whose sides lie

along the α̃ i , β̃ j lines, and such that the projection of R onto T, which we call r, has
multiplicity 2 in at least one point, and multiplicity 1 in at least one point. Then, we
call r a long rectangle.

Note that r is a domain in G, and it connects grid states analogously to ordinary
rectangles. We denote by Rect∗(x, y) the set of rectangles and long rectangles from
grid state x ∈ S(G) to y ∈ S(G).

Remark 3.4 Unlike the treatment in [9], we only need to introduce long rectangles
of width 1 or height 1.

Definition 3.5 We define the function T ∶ Rect∗(x, y) → Z≥0 as follows. Let
r ∈ Rect∗(x, y). If r is long, then T(r) = 1, and if r is not long, then T(r) = ∣Int(r) ∩ x∣.

Remark 3.6 Note that we can now rewrite the differential ∂ more compactly as

∂x = ∑
y∈S(G)

∑
r∈Rect(x,y)

r∩X=∅

vT(r)V O1(r)
1 . . . V On(r)

n y.

Definition 3.7 Let x, z ∈ S(G), and suppose ψ ∈ π(x, z) is a domain, with
decomposition ψ = r1 ∗ r2 for r1 ∈ Rect∗(x, y) and r2 ∈ Rect∗(y, z). The degree of the
decomposition, which we will notate as deg(r1 , r2), is defined as the sum:

deg(r1 , r2) = T(r1) + T(r2).

Definition 3.8 For a rectangle or long rectangle r ∈ Rect∗(x, y), the incoming corners
are precisely the members of ∂r ∩ x, and the outgoing corners are precisely the
members of ∂r ∩ y.

3.1 For commutation/switch invariance

To prove invariance of grid homology under commutation and switch moves, and also
to prove the skein exact sequence, we will require superimposing two grid diagrams
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Combinatorial proofs of properties of double-point enhanced grid homology 9

G and G
′ differing by a commutation or switch as pictured in the below picture of the

relevant portion of this superimposed diagram:

We call β i the curved circle belonging to G and γ i the curved circle belonging to G
′ .

Let a and b be the two intersections of β i and γ i , with a at the southern end of the
bigon containing β i as its western boundary.

Remark 3.9 Very importantly, we may always assume that each bigon contains
at least one X-marking in it. We will be counting regions that are forbidden from
intersecting X-markings, hence this assumption will markedly simplify our below
analysis.

Definition 3.10 (Modified from [5, Definition 5.1.1]) A pentagon from x ∈ S(G) to
y′ ∈ S(G′) is an embedded disk p in the torus whose boundary is the union of five
arcs, each of which lies on an α j , β j , or γ i curve, such that: (1) four of the corners of
p are in x ∪ y′ , (2) at each corner x of p, exactly one of the four quadrants of a small
disk surrounding x has multiplicity 1 and the other three have multiplicity 0, and (3)

∂(∂p ∩ α) = y′ − x.

Let P be an embedded disk in the universal cover of the torus satisfying conditions
(1)–(3), satisfying two extra conditions: (4) that P has width one, and (5), that the
projection of P onto the torus, which we call p, has multiplicity 2 in at least one point,
and multiplicity 1 in at least one point. Then, we call p a long pentagon from x to y′ .

Let Pent(x, y′) denote the set of pentagons from x to y′ , and Pent∗(x, y′) denote
the set of pentagons and long pentagons from x to y′ .

Definition 3.11 (Modified from [5, Definition 5.1.5]) A hexagon from x ∈ S(G) to
y ∈ S(G) is an embedded disk h in the torus whose boundary is the union of six arcs,
each of which lies on an α j , β j , or γ i curve, such that: (1) four of the corners of h are in
x ∪ y′ , and the other two corners are at a and b, (2) at each corner x of h, exactly one
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10 O. Thakar

of the four quadrants of a small disk surrounding x has multiplicity 1 and the other
three have multiplicity 0, and (3)

∂(∂h ∩ α) = y − x.

Let H be an embedded disk in the universal cover of the torus satisfying conditions
(1)–(3), satisfying two extra conditions: (4) that P has width one, and (5), that the
projection of H onto the torus, which we call h, has multiplicity 2 in at least one point,
and multiplicity 1 in at least one point. Then, we call h a long pentagon from x to y.

Let Hex(x, y) denote the set of pentagons from x to y, and Hex∗(x, y) denote the
set of pentagons and long pentagons from x to y.

Definition 3.12 We define the function T ∶ Pent∗(x, y′) → Z≥0 as follows. Let
p ∈ Pent∗(x, y). If p is long, then T(p) = 1, and if p is not long, then T(p) =
∣Int(p) ∩ x∣. Similarly, we define the function T ∶ Hex∗(x, y′) → Z≥0 as follows. Let
h ∈ Hex∗(x, y). If h is long, then T(h) = 1, and if h is not long, then T(h) =
∣Int(h) ∩ x∣.

Definition 3.13 Let x, z ∈ S(G) ∪ S(G′), and suppose ψ ∈ π(x, z) is a domain,
with decomposition ψ = r1 ∗ r2 for r1 ∈ Rect∗(x, y) ∪ Pent∗(x, y) ∪Hex∗(x, y) and
r2 ∈ Rect∗(y, z) ∪ Pent∗(y, z) ∪Hex∗(y, z). The degree of the decomposition, which
we will notate as deg(r1 , r2), is similarly defined as the sum:

deg(r1 , r2) = T(r1) + T(r2).

4 Rectangle decomposition lemmas

This section contains many useful combinatorial lemmas that will expedite the proofs
of the later theorems tremendously.

We will set some consistent notation throughout this section. Fix a grid diagramG.
Let x, z ∈ S(G), and let ψ ∈ π(x, z) be a fixed domain.

Observe that if ψ admits at least one decomposition ψ = r1 ∗ r2, where r1 and r2 are
either rectangles or long rectangles, then we must have ∣x − x ∩ z∣ = 0, 3, or 4, simply
because the initial and final grid states of each rectangle differ by exactly two points.
We codify this useful fact in the below lemma.

Lemma 4.1 Suppose that there exists y ∈ S(G) such that ψ admits at least one decom-
position ψ = r1 ∗ r2, where r1 ∈ Rect∗(x, y) and r2 ∈ Rect∗(y, z). Then, ∣x − x ∩ z∣ =
0, 3, or 4.

Lemma 4.2 Let ∣x − x ∩ z∣ = 4. Suppose that there exists y ∈ S(G) such that ψ admits
at least one decomposition ψ = r1 ∗ r2, where r1 ∈ Rect∗(x, y) and r2 ∈ Rect∗(y, z).
Suppose that r1 , r2 are not both long. Then, ψ admits precisely two decomposi-
tions ψ = r1 ∗ r2 = r′1 ∗ r′2 , such that there exists y′ ∈ S(G) with r1 ∈ Rect∗(x, y′) and
r′2 ∈ Rect∗(y′ , z), and r′1 , r′2 are not both long. Moreover, these two decompositions have
the same degree.

Proof Lift the decomposition ψ = r1 ∗ r2 into the universal cover so that r1 and r2
are represented by connected polygons. Because the grid states contain precisely one
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point in each horizontal and vertical circle, we must have that the circles containing
the edges of r1 and r2 are all different. Hence, it is clear that the only possible corners of
x that can be the outgoing corners of any decomposition ψ = r′1 ∗ r′2 are the outgoing
corners of r1 are the outgoing corners of r2. Hence, there are clearly precisely two
decompositions of ψ as a composite of two polygons ψ = r1 ∗ r2 = r′1 ∗ r′2 , with r1 ∈
Rect∗(x, y) and r′∗1 ∈ Rect(x, y′). Furthermore, r1 and r′2 share the same support,
as do r′1 and r2 . Hence, the T terms of the degrees of both decompositions agree.
Furthermore, r′1 and r′2 are clearly not both long.

Let k = deg(r1 , r2). We wish to show deg(r′1 , r′2) = k. For i = 1, 2, let C(r i) be the
number of corners of r3−i discounting points of β i ∩ γ i intersecting Int(r i); suppose
without loss of generality that C(r1) ≥ C(r2). Then, there are four cases here: the first
is that C(r1) = 0. In this case, clearly

∣Int(r′1) ∩ x∣ + ∣Int(r′2) ∩ y′∣ = ∣Int(r1) ∩ x∣ + ∣Int(r′2) ∩ y∣

since Int(ψ) ∩ x = Int(ψ) ∩ y = Int(ψ) ∩ y′ (recall that x, y and x, y′ are only different
in two places). The remaining cases have C(r1) > 0, so r1 is not thin, therefore not
long. The second case is that C(r1) = 1; in this case,

∣Int(r′1) ∩ x∣ + ∣Int(r′2) ∩ y′∣ = ∣Int(r1) ∩ x∣ + ∣Int(r′2) ∩ y∣ = 1 + ψ ∩ (x ∩ z),

where ψ ∩ (x ∩ z) is counted with multiplicity. The third case is that Int(r1) contains
exactly two corners of r2; again in this case,

∣Int(r′1) ∩ x∣ + ∣Int(r′2) ∩ y′∣ = ∣Int(r1) ∩ x∣ + ∣Int(r′2) ∩ y∣ = 1 + ψ ∩ (x ∩ z),

where ψ ∩ (x ∩ z) is counted with multiplicity. Finally, we could have that Int(r1)
contains all four corners of r2; in this case,

∣Int(r′1) ∩ x∣ + ∣Int(r′2) ∩ y′∣ = ∣Int(r1) ∩ x∣ + ∣Int(r′2) ∩ y∣ = 2 + ψ ∩ (x ∩ z).

That suffices for the proof. ∎

Lemma 4.3 Let ∣x − x ∩ z∣ = 3. Suppose that in the support of ψ, no entire row or
column has multiplicity ≥ 2, and that at most one entire row and zero columns, or at
most one entire column and zero rows, has multiplicity 1. (These conditions are achieved,
for instance, when only 1 of the two rectangles in the decomposition is allowed to be long.)

