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Abstract

In this article, we study the recent development of the qualitative uncertainty principle on certain Lie
groups. In particular, we consider that if the Weyl transform on certain step-two nilpotent Lie groups is
of finite rank, then the function has to be zero almost everywhere as long as the nonvanishing set for the
function has finite measure. Further, we consider that if the Weyl transform of each Fourier–Wigner piece
of a suitable function on the Heisenberg motion group is of finite rank, then the function has to be zero
almost everywhere whenever the nonvanishing set for each Fourier–Wigner piece has finite measure.
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1. Introduction

The uncertainty principle for the Fourier transform states that a function and its Fourier
transform cannot be concentrated simultaneously. Let L f denote the set of Lebesgue
points of f ∈ L1(Rd). We call A f = {x ∈ Rd ∩ L f : f (x) � 0} the nonvanishing set
for f . It is well known that if f ∈ L1(Rd), then almost all points are Lebesgue points
of f . Therefore, without loss of generality, we write A f = {x ∈ Rd : f (x) � 0} as the
nonvanishing set for f . A finer version of the uncertainty principle emphasizes that
the nonvanishing sets of a nonzero function and its Fourier transform cannot be of
finite measure simultaneously. In [4], Benedicks studied the ‘qualitative uncertainty
principle (QUP)’ on the Euclidean space Rn, and therefore extended the classical
Paley–Wiener theorem for the compactly supported functions to the class of integrable
functions on Rn. More precisely, for f ∈ L1(Rn), let A = {x ∈ Rn : f (x) � 0} and
B = {ξ ∈ Rn : f̂ (ξ) � 0}. If 0 < m(A)m(B) < ∞, then f = 0 almost everywhere (a.e.),
where m stands for the Lebesgue measure on Rn. In [1], Amrein and Berthier proved
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the