Suppose that there exists y ∈ S(G) such that ψ admits at least one decomposition
ψ = r1 ∗ r2, where r1 ∈ Rect∗(x, y) and r2 ∈ Rect∗(y, z). Suppose that r1 , r2 are not both
long. Then, ψ admits precisely two decompositions ψ = r1 ∗ r2 = r′1 ∗ r′2 , such that there
exists y′ ∈ S(G) with r1 ∈ Rect∗(x, y′) and r′2 ∈ Rect∗(y′ , z), and r′1 , r′2 are not both
long. Moreover, these two decompositions have the same degree.

Proof Consider a lift of ψ to the universal cover of the torus such that ψ is represented
by a connected L-shaped polygon Q. Then, ψ = r1 ∗ r2 , where r1 and r2 are represented
by rectangles in the universal cover with disjoint interiors (which may not be disjoint
when we project back down to the torus).

Since ∣x − (x ∩ z)∣ = 3, the two rectangles r1 and r2 must share a corner c. Since
this corner must be incoming for r1 and outgoing for r2 , then the two rectangles
must create a 180-degree angle at this corner, and hence, their intersection r1 ∩ r2 is
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an edge e . The boundary ∂e is thus two points, c and another point, which we shall
call d . Clearly, there exists a 270-degree angle at d. In any decomposition of ψ, there
cannot be a 270-degree angle. Since there are precisely two ways to cut Q at this angle,
and each one uniquely specifies a decomposition, then we get ψ has precisely two
decompositions ψ = r1 ∗ r2 = r′1 ∗ r′2 , and r′1 , r′2 are not both long by the conditions on
the support of ψ.

We must show these two decompositions have the same degree. First, note that
any point of x, y, or y′ inside of Int(Q) must not lie on ∂(r1) ∪ ∂(r2), since this
would contradict the fact that grid states contain only 1 point on each horizontal or
vertical circle. If Q can embed into a fundamental domain of the torus, then T = 0
for all rectangles in all decompositions, and the local multiplicities are ≤ 1. Thus,
x ∩ Int(Q) = y ∩ Int(Q) = y′ ∩ Int(Q), so the degrees are the same.

Suppose Q cannot embed into a fundamental domain. Then, by the multiplicity
constraints, we must have that one of the two decompositions involves a long rect-
angle t ∈ Long(x, y) or Long(y, z) for some grid state y, and some other rectangle
r ∈ Rect(x, y) or Rect(y, z) such that r ∪ t embeds in a fundamental domain if we
delete the annulus contained by t. Suppose the intermediate stage in the other
decomposition, r′1 ∗ r′2 , is y′ . If one of r′1 or r′2 is long, then clearly no corner of one can
lie in the interior of the other, hence the degrees are clearly the same.

Otherwise, r′1 , r′2 ∈ Rect(x, y′) ∪ Rect(y′ , z). We see geometrically that Int(r′1) ∩ x
must contain precisely one point c of x (a corner of r′2) that is not contained in Int(r)
or Int(t), since it lies on the edges of both such rectangles. Since t, and hence r′2 ,
is thin, all points of Int(Q) ∩ x − c = Int(Q) ∩ y = Int(Q) ∩ y′ must lie in Int(r) and
Int(r1). The degree contribution of the point c in the decomposition r′1 ∗ r′2 is exactly
canceled out by the contribution of T(t) in the decomposition r ∗ t. That suffices for
the proof. ∎

Lemma 4.4 Let ∣x − x ∩ z∣ = 0 (so x = z.) Suppose that in the support of ψ, no entire
row or column has multiplicity ≥ 2, and that at most one entire row and zero columns,
or at most entire column and zero rows, may have multiplicity 1.

Suppose that there exists y ∈ S(G) such that ψ admits at least one decomposition
ψ = r1 ∗ r2, where r1 ∈ Rect∗(x, y) and r2 ∈ Rect∗(y, x). Then, this decomposition is
unique and ψ is an annulus either horizontal of height 1 or vertical of width 1 (such
that the multiplicity of ψ in each square is ≤ 1).

Proof Lift ψ to a connected polygon Q in the universal cover, such that r1 and r2
are represented by rectangles R1 , R2 in the universal cover projecting onto r1 , r2 in the
torus. Then, the condition that each grid state must only contain one point in each
row or column forces R1 and R2 to share an edge. Hence, Q is a rectangle; since all
the corners of Q must be members of x, the condition that each grid state must only
contain one point in each row or column forces Q to be an annulus. It must have
multiplicity 1 and have width one by the conditions on the support and multiplicities
of ψ.

Furthermore, such annulus has a unique decomposition since the first rectangle r1
must have outgoing corners precisely x ∩ clo(Q), which is two points; since r1 is not
long, this determines r1 uniquely. This in turn determines r2 uniquely. ∎
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4.1 Pentagon and hexagon decomposition lemmas

We now suppose that G and G
′ are two grid diagrams which have been superimposed

as in the previous section. Let x ∈ S(G) and z ∈ S(G′) or S(G), and ψ ∈ π(x, z).

Remark 4.5 A very important warning is that for this entire subsection, we assume
that our domains have empty intersection with X. By Remark 3.9, this means that
our domains may never contain an entire bigon in their support. This is not strictly
necessary for most of the proofs below, but speeds up the arguments nicely.

Definition 4.6 The closest point map I ∶ S(G) → S(G′) is defined by letting I(x) be
the grid state in G

′ which matches x in all but one point: the point α j ∩ β i ∈ x is
replaced by the point α j ∩ γ i ∈ I(x).

We record here the following useful lemma.

Lemma 4.7 For a grid state x ∈ S(G), we have that M(x) − M(I(x)) = −1 + 2∣t ∩O∣,
where t is the unique triangular region of one of the bigons bounded by β i and γ i with
two corners in common with (I(x) − x) ∪ (x − I(x)).

Proof This is demonstrated in the proof of [5, Lemma 5.1.3]. ∎

Definition 4.8 Consider a (possibly long) pentagon or hexagon ψ ∈ π(x, y), where
x ∈ S(G) and y ∈ S(G) ∪ S(G′). By slight abuse of notation, let I(y) ∈ S(G) be y if
y ∈ S(G) and I(y) if y ∈ S(G′).

Then, the associated rectangular domain Ψ ∈ Rect∗(x, I(y)) of ψ is the (possibly
long) rectangle from x to I(y) whose multiplicities are identical to those of ψ outside
the bigons between β i and γ i .

Denote by R(p) the associated rectangular domain of a (possibly long) pentagon
or hexagon p.

Note that Ψ is long if and only if ψ is long, and that T(Ψ) = T(ψ).
The following lemma is immediate from the above definition.

Lemma 4.9 Let ψ ∈ π(x, z) and suppose that ψ ∩X = ∅. A decomposition
ψ = p1 ∗ p2 , where p1 , p2 are either rectangles, pentagons, or hexagons, and not
both long, corresponds to a decomposition of the associated rectangular domain Ψ into
two rectangles, not both long. Furthermore, the decompositions of ψ and Ψ have the
same degree.

Corollary 4.10 Let ψ ∈ π(x, z) and suppose that ψ ∩X = ∅. Suppose ∣x − x ∩ z∣ = 3
or 4. Suppose ψ admits a decomposition ψ = p1 ∗ p2 , where p1 , p2 are either rectangles,
pentagons, or hexagons, and not both long. Then ψ admits two decompositions as such,
and both have the same degree. Furthermore, if ψ = p ∗ r or r ∗ p where p is a long
pentagon and r is a (not long) rectangle, then the other decomposition of ψ is also as a
long pentagon and a not long rectangle.

Proof If ∣x − x ∩ z∣ = 4, then only one of p1 or p2 can have an edge on the curves
β i or γ i . Furthermore, the associated rectangular domain Ψ also connects two grid
states differing by four points. Hence, Lemma 4.2 tells us Ψ admits two rectangular
decompositions of the same degree. Since at most one of p1 or p2 can have an edge on
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the curves β i or γ i , clearly each of the two decompositions of Ψ corresponds uniquely
to a decomposition of ψ.

If ∣x − x ∩ z∣ = 3, the associated rectangular domain Ψ also connects two grid
states differing by three points. Hence, Lemma 4.2 tells us Ψ admits two rectangular
decompositions of the same degree. There are two cases: either, a point a or b at
which p1 or p2 has a corner is on an edge shared by both rectangles in one of the
decompositions of Ψ, or it is not. In the latter case, each of the two decompositions
of Ψ corresponds uniquely to a decomposition of ψ. In the former case, one of the
two decompositions of Ψ does not correspond to a decomposition of ψ, however
we achieve precisely one more decomposition of ψ by removing a portion of one of
the bigons from the support of one of p1 or p2 and appending it to the other, which is
clearly possible since the support of a pentagon or hexagon cannot contain an entire
bigon.

The last claim in the above corollary follows simply because any long rectangle in
a decomposition of ψ would clearly have to intersect X (here is one instance where
assuming ψ ∩X = ∅ drastically simplifies our argument). ∎

5 Sign assignments

The goal of this section is to define double-point grid homology over the integers, and
verify that this is indeed a knot invariant.

Fix a grid diagramG, and let Rect(G) = ⋃x,y∈S(G) Rect(x, y), and also Rect∗(G) =
⋃x,y∈S(G) Rect∗(x, y).

Definition 5.1 (Modified from [5, Definition 15.1.2]) A sign assignment is a function
S ∶ Rect(G) → {−1, 1} satisfying three properties: (1) if there exists a domain ψ such
that ψ = r1 ∗ r2 = r′1 ∗ r′2 for r1 , r2 , r′1 , r′2 ∈ Rect(G), then

S(r1)S(r2) = −S(r′1)S(r′2),

(2) if r1 ∗ r2 is a horizontal annulus, then S(r1)S(r2) = 1, and (3) if r1 ∗ r2 is a vertical
annulus, then S(r1)S(r2) = −1.

An extended sign assignment is a function S ∶ Rect∗(G) → {−1, 1} satisfying prop-
erties (2) and (3) above, and also (1’): if there exists a domain ψ such that ψ = r1 ∗ r2 =
r′1 ∗ r′2 for r1 , r2 , r′1 , r′2 ∈ Rect∗(G), then

S(r1)S(r2) = −S(r′1)S(r′2).

Definition 5.2 For ψ ∈ π(x, z), let D(ψ) be the set of decompositions of ψ into two
rectangles, and D∗(ψ) the set of decompositions of ψ into one rectangle and one long
rectangle (in either order). For d = r1 ∗ r2 ∈ D(ψ) ∪ D∗(ψ), define the sign S(d) to be
S(r1) ∗ S(r2).

Remark 5.3 Note that if r1 and r2 are two rectangles with r1 ∈ Rect(x, y) and r2 ∈
Rect(z, w), it is possible that r1 and r2 have the same support but S(r1) ≠ S(r2). It is
therefore important to emphasize that S is a function of the domain, initial, and final
grid states.

Note further that by the definition of our sign assignments, the proofs of
Lemmas 4.2 and 4.3 extend to prove the following slightly stronger statement.
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Lemma 5.4 Under the assumptions of Lemma 4.2 or Lemma 4.3, the two
decompositions of ψ resulting from those lemmas have opposite signs.

Given a sign assignment, we may define a new chain complex over the integers. Let
GCL−(G;Z) be the free Z[V1 , . . . , Vn , v]-module generated by the grid states of G,
with multiplication by each Vi homogeneous of bigrading (−2,−1), and multiplication
by v homogeneous of bigrading (2, 0). Define the differential as follows on grid states,
extending by linearity:

∂S x = ∑
y∈S(G)

∑
r∈Rect(x,y)

r∩X=∅

S(r)vT(r)V O1(r)
1 . . . V On(r)

n y.

Proposition 5.5 ∂2
S = 0 for any sign assignment S.

Proof By expanding out definitions, we see

∂2
S x = ∑

z∈S(G)
∑

ψ∈π(x,z)
ψ∩X=∅

∑
d∈D(ψ)

S(d)vdeg(d)V O1(ψ)
1 . . . V On(ψ)

n y.

Hence, it is sufficient to show that domains ψ ∈ π(x, z)with ∣D(ψ)∣ > 0 have exactly
two decompositions d ∈ D(ψ) with equal degree and opposite signs.

If ∣x − x ∩ z∣ = 4 or ∣x − x ∩ z∣ = 3, then Lemma 5.4 tells us immediately that any
ψ ∈ π(x, z) with ∣D(ψ)∣ > 0 has exactly two decompositions d ∈ D(ψ) with equal
degree and opposite signs.

The last case is x = z. Lemma 4.4 tells us that in this case, ψ is an annulus, hence
ψ ∩X ≠ ∅, so this also contributes 0 to the equation. ∎

Let GHL−S (G;Z) be the homology of this chain complex. We will eventually see
that the Vi are homotopic to each other, hence calling the induced multiplication U ,
we get GHL−S (G;Z) is a bigraded Z[U , v]-module.

We wish to prove the following theorem, which is an analog of the invariance of
ordinary grid homology over the integers.

Theorem 5.6 For each grid diagram, there exists a sign assignment; furthermore, all
sign assignments produce isomorphic homology GHL−S (G;Z). Moreover, the bigraded
Z[U , v]-module isomorphism type of GHL−S (G;Z) is a knot invariant.

We divide the proof of this theorem into several steps. First, we lift existence and
uniqueness of sign assignments for grid homology to our situation, which is rather
simple.

Lemma 5.7 For each grid diagram, there exists a sign assignment; furthermore, all sign
assignments produce isomorphic homology GHL−S (G;Z).

Proof The existence of a sign assignment follows immediately from [5, Theorem
15.1.5]. Their proof of this theorem also shows that for any two sign assignments S1
and S2 , there exists a function g ∶ S(G) → {−1, 1} such that S2(r) = g(x)S1(r)g(y) for
each r ∈ Rect(x, y). Hence, we may define aZ[V1 , . . . , Vn , v]-module homomorphism
from (GCL−(G;Z), ∂S1) to (GCL−(G;Z), ∂S2) by x ↦ g(x)x. It is immediate that this
is a chain map and an isomorphism of Z[V1 , . . . , Vn , v]-modules, and this suffices for
the proof. (This is an analog of the map defined in [5, Proposition 15.1.10].) ∎
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Next, we show that the Vi are homotopic. For this, we require a lemma
about extended sign assignments, and some definitions. For any long rectangle r ∈
Rect∗(x, y), deleting an annulus leaves a rectangle r′ ∈ Rect∗(x, y) which we will call
the associated short rectangle.

Lemma 5.8 Each sign assignment S ∶ Rect(G) → {−1, 1} may be extended to an
extended sign assignment, such that if r ∈ Rect∗(x, y) is long and r′ ∈ Rect∗(x, y) is its
associated short rectangle, then S(r) = S(r′).

Proof We use the notation of [5, Chapter 15]. Let S̃n denote the spin extension of
the symmetric group on n letters (see [5, Section 15.2]), and let T̃ denote the set of
lifts of transpositions in Sn ; these are indexed by ordered pairs of distinct integers
in {1, . . . , n} and denoted by τ̃ i , j for i ≠ j. Here, τ̃ i , j and τ̃ j, i are the two lifts of the
permutation (i j) ∈Sn . Also, z ≠ 1 ∈ S̃n is the other lift of the identity 1 ∈Sn .

Let τ̃ ∶ Rect∗(G) → T̃ be the map sending r ∈ Rect∗(G) to τ̃ i , j where the southwest
corner of the associated short rectangle r′ is on β i and the northeast corner of r is on
β i . We wish to show the following three conditions hold:
• If there is a region ψ with two decompositions ψ = r1 ∗ r2 = r′1 ∗ r′2 for r1 , r2 , r′1 , r′2 ∈

Rect∗(G) with at most one of r1 , r2 long, then

τ̃(r1) ⋅ τ̃(r2) = z ⋅ τ̃(r′1) ⋅ τ̃(r′2).

• If r1 ∗ r2 forms a horizontal annulus of multiplicity 1, then

τ̃(r1) ⋅ τ̃(r2) = 1.

• If r1 ∗ r2 forms a vertical annulus of multiplicity 1, then

τ̃(r1) ⋅ τ̃(r2) = z.

Assuming for now that these three conditions hold, we will demonstrate the
existence of the extension of our sign assignment S . For each grid state x, let σx ∈Sn
be the corresponding permutation which is determined uniquely by α i ∩ βσx(i) ∈ x.
[5, Section 15.2] proves that every sign assignment, in particular S , is given, for
r ∈ Rect(x, y), as S(r) = τ̃(r)−1γ(σ−1

x )γ(σy), for some section of the spin extension
γ ∶Sn → S̃n . Furthermore, the proof of [5, Proposition 15.2.12] tells us that if S is
extended to long rectangles by the same formula, S(r) = τ̃(r)−1γ(σ−1

x )γ(σy), then S
will satisfy the conditions of an extended sign assignment if τ̃ obeys the three above
conditions.

Thus, it is sufficient to show that τ̃ obeys the three above conditions. The second and
third are immediate from [5, Section 15.2] since they do not apply to long rectangles.
The first condition is immediate in the case when both decompositions of ψ involve
one long rectangle, since deleting an annulus from ψ and in turn from each of the
long rectangles does not change the map τ̃ and this condition now follows from the
equivalent condition for not long rectangles.

Finally, we must show this condition is true when one decomposition, r1 ∗ r2 , of
ψ involves a long rectangle and the other, r′1 ∗ r′2 , does not. Say that r1 is long and r′1
has width one. This reduces to eight cases, corresponding to whether r1 horizontal or
vertical, and whether the multiplicity 2 portion of ψ is in the Southwest, Southeast,
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Northwest, or Northeast corner of r′2 . For each, it is a simple computation involving
the relations among the members of T̃ . ∎

Definition 5.9 We define the sign-refined homotopy operator as follows. Let X i ∈ X
share a row with O i . Then, define the function

Hi ,S(x) = ∑
y∈S(G)

∑
r∈Rect∗(x,y)

r∩X=X i
X i(r)=1

S(r)vT(r)V O1(r)
1 . . . V On(r)

n y.

Proposition 5.10 Suppose X i shares a column with O j . Then following equation holds:

Hi ,S ○ ∂S + ∂S ○Hi ,S = Vi − Vj .

Proof By expanding out definitions, we see the left-hand side is given as

∑
z∈S(G)

∑
ψ∈π(x,z)
ψ∩X=X i
X i(ψ)=1

∑
d∈D∗(ψ)

S(d)vdeg(d)V O1(ψ)
1 . . . V On(ψ)

n y.

If ∣x − x ∩ z∣ = 4 or ∣x − x ∩ z∣ = 3, then Lemma 5.4 tells us immediately that any ψ ∈
π(x, z) with ∣D(ψ)∣ > 0 has exactly two decompositions d ∈ D(ψ) with equal degree
and opposite signs. Hence, all such ψ contribute zero to the above sum.

The last case is x = z. Lemma 4.4 tells us that in this case, ψ is an annulus, hence
ψ ∩X = X i has precisely two solutions, a horizontal thin annulus and a vertical thin
annulus. (The multiplicities of these annuli must be 1 since X i(ψ) = 1.) The horizontal
thin annulus contributes Vi and the vertical thin annulus contributes −Vj . ∎

Proposition 5.11 For any k, l , we have Vk and Vl are chain homotopic.

Proof The above proposition shows that Vi and Vj are chain homotopic whenever
O i and O j are consecutive O-markings as we traverse the knot. Since the knot has one
component, each Ok and O l are both members of a finite sequence of consecutive
O-markings, which suffices for the proof. ∎

The remainder of the proof of invariance of the sign-refined homology
GHL−S (G;Z) is to show it is a knot invariant. By Theorem 2.10, it suffices to show
that this homology is unchanged under commutations and switches, and also under
(de)-stabilizations of type X:SW .

5.1 Commutation and switch invariance

First, we show this for the commutations and switches; we model our arguments off of
those in [5, Section 15.3]. As in Section 3.1, we take two grid diagramsG andG

′ related
by a commutation or switch and superimpose them; we borrow here the notation from
that section. We will do the computations below for a column commutation or switch;
a row commutation or switch proceeds identically. Very concretely, the goal of this
section is to prove the following theorem:

Theorem 5.12 If two grid diagramsG andG
′ as above differ by a column commutation

or switch, then GCL−S (G;Z) and GCL−S (G′;Z) are quasi-isomorphic chain complexes.
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Again, we recall that by Remark 3.9, we may guarantee that each bigon bounded
by β i and γ i contains at least one X-marking inside.

First, we must define pentagon and hexagon maps; the pentagon maps will provide
the quasi-isomorphism and the hexagon map will be the relevant homotopy operator.
For this, we need signs for pentagons and hexagons.

Definition 5.13 For a pentagon p ∈ Pent∗(x, y′), let P be its associated rectangular
domain. We define the sign of p as follows:

S(p) ∶= (−1)M(x)+B(p)S(P),

where B(p) is 1 if p lies to the left of β i and 0 if p lies to the right of β i . Similarly, for
p ∈ Pent∗(x′ , y), let P be its associated rectangular domain. We define the sign of p as
follows:

S(p) ∶= (−1)M(y)+B(p)S(P).

For a hexagon h ∈ Hex∗(x, y), let H be its associated rectangular domain. We define
the sign of h simply as S(h) ∶= S(H).

Definition 5.14 The pentagon map PS ∶ GCL−S (G;Z) → GCL−S (G′;Z) is defined as

PS(x) = ∑
y′∈S(G′)

∑
p∈Pent∗(x,y′)

p∩X=∅

S(p)vT(p)V O1(p)
1 . . . V On(p)

n y′ ,

and we define a similar map P′S ∶ GCL−S (G′;Z) → GCL−S (G;Z) by

P′S(x′) = ∑
y∈S(G)

∑
p∈Pent∗(x′ ,y)

p∩X=∅

S(p)vT(p)V O1(p)
1 . . . V On(p)

n y.

The hexagon map HS ∶ GCL−S (G;Z) → GCL−S (G;Z) is defined as

HS(x) = ∑
y∈S(G)

∑
h∈Hex∗(x,y)

h∩X=∅

S(h)vT(h)V O1(h)
1 . . . V On(h)

n y.

Proposition 5.15 The pentagon map PS is a bigraded quasi-isomorphism.

Proof First, we show PS is bigraded. This is an immediate consequence of the relative
formulas for Maslov and Alexander gradings as well as Lemma 4.7.

Next, we show PS is a chain map; this amounts to showing that PS ○ ∂S − ∂S ○
PS = 0. For a domain ψ ∈ π(x, z′), let Dpr(ψ) be the set of all decompositions of ψ
as a (possibly long) pentagon and a (not long) rectangle in that order, and Dr p(ψ) the
reverse. Expanding out the equation, we wish to show

∑
z′∈S(G′)

∑
ψ∈π(x,z′)

ψ∩X=∅

∑
d∈Dpr(ψ)

S(d)vdeg(d)V O1(ψ)
1 . . . V On(ψ)

n z′

= ∑
z′∈S(G′)

∑
ψ∈π(x,z′)

ψ∩X=∅

∑
d∈Dr p(ψ)

S(d)vdeg(d)V O1(ψ)
1 . . . V On(ψ)

n z′ .
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In this case, we see immediately that ∣x − x ∩ z′∣ could be 3, 4, or 1. If it is 4, then the
proof of Corollary 4.10 tells us that any ψ with ∣Dr p(ψ) ∪ Dpr(ψ)∣ ≥ 1 has exactly two
decompositions r ∗ p and p′ ∗ r′ of equal degree corresponding to the two rectangular
decompositions of Ψ. To show the contribution of ψ is equal on both sides of the
equation, it is sufficient to show that the signs of these two decompositions is equal.
By the definition of a sign assignment, and the decompositions of Ψ, we see that

S(r)S(R(p)) = −S(R(p′))S(r′).

Since the pentagons p and p′ have initial grid states of opposite parity and clearly
B(p) = B(p′), as they have the same support, the signs S(r ∗ p) and S(p′ ∗ r′) are
indeed equal.

Next, suppose ∣x − x ∩ z′∣ = 3. Then, as in the proof of Corollary 4.10, any ψ with
∣Dr p(ψ) ∪ Dpr(ψ)∣ ≥ 1 has exactly two decompositions of equal degree corresponding
to the two rectangular decompositions of Ψ.

The proof of Corollary 4.10 gives us two cases. First, that these two decompositions
correspond to different decompositions of Ψ. Here, the two associated rectangular
decompositions have opposite signs. However, the B-value of the pentagons in each
decomposition is obviously equal, and the Maslov initial grid states of the pentagons
in each decomposition differ in parity if and only if one decomposition is in Dr p(ψ)
and the other is in Dpr(ψ). Hence, ψ contributes equally to both sides of the above
equation in this case.

Otherwise, these two decompositions correspond to the same rectangular decom-
position of Ψ, in which case the decompositions are of the form r ∗ p and p′ ∗ r′, and
b(p) = −b(p′), so ψ also contributes equally to both sides of the above equation in
this case.

The final case is when ∣x − x ∩ z′∣ = 1. Then, the associated rectangular domain is
an annulus, and must therefore be thin to avoid intersection with X; furthermore, the
condition that each bigon contains an X-marking prevents this annulus from having
multiplicity 2. Hence, the degrees of all decompositions must be 0, and the remainder
of the proof proceeds exactly as in [5, Lemma 15.3.3].

By identical reasoning, P′S is also a bigraded chain map.
Finally, we show a homotopy formula. Specifically, we will show that

HS ○ ∂S + ∂S ○ HS + PS ○ P′S = −Id,

hence PS ○ (−P′S) is chain-homotopic to the identity. By an analogous argument, we
may also show that (−P′S) ○ PS , which would complete the proof that PS is a quasi-
isomorphism.

For this formula, we consider a domain ψ ∈ π(x, z) contributing at least one
nonzero term to the left-hand side. By the proof of Corollary 4.10, if ∣x − x ∩ z∣ = 3 or 4,
then there are exactly two decompositions of ψ. If the associated rectangular decom-
positions of Ψ are different, then we have two possibilities. Either both decompositions
correspond to hexagons and rectangles only, in which case ψ contributes zero to the
left-hand side by the definition of signs for hexagons. Otherwise, one decomposition
consists of two pentagons, with equal B-values, and the relevant Maslov gradings have
the same parity. Hence, the two decompositions cancel in this sum.
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If the associated rectangular decompositions of Ψ are the same, then one of the
decompositions consists of two pentagons with different B-values, and the other
consists of a hexagon and rectangle. Hence, the two decompositions cancel in this
sum.

The final possibility is x = z; as before the condition that ψ ∩X = ∅ forces Ψ to be
a thin annulus of multiplicity 1 and width 1. Furthermore, geometrically we see it is
vertical. Hence, the degrees of all the decompositions must be 0, and we are reduced
to the case proven in [5, Lemma 15.3.4], which is that ψ is unique and contributes the
identity to the sum. That proves the theorem, and thus the commutation and switch
invariance of GHL−S . ∎

5.2 Stabilization invariance

We now let G and G
′ be grid diagrams with G

′ a stabilization of G of type X:SW
(recall that by our generalization of Cromwell’s Theorem, it is sufficient to consider
this case). Let c ∈ G′ be the central point of the stabilization.

We label the 2-by-2 region introduced in the stabilization as follows: X1 O1
X2

, and

let O2 be the O-marking sharing a row with X2 .
Note that S(G′) = I(G′) ∪ N(G′), a disjoint union, where I(G) are those

x′ ∈ S(G′) with c ∈ x′ , and N(G′) are the other grid states.
There is a natural bijection S(G) → I(G′) which can be thought of as x ↦ x ∪ {c},

and this bijection extends to a bijection of rectangles from x to y in S(G) to rectangles
from x ∪ {c} to y ∪ {c} in I(G′). Fix a sign assignment S′ on G

′ , and define a sign
assignment S on G by pulling back S′ on I(G′).

For a chain complex A, let A[[m, a]] denote A with the bigradings shifted by
(+m,+a).

Let I be submodule of GCL−S′(G′;Z) generated by I(G′), and likewise for N. Then,
I is a quotient complex and N is a subcomplex. The bijection of S(G) and I(G′) clearly
induces an isomorphism of complexes e ∶ I → GCL−S (G;Z)[[1, 1]], since any rectangle
in I contributing to ∂S′ must not pass through c, lest it also intersect X, hence the
T-values of the rectangles are preserved in this correspondence.

Let π ∶ GCL−S′(G′;Z) → I denote the projection map.
Let C be the mapping cone of the map

V1 − V2 ∶ GCL−S (G;Z)[V1][[1, 1]] → GCL−S (G;Z)[V2].

Per [5, Chapter 5], the homology of C is isomorphic to that of GCL−S (G;Z). Now, the
proof of [5, Proposition 15.3.5], which only relies on the equation

H2,S ○ ∂S + ∂S ○H2,S = V1 − V2

that we proved earlier, tells us that the map DS ∶ GCL−S′(G′;Z) → C given by

DS(x) = (−1)M(x)(e(x), e ○ π ○H2,S(x))

is a quasi-isomorphism.
That shows the following proposition, completing the proof of invariance of GHL−

over the integers.

https://doi.org/10.4153/S0008414X23000809 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000809


Combinatorial proofs of properties of double-point enhanced grid homology 21

Proposition 5.16 The chain complexes GCL−S′(G′;Z) and GCL−S (G;Z) have
isomorphic homologies.

This theorem justifies us using the notation GHL−S (K;Z) in the remainder of the
paper.

6 Skein exact sequence

The goal of this section is to prove a skein exact sequence for GHL− in analogy to the
skein exact sequence satisfied by GH−. We first describe this carefully.

6.1 Skein exact sequence basics

The idea is that if three links differ in one crossing as in the below picture (called a
skein triple), then we can relate their grid homologies by an exact sequence.

First, we must develop a version of grid homology for links, which we modify from
[5, Definition 8.2.4].

Definition 6.1 Let G be a grid diagram representing an �-component link, and
suppose O j1 , . . . , O j� are O-markings lying on each component of the link. Then, the
collapsed grid complex of G is the complex

cGC−S (G;Z) ∶= GC−S (G;Z)/(Vj1 = ⋅ ⋅ ⋅ = Vj�),

with the same differential. The homology of this complex is known as cGH−S (G;Z).
The collapsed double-point enhanced grid complex of G is the complex

cGCL−S (G;Z) ∶= GCL−S (G;Z)/(Vj1 = ⋅ ⋅ ⋅ = Vj�),

with the same differential. The homology of this complex is known as cGHL−S (G;Z).
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The proof of the signed version of [5, Theorem 8.2.5] adapts without variation to
the double-point enhanced case to give the following theorem:

Theorem 6.2 For any link, the collapsed double-point enhanced grid complex of a grid
diagram representing the link is a link invariant as a bigraded Z[U , v]-module.

Now, we are ready to state the theorem we wish to prove. We omit the Z and S from
the notation for convenience. Let cGHL−m(L, a) be the Z-submodule of cGHL−(L)
consisting of homogenous elements of bidegree (m, a).

Theorem 6.3 Let (L+, L− , L0) be an oriented skein triple, with � and �0 the number of
components of L+ and L0, respectively. If �0 = � + 1, then there is a long exact sequence
where the maps below fit together to be homomorphisms of Z[U , v]-modules:

→ cGHL−m(L+, s) → cGHL−m(L−, s) → cGHL−m−1(L0 , s) → cGHL−m−1(L+, s) →

Let J be the four-dimensional bigraded abelian group J ≅ Z
4 with one generator in

bigrading (0, 1), one generator in bigrading (−2,−1), and two generators in bigrading
(−1, 0).

If �0 = � − 1, then there is a long exact sequence where the maps below fit together to
be homomorphisms of Z[U , v]-modules:

→ cGHL−m(L+, s) → cGHL−m(L− , s) → cGHL−m−1(L0 , s) ⊗ J → cGHL−m−1(L+ , s) →

6.2 Proof of the theorem

Per [5, Chapter 9], we may assume that L+, L− , and L0 are represented by grid diagrams
G+ ,G−, and G0 , respectively, which we picture below along with another diagram G

′
0

also representing L0 . The below diagram is similar to [5, p. 153], and it depicts, left to
right, G+,G0 ,G′0 , and G−.
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Below, we draw another diagram similar to [5, Figure 9.3], which depicts all four
of these grid diagrams simultaneously, and defines for us two crucial points c and c′ .
Here, the solid bent line is a β curve while the dashed bent line is the corresponding
γ curve.

We partition our four chain complexes, as above, into I and N parts depending on
whether the grid states contain the marked point c, and I′ and N′ parts depending on
whether the grid states contain the marked point c′ , giving the following descriptions
of GCL−S as mapping cones of the following maps counting some of the distinguished
squares in the above diagram. (We omit the Z for notational simplicity.)

Chain Quotient
complex complex Map Subcomplex Map counts ...

GCL−S (G+) (I, ∂I
I) ∂N

I ∶ I → N (N, ∂N
N) Rectangles crossing Y1 or Y2

GCL−S (G0) (N, ∂N
N) ∂I

N ∶ N → I (I, ∂I
I) Rectangles crossing X1 or X2

GCL−S (G′0) (I′ , ∂I′
I′) ∂N′

I′ ∶ I′ → N′ (N′ , ∂N′
N′) Rectangles crossing X1 or X2

GCL−S (G−) (N′ , ∂N′
N′) ∂I′

N′ ∶ N′ → I′ (I′ , ∂I′
I′) Rectangles crossing Y1 or Y2

Definition 6.4 We define the map T ∶ I′(G′0) → I(G+) by the property that T(x) −
(T(x) ∩ β i) = x − (x ∩ γ i) (see [5, p. 155]).
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Lemma 6.5 The identification T ∶ I′(G′0) → I(G0) extends to an isomorphism of
chain complexes over F[v , V1 , . . . , Vn].

Proof The proof of [5, Lemma 9.2.3] holds in our situation. ∎

Lemma 6.6 The maps ∂I′
N′ ○ ∂N′

I′ ∶ I′ → I′ and ∂I
N ○ ∂N

I ∶ I → I are both equal to multi-
plication by V1 + V2 − V3 − V4 .

Proof We do ∂I
N ○ ∂N

I ∶ I → I first.
As in the proof of [5, Lemma 9.2.4], we proceed by a now-familiar rectangle

counting argument. Consider any juxtaposition of rectangles contributing to the left-
hand side of the equation

∂I
N ○ ∂N

I = V1 + V2 − V3 − V4 .

This is a rectangle from x ∈ I(G+) to y ∈ N(G+) (where we count rectangles going
through Y markings) and then a rectangle from y ∈ N(G+) to z ∈ I(G+) (where we
count rectangles going through X markings). Thus, y must not contain c, but z does.
The only possibility is thus that x = z, and the composite of these two rectangles must
be an annulus. The annulus must be width one since otherwise it would intersect
X − {X1 , X2 , Y1 , Y2}, and similarly must be multiplicity 1.

There are four annuli, and since they are all thin, they are empty; the O-markings
they pass through are O i for i = 1, 2, 3, 4, giving V1 + V2 − V3 − V4 since the V3 and
V4 terms correspond to vertical annuli whereas the others correspond to horizontal
annuli.

The other case uses the same decomposition of rectangles. ∎

We get the following commutative square:

I′ N′

N I

∂N′
I′

∂N
I ○T −T○∂I′

N′

∂I
N

Lemma 6.7 (Modified from [5, Lemma 9.2.5]). Let M0 , A0 be the bigradings on G0
(whose grid states may be naturally identified with those of G+) and M0 ,′ A′0 be the
bigradings onG

′
0 (whose grid states may be naturally identified with those ofG−). Endow

I′ and N′ with bigradings M′0 and A′0 + �0−�−1
2 and endow I and N with bigradings M0 +

1 and A0 + �0−�+1
2 .

Then, in the above square, the following holds:
• Each edge map is homogenous of bidegree (−1, 0).
• The left column is isomorphic as a bigraded chain complex over F[V1 , . . . , Vn , v] to

GCL−S (G+)[[−1, 0]].
• The left column is isomorphic as a bigraded chain complex over F[V1 , . . . , Vn , v] to

GCL−S (G−).
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• The top row is isomorphic as a bigraded chain complex over F[V1 , . . . , Vn , v] to
GCL−S (G′0)[[0, �0−�+1

2 ]].
• The bottom row is isomorphic as a bigraded chain complex over F[V1 , . . . , Vn , v] to

GCL−S (G0)[[−1, �0−�−1
2 ]].

Proof The proofs of [5, Lemma 9.2.3] and [5, Lemma 9.2.5] carry over identically in
this situation. ∎

The following corollary is immediate.

Corollary 6.8 The map

(−1)M(∂N
I ○ T − T ○ ∂I′

N′) ∶ GCL−S (G′0) → GCL−S (G0)

is a chain map of F[v , V1 , . . . , Vn]-modules homogeneous of degree (−2,−1).

Note that the mapping cone of this map is precisely the above commutative square.

6.3 Defining the new maps

Define for x ∈ S(G0), the map:

P(x) = ∑
y′∈S(G′0)

∑
{p∈Pent∗(x,y′)∣p∩Y=∅}

S(p)vT(p)V O1(p)
1 . . . V On(p)

n y′ .

And, for i = 1, 2, and x ∈ S(G′0), the maps:

hX2(x) = ∑
y∈S(G′0)

∑
r∈Rect∗(x,y)
r∩(Y∪X)=X2

S(r)vT(r)V O1(r)
1 . . . V On(r)

n y,

hYi (x) = ∑
y∈S(G′0)

∑
r∈Rect∗(x,y)

r∩Y=Yi ,Yi(r)=1
X2(r)=0

S(r)vT(r)V O1(r)
1 . . . V On(r)

n y,

hX2 ,Yi (x) = ∑
y∈S(G′0)

∑
r∈Rect∗(x,y)

r∩Y=Yi ,Yi(r)=1
X2(r)≥1

S(r)vT(r)V O1(r)
1 . . . V On(r)

n y.

Let hY = hY1 + hY2 and hX2 ,Y = hX2 ,Y1 + hX2 ,Y2 .
Further define, for a domain ψ, the quantity Y(ψ) = Y1(ψ) + Y2(ψ).

Lemma 6.9 The map P ∶ GCL−S (G0) → GCL−S (G′0) is a quasi-isomorphism of
bigraded chain complexes.

Proof This is immediate from the commutation invariance of GCL−S as proven in
the previous section. Alternatively, the unsigned version of this lemma is proven in
[9, Propositions 9–11]. (This paper uses a slightly different-looking definition for the
map P, allowing pentagons to be long without being thin, however, these pentagons
always contribute 0 since they contain intersections with X, hence the two maps are
in fact identical.) ∎
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Remark 6.10 hX2 ,Yi does not vanish on I′ . This is in stark contrast to the map hX2 ,Yi

defined in [5, Chapter 9] in the un-enhanced case.

Lemma 6.11 (1) hX2 vanishes on N′ and maps I′ to N′.
(2) hY vanishes on I′.

Proof Both statements follow immediately from the multiplicity conditions on the
rectangles in the definitions of the maps. ∎

Lemma 6.12 (1) Suppose r is a rectangle contributing to the sum in hX2 . Then r is not
long, and Y1(r) = Y2(r) = 0.

(2) Suppose r ∈ Rect∗(x, y) is a rectangle contributing to the sum in hX2 ,Yi . Then, y ∈
N(G′0), so as a consequence, the image of hX2 ,Yi is within N′ .

Proof Both statements follow immediately from the multiplicity conditions on the
Yi in the definitions of the maps. ∎

Now, we must prove two key lemmas.

Lemma 6.13 The following two identities hold:

(−1)M P ○ T ○ ∂I′
N′ = hX2 ○ hY

and

(−1)M+1P ○ ∂N
I ○ T = hY ○ hX2 .

Proof We start with the first equation. Let ψ = r ∗ t ∗ p be a domain contributing
to the left-hand side. Here, since the image of T is in I′ , a pentagon p contributing
to P in the left-hand side has an outgoing corner at c, therefore geometrically we see
X2(p) = 0 lest Yi(p) ≥ 0 for either i = 1, 2. Now, concatenating p with the triangle t
contributing to t, therefore gives a rectangle r2 with an outgoing corner at c′ , with
X2(r2) = 1, and Y1(r2) = Y2(r2) = 0. Furthermore, the image of ∂I′

N′ is some rectangle
r = r1 with an incoming corner at c′, and with Y(r1) = 1. Hence, the composite ψ =
r1 ∗ r2 is a decomposition appearing in the right-hand side. Conversely, for ψ = r1 ∗ r2,
a decomposition appearing in the right-hand side, we have that the rectangle r1 = r
contributes to ∂I′

N′ , and cutting r2 along the portion of β i passing through X2 gives
us a decomposition r2 = t ∗ p such that t contributes to T and p to P in the left-
hand side. Furthermore, these two decompositions always have the same degree
since the interiors of the domains in each decomposition differ only on the edge of
the small triangle t which is part of β i ; however, the only point on β i that could
possibly affect the degrees of the decompositions is an outgoing corner of p. Hence,
either T(p) = T(r2) = 1 or else T(p) = T(r2) = 0. Furthermore, by the definition of
a sign assignment for a pentagon, it is clear that both decompositions have the same
sign.

Now, we consider the second equation. Let ψ = t ∗ r ∗ p be a domain contributing
to the left-hand side. We see geometrically that if X2(p) ≥ 1, then it must be the case
that either Y1(p) or Y2(p) is positive. Since we specify in the equation defining P
that Y(p) = 0, we must have X2(p) = 0. Furthermore, it is not possible for r and
p to overlap in a small neighborhood of c′ , since this would require Y1(r) = 1 and
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then Y(p) > 0. Hence, all local multiplicities are ≤ 1 around c′ . Suppose c′ were a 90-
degree corner. Then, we must have Y2(r) = 1, and p must be a left pentagon. However,
geometrically, the only way this is possible is if Y2(p) ≥ 1, a contradiction.

Also note that X2(r) = 0 by the fact that c is an outgoing corner and r cannot be
long. In all cases, then, we have X2(ψ) = Y(ψ) = 1.

Thus, c′ is either a 270-degree corner, a 180-degree corner, or in the interior of ψ.
In all three cases, we may represent ψ by an L-shaped region Q in the universal cover
such that a pre-image C′ of c′ is either a 270-degree corner, a 180-degree corner, or in
the interior of ψ. Indeed, start with t which has a corner at C′ , and then attach pre-
images R and P of r and p such that if r or p has a corner at c′, then R or P has a corner
at C′ .

We must also show that these three possibilities are also the only three possibilities
for a domain contributing to the right-hand side. Suppose ψ = r1 ∗ r2, where r1 is from
hX2 and r2 is from hY . Then, r1 has a corner at c′ , namely the southwest corner, and no
others since Y(r1) = 0. Then, r2 must contain precisely one of Y1 or Y2 , but X2(r2) = 0,
so either r2 has a corner at c′, leaving ψ a 180-degree corner at c′ (which clearly forces ψ
to be an annulus), or it has an edge passing through c′ , leaving ψ a 270-degree corner
at c′ . Note that there is no 360-degree case; we will return to this at the end of the
proof.

We will first show that in each case ψ has two decompositions of equal degree; then,
we will appeal to a proof from [5] to show that these two decompositions further have
the same sign.

In the first 270-degree case, either c′ is on an edge of r or on p. If c′ is on an edge of r,
which is part of horizontal circle, say, α j , then cutting ψ along α j gives a decomposition
ψ = r1 ∗ r2 . Since r1 clearly has c as an outgoing corner and contains X2 , and we know
X2(ψ) = X2(r) + X2(t) + X2(p) = 0 + 1 + 0 = 1, that tells us X2(r1) = 1. Furthermore,
in this case, the support of r1 is a subset of the support of p, hence Y(r1) = 0. Thus,
r1 contributes to hX2 ; likewise, we must have Y(r2) = Y(ψ) = 1, so Y contributes to
hY . Conversely, if ψ = r1 ∗ r2 , with Y1(r2) = 1, then performing this same cut along α j
gives a decomposition as in the left-hand side.

The proof of Lemma 4.3 ensures that the two decompositions r1 ∗ r2 and r′1 ∗ r′2
of ψ as rectangles in GCL−(G′0) have the same degree. One of these decompositions
is r1 ∗ r2 , and the other p ∗ r ∗ t differs from r′1 ∗ r′2 by the introduction of the small
triangle t and by cutting at β i instead of γ i . No points on β i or γ i can contribute to
the degrees of any of these decompositions, for on the left-hand side, p and r border
β i and on the right-hand side, r1 and r2 border γ i . Thus, both decompositions r1 ∗ r2
and p ∗ r ∗ t have the same degree.

Similarly, if c′ is on an edge of p, then this edge is part of γ i , and we cut ψ along γ i
to get a decomposition r1 ∗ r2 . In this case, r1 is the union of t and a portion of r not
containing Y2; hence, X2(r1) = 1 and Y(r1) = 0, so r1 contributes to hX2 . Similarly, r2
must contribute to hY since we must have Y(r2) = 1. Conversely, if ψ = r1 ∗ r2 , with
Y2(r2) = 1, then performing this same cut along γ i gives a decomposition as in the
left-hand side. Likewise, these two decompositions differ by the introduction of the
small triangle t and by cutting at β i instead of γ i , so they also must have the same
degree by the argument in the previous paragraph.
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In the 180-degree case on the left-hand side, we must have Y2(r) = 1, and since r
is not long, the condition that there is a 180-degree corner at c′ forces p to have an
incoming corner at c′ , and also for x = z; hence, the region ψ must be a horizontal
annulus, and it must be thin to avoid intersecting with Y − {Y1 , Y2}. Furthermore,
since the local multiplicities of c′ , which is an incoming corner of p, are all ≤ 1, we
must have that the annulus has multiplicity 1. There is clearly a unique decomposition
of this annulus into two rectangles r1 , r2 such that X2(r1) = Y(r2) = 1 and Y(r1) =
X2(r2) = 0. Conversely, if ψ = r1 ∗ r2 has a 180-degree corner at c′ , either we are in the
horizontal case, in which case there is a unique decomposition ψ = t ∗ r ∗ p as in the
previous paragraph, or else we are in the vertical case (see the following paragraph);
this case is unique for each grid state x. Since the annulus is thin, all constituent
polygons must be empty so the degrees of all decompositions are 0.

There is one case remaining for the left-hand side and one case remaining for the
right-hand side. For the left-hand side, this case is that c′ is a 360-degree corner, in
which case, we must have Y1(r) = 1 and therefore that c′ is an incoming corner at
p; again, this forces the initial and final grid states to be equal, so we have a vertical
annulus, and it is unique for each grid state x. The remaining case for the right-hand
side is a vertical annulus as well. Both annuli are thin, so have degree 0, and contribute
1 power of V4 to the formula.

What’s left to show is that each decomposition in every case has the same sign.
Since each of these possibilities is identical to those in the proof of [5, Theorem 15.5.1],
this proof guarantees that each decomposition has the same sign. Indeed, it only uses
the defining properties of sign assignments and the relation between the sign of a
pentagon and its associated rectangle, all of which carry over to the case where the
pentagons and rectangles are potentially long.

This concludes the proof. ∎

Lemma 6.14 The map hX2 ,Y provides a chain homotopy from hX2 ○ hY + hY ○ hX2 to
multiplication by V2 − V4, i. e. the following equation holds:

hX2 ○ hY + hY ○ hX2 + hX2 ,Y ○ ∂ + ∂ ○ hX2 ,Y = V2 − V4 .

Proof Let ψ ∈ π(x, z) be a region contributing to the left-hand side of this equation
with ∣D(ψ)∣ > 0. We have three cases, ∣x − (x ∩ z)∣ =0, 3, or 4.

If ∣x − (x ∩ z)∣ = 4, then Lemma 4.2 shows that ∣D(ψ)∣ = 2, and both decomposi-
tions have the same degree and opposite signs. Hence, this case clearly contributes 0
to the sum on the left-hand side.

If ∣x − (x ∩ z)∣ = 3, then Lemma 4.3 shows that ∣D(ψ)∣ = 2, and both decomposi-
tions have the same degree and opposite signs, since only 1 rectangle in each possible
decomposition of ψ could be long. We must show that both decompositions appear
in the above formula, and do so exactly once. By analyzing the above formula, we
conclude that Y(ψ) = 1 and X2(ψ) ≥ 1. Both rectangles in both decompositions clearly
have trivial intersections with Y − {Y1 , Y2}. Hence, the only possibilities can be found
by considering multiplicities of X2 and Yi , and are listed below. Note that in the first
two cases, r1 is not forced; it could be from either hX2 or ∂, but this choice is forced
when we consider r2 .
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X2(ψ) X2(r1) Y(r1) r1 r2

1 1 0 hX2 hY

> 1 1 0 ∂ hX2 ,Y

≥ 1 1 1 hX2 ,Y ∂

≥ 1 0 0 ∂ hX2 ,Y

1 0 1 hY hX2

Finally, I claim the case X2(ψ) > 1, X2(r1) = 0, and Y(r1) = 1 cannot occur. Indeed,
this forces the other rectangle r2 to satisfy X2(r2) > 1 but also Y(r2) = 0 which is
impossible.

Hence, this case ∣x − (x ∩ z)∣ = 3 also contributes 0 to the sum.
If ∣x − (x ∩ z)∣ = 0, then we must have ψ is an annulus containing X2 , and it must

be thin since Y(ψ) = 1 and ψ ∩ (Y − {Y1 , Y2}) = ∅. Since Y(ψ) = 1, it must have
multiplicity 1. Then, clearly, ψ has a unique decomposition into two rectangles, and the
possibilities in the table in the previous case still apply to show that this decomposition
appears precisely once in the sum on the left-hand side. If the annulus is horizontal, it
gives us multiplication by V2 , and if it is vertical, we get multiplication by −V4 . ∎

The remainder of the proof of the skein exact sequence proceeds exactly as in [5,
Chapter 9], which gives us the theorem.

7 Alternatives to τ

In this section, we discuss constructions relating to and generalizing the τ invariant.
We first recall the definition of τ.

Definition 7.1 For a knot K, τ(K) is −1 times the maximum Alexander grading of a
homogeneous nontorsion element in GH−(K).

Note that for the remainder of the paper, the coefficient field will be F unless
otherwise stated. We use a field for coefficients to maximize simplicity here, although
much of the below can be generalized to Z coefficients without too much difficulty.

7.1 The endomorphism ∂1

[1, p. 9] briefly mentions the fact that ∂1 is a chain map. Let’s recall why. The differential
is defined as ∂(x) = ∑∞k=0 vk ∂k(x). In proving that ∂2 = 0, we may expand out this sum
and conclude that each coefficient of vk is 0. This gives

∂2
0 = 0,

∂0∂1 + ∂1∂0 = 0,

∂0∂2 + ∂2
1 + ∂2∂0 = 0,

and so on.
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The second equality tells us that ∂1 ∶ GC−(G) → GC−(G) is a chain map on the
unblocked grid homology, so it induces a homomorphism ∂1∗ ∶ GH−(G) → GH−(G).
Furthermore, the third equation tells us that ∂2

1 is nullhomotopic, hence ∂1∗ is a
differential on GH−(G) and we can consider its homology.

I conjecture that ∂1∗ is the zero homomorphism, but we have yet to find a
nullhomotopy for it. The author has attempted to try using certain L-shaped regions
as a count; this fails. However, we can show that this endomorphism is, in a certain
sense, an invariant of the knot.

Theorem 7.2 Suppose that G and G
′ are two grid diagrams representing the same

knot and F ∶ GH−(G) → GH−(G′) is an isomorphism of bigraded F[U , v]-modules
associated with a sequence of grid moves from G to G

′ , as in Section 5. Then, the below
diagram commutes:

GH−(G) GH−(G′)

GH−(G) GH−(G′)

F

F

∂1∗ ∂1∗

Proof By Theorem 2.10, it is sufficient to show this theorem in the case that G and
G
′ differ by a commutation and any type X stabilization or destabilization.
For the commutation maps, let G and G

′ differ by a commutation or a switch.
We know by our proof of invariance that there is a chain map PS ∶ (GCL−S (G), ∂) →
(GCL−S (G′), ∂) such that the v0-term of PS , when reduced modulo 2, is precisely the
quasi-isomorphism P ∶ (GC−(G), ∂0) → (GC−(G′), ∂0) from [5, Section 5.1]. Let PL
be the reduction of PS modulo 2. Let P1 be the v1 term of PL . Then, the v1-term of the
equation

∂ ○ PL + PL ○ ∂ = 0,

which expresses that PL is a chain map, is

∂0 ○ P1 + P1 ○ ∂0 + ∂1 ○ P + P ○ ∂1 = 0,

which tells us that ∂1 commutes with P up to homotopy. Hence, ∂1∗ is preserved under
commutation.

For SW-destabilization, if G′ differs from G by a SW-destabilization, [5, Lemma
5.2.17] gives us a quasi-isomorphism from GC−(G) to the mapping cone of the
function V2 − V1 ∶ GC−(G′)[V1][[1, 1]] → GC−(G′)[V1]. Using notation from [5, Sec-
tion 5.2], the quasi-isomorphism is given by (i , n) ↦ (e(i), e(HI

X2
(n))), for (i , n) ∈

I ⊕ N. The map e clearly commutes with ∂1 , and the map ∂1 commutes with HI
X2

up to homotopy by a similar argument to the previous paragraph. Indeed, HI
X2

is
the part of the homotopy operator HX2 , which is the v0 term of the chain map
HX2 ∶ GCL−S (G) → GCL−S (G), when taken modulo 2.

Finally, the isomorphism from the homology of the mapping cone of the func-
tion V2 − V1 ∶ GC−(G′)[V1][[1, 1]] → GC−(G′)[V1] to GH−(G) commutes with the
induced map of ∂1 . Indeed, this isomorphism is proved in [5, Lemma 5.2.16] as an

https://doi.org/10.4153/S0008414X23000809 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000809


Combinatorial proofs of properties of double-point enhanced grid homology 31

isomorphism of F[V2 , . . . , Vn]-modules; this identical proof shows that we have an
isomorphism of F[V2 , . . . , Vn , ∂1]-modules.

We may carry out this computation with the other kinds of destabilizations, as
well. For the X:NE type, the computation proceeds almost identically, whereas for the
other two types of destabilizations, we can repeat the logic but the formulas will look
different as now I is a subcomplex of GC−(G′) and N a quotient complex, as opposed
to the other way around (see [5, Proposition 5.4.1] for details). To carry out the proof
that ∂1 commutes with the type X stabilizations, we will proceed similarly as before,
once we define a chain map from V2 − V1 ∶ GC−(G′)[V1][[1, 1]] → GC−(G′)[V1] to
GC−(G′)which is homotopy inverse to the destabilization map we have been working
with so far. This construction is outlined in [5, pp. 111–112], and it again consists of a
composition of polygon-counting maps which all commute with ∂1 . ∎
Corollary 7.3 The homology of the chain complex (GH−(G), ∂1∗) is a knot invariant.

Lemma 7.4 The image of ∂1∗ is U-torsion.

Proof By definition, ∂1∗ commutes with U. Also, ∂1∗ lowers the grading by (−3, 0).
Suppose that ξ ∈ GH−(K) was such that ∂1∗(ξ) is U-nontorsion, then ξ must be

U-torsion since the U-nontorsion elements of GH−(K) are all supported in a line of
slope d − 2s = 0. Thus, there exists k such that U k ξ = 0, so

U k ∂1∗(ξ) = ∂1∗(U k ξ) = ∂1∗(0) = 0,

a contradiction. ∎
Since we know that the U-torsion elements of GH−(K) form a finite-dimensional

vector space, we now extract some more concrete invariants from ∂1∗:
• The bigraded F-vector space ∂1∗(GH−(K)).
• The maximum k such that U k(∂1∗(GH−(K))) is nontrivial.
• The maximum k such that ∂1∗(U k ζ) ≠ 0, where ζ ∈ GH−(K) is a homogeneous

U-nontorsion element of grading (−2τ,−τ).

7.2 ∂1∗ for ĜH(K)

For the case of the hat-flavored grid homology ĜH(K), we may also consider this map
∂1∗ , and in fact, it is invariant of the knot in the same sense as before.

Lemma 7.5 The map ∂1 induces a map ∂1∗ ∶ ĜH(G) → ĜH(G)which is a knot invari-
ant in the following sense. Suppose that G and G

′ are two grid diagrams representing the
same knot and F ∶ GH−(G) → GH−(G′) is an isomorphism of bigradedF-vector spaces
associated with a sequence of grid moves from G to G

′ , as in Section 5. Then, the below
diagram commutes:

ĜH(G) ĜH(G′)

ĜH(G) ĜH(G′)

F

F

∂1∗ ∂1∗

Proof Let π i ∶ GC−(G) → GC−(G)/Vi be the projection map.
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From the previous subsection, it is sufficient to show that ∂1 commutes with
isomorphisms from H(GC−(G)/Vi) to H(GC−(G)/Vj) (since then the arguments
that ∂1∗ commutes with the grid move maps follows immediately).

Each such isomorphism comes from composing quasi-isomorphisms Cone(Vi) →
GC−/Vi induced by projection (c, c′) ↦ π i(c′), and isomorphisms Cone(Vi) →
Cone(Vj) given by (c, c′) ↦ (c,H(c) + c′), where H is the homotopy operator from
Vi to Vj .

By the previous subsection, we know that ∂1 commutes with all of these maps up
to homotopy (when we consider the action of ∂1 on the mapping cone as ∂1(c, c′) =
(∂1c, ∂1c′)), which establishes the result. ∎

Now, from [5, Chapter 7.1], we know that ĜH(m(K)), where m(K) is the mirror
of the knot K , is canonically isomorphic to the dual vector space ĜH(K)∨ . With a bit
more work, this tells us something about the grid homology of amphicheiral knots.
Using sign-refined maps, we know that we can get an invariant of knots ĜH(K)which
is a module over Z. These sign-refined maps give us a knot invariant when we tensor
the chain complex ĜC(K)withR, giving us grid homology defined over the coefficient
field of R. We may use the universal coefficient theorem and the sign-refined grid
homology to compute grid homology defined over the coefficient field ofR. We denote
grid homology with R coefficients as ĜH(K;R).

Lemma 7.6 If K is an amphicheiral knot, then there exists at least one nondegenerate
bilinear form ⟨⋅, ⋅⟩ on ĜH(K;R) for which ∂1∗ is self-adjoint and the image of ∂1∗ is an
isotropic subspace.

Proof We suppress the R-coefficients for convenience here. The invariance of ĜH
on the grid presentation of a knot gives a bigraded isomorphism Ω ∶ ĜH(K) →
ĜH(m(K)) ≅ ĜH(K)∨ , which in turn induces such bilinear form

⟨x , y⟩ ∶= Ω(x)(y).

Following the isomorphisms in [5, Chapter 7], we see that (Ω(x))(∂1∗y) =
Ω(∂1∗x)(y), which proves the self-adjoint claim. Since ∂2

1∗ = 0, we get that the image
of ∂1∗ is an isotropic subspace. ∎

Remark 7.7 We hope that, perhaps, we could prove that ∂1∗ is zero by computing the
signature of one such bilinear form and showing it is positive definite, say; this would
require the bilinear form to be symmetric, which is a difficult question. It is another
question of interest whether this bilinear form depends on the particular isotopy of K
into m(K).

When K is alternating, say, then we know that ĜH is dimension ≤ 1 in each
bigrading, hence the fact that Ω is bigraded forces each such bilinear form to be
diagonal with respect to the basis consisting of nonzero homogeneous elements, hence
symmetric.

Remark 7.8 We still have that ∂1∗ changes the grading (Maslov , Al exander) by
(−3, 0). A python search gives that 18 is the smallest crossing number of a prime knot
with ĜH nonzero in gradings differing by (−3, 0).
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7.3 The connection between GHL−(K) and τ

Theorem 7.9 There is a spectral sequence {Er , dr} of F[U]-modules, where E2 ≅
GH−(G)[v] and d2([x]) = v∂1∗([x]), which converges to GHL−(G) asF[U]-modules.
The F[U]-module isomorphism types of the terms En for n ≥ 1 are knot invariants.
Proof This follows immediately from the fact that the associated graded object of
GCL−(G) can be expressed as the chain complex:

(
∞

⊕
n=0

vnGC−(G),
∞

∑
n=0

vn ∂0) .

Furthermore, unwinding definitions, it is clear that d2([x]) = v∂1∗([x]).
The spectral sequence collapses on a finite page by grading reasons. Indeed, each

differential dr increases the filtration by r − 1 but decreases the Maslov grading by
2r − 1; since the set of Maslov gradings for each fixed Alexander grading is finite, the
sequence must collapse on a finite page.

We now prove that En for n ≥ 1 are knot invariants. We know that the commutation
and destabilization maps on GHL− all preserve the filtration. We also know that they
are isomorphisms on the E2 page of this spectral sequence, since this is simply the
statement of invariance of GH−. Our desired result comes from the fact that any
filtered map of filtered complexes which is an isomorphism on the E2 pages of the
associated spectral sequences is an isomorphism on all higher pages of the associated
spectral sequences (see [4, Proposition 3.2] for a proof). ∎
Remark 7.10 Unfortunately, we lose the structure of the v map in this spectral
sequence.
Remark 7.11 This is the same proof strategy used in Rasmussen’s proof of the
invariance of the Lee-Rasmussen spectral sequence in [8].

This prompts us to define many alternatives to τ.
Definition 7.12 Let K be a knot.
• τ+(K) is −1 times the maximum Alexander grading of a U- and v-nontorsion

homogeneous element in GHL−(K).
• τ+U(K) is −1 times the maximum Alexander grading of a U-nontorsion homoge-

neous element in GHL−(K).
• ρ(K) is the maximum k such that the equation U k ξ = 0 has a nonzero solution

ξ ∈ GHL−(K).
From the spectral sequence and the definition, we immediately get the following

lemma:
Lemma 7.13 For any knot K, −τ+(K) ≤ −τ+U(K) ≤ −τ(K).
Remark 7.14 As in [5, Section 7.4], mirroring the knot K essentially dualizes the
complex GCL−(K) over the ring F[U , v], and it would be very convenient to use this
fact to prove that −τ+(K) = τ+(m(K)), which in combination with the above lemma
and the similar fact about τ, would show that τ+(K) = τ+U(K) = τ(K). However,
F[U , v] is not a principal ideal domain, and the complications of the universal
coefficient spectral sequence render this line of proof quite difficult.

https://doi.org/10.4153/S0008414X23000809 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000809


34 O. Thakar

8 Example computations with the spectral sequence

The spectral sequence defined in the previous section allows us to compute the
homology GHL−(K) for many families of knots K by first computing GH−(K)[v].
In this section, we compute the examples of alternating knots and torus knots; in
both examples, the spectral sequence collapses at the E2 page, so the computation is
especially simple. The computations are therefore purely algebraic, not requiring any
more topological information about the knots than the structure of GH−(K).

This provides a bit of evidence for the conjecture that GHL−(K) ≅ GH−(K)[v]
always, and allows us to see examples of what GHL−(K) looks like in practice.

Theorem 8.1 If K is a quasi-alternating knot, then GHL−(K) ≅ GH−(K)[v] as
bigraded F[U]-modules.

Proof Let K be quasi-alternating. It is sufficient to show that the spectral sequence
with E2 page GH−(K)[v] converging to GHL−(K) collapses at the E2 page.

By [5, Chapter 10], we know that the U-torsion part of the grid homology GH−(K)
is supported in bigradings (M , A) with M − A = −τ, and the U-nontorsion “tail”
is supported in M − 2A = 0, which begins on the line M = A and extends in one
direction.

Hence, GH−(K)[v], which is what we get when we first take GC−[v](K) and
take homology with respect to ∂0 , must be supported in copies of these shapes each
differing from the previous by an addition of 2 in Maslov grading. In particular, all
homogeneous U-torsion elements have the same parity of their Maslov grading.

We now wish to conclude, inductively, that all the higher differentials in the spectral
sequence are trivial.

If ξ ∈ GH−(K)[v] is U-torsion, then so is d i(ξ) for any i by U-equivariance of the
differential. Thus, any torsion elements must be in the kernel of d i for each i since d i
reverses the parity of the Maslov grading.

Now, note that each differential in the spectral sequence increases the coefficient of
v strictly. But, any point on the tail M − 2A = 0 is strictly lower in Maslov grading than
any point of equal Alexander grading with a higher v coefficient. Thus, the differentials
must all be zero there as well. ∎
Theorem 8.2 If K is a torus knot, then GHL−(K) ≅ GH−(K)[v] as bigraded
F[U]-modules.

Proof Again, we show the spectral sequence collapses at E2 , and we do so by ana-
lyzing the U-torsion and U-nontorsion portions separately. Let K be a positive torus
knot K = Tp,q . [5, Theorem 16.2.6] describes the structure of ĜC(K). In particular, it
shows us, by the computation that τ(K) = (p−1)(q−1)

2 , that the infinite tail begins at
F(δ−k ,n−k), where n−k = − (p−1)(q−1)

2 .
Per [5, Formula 7.6], we can express GH−(K) = F[U](−2τ ,−τ) ⊕i F[U](d i ,s i)/U n i .

Let ξ i be the nontrivial element in F[U](d i ,s i)/U n i that is not a multiple of U . Then,
the ξ i generate the U-torsion portion of GH−(K). Call each such F[U](d i ,s i)/U n i a
“finite tail.”

Furthermore, any finite tails in GC−(K) contribute precisely two terms to ĜC(K)
per [5, Formula 7.6], and by this formula, we see that these finite tails must lie in higher
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Alexander gradings than the tail. Then, clearly any differential d i , for i ≥ 2, which
increases the coefficient of v strictly, cannot map any point on the infinite tail to any
nontrivial point. Hence, it is sufficient to consider the U-torsion parts.

If the map d2 is nontrivial on the U-torsion part, then some component of it maps
some homogeneous U-torsion element ξ = U k ξ i to a point ζ with 1 lower Maslov
grading and identical Alexander grading, which is some U , v-linear combination of
the ξ j . By grading reasons, none of the ξ j contributing nonzero terms in the expression
of ζ is ξ i . The U-equivariance of d1 tells us that at least one tail containing some ξ j ,
j ≠ i , must terminate at the same Alexander grading A∗ at which the tail containing
ξ i terminates. But, this requires there to be dimension ≥ 2 of ĜC(K) at the grading
A = A∗, contradicting Theorem 16.2.6. Inductively, we may use this same argument to
show dk is trivial on the U-torsion part for k > 2. By the construction of the spectral
sequence, we must have that the sequence collapses on E2 , as desired.

A similar computation holds for negative torus knots, based on the fact that for a
negative torus knot, a U-nontorsion homogeneous element of GH−(K) never lies in
the same Alexander grading but greater Maslov grading as a U-torsion homogeneous
element of GH−(K). ∎

Remark 8.3 These results can likely be extended without much difficulty to other
classes of knots with relatively thin knot Floer homology.

9 Conclusion

It still remains open, whether the homology GHL−S (K;Z) encodes different infor-
mation than GH−S (K;Z)[v]. This article shows that these two objects at least obey
very similar topological properties. Strategies for perhaps exhibiting an isomorphism
between these two objects may relate to using the mirror of a knot, as discussed in the
previous section, which may prove effective at least in showing that the nontorsion
parts of these objects are isomorphic. Some of the variants of τ for GHL−S (K;Z)
are possibly sharper topological invariants than τ, so if these homologies are in fact
different, we can extract useful data from our ventures.

One pressing open question is to explore if there is an analog of the filtered
theory discussed in [5, Chapters 13 and 14] for double-point enhanced grid homology.
The seemingly natural extension of the differential in this case to the double-point
enhanced world is markedly not a differential anymore. If in fact, the homology
GHL−S (K;Z) is isomorphic to GH−S (K;Z)[v], then we would expect some filtered
theory to exist.
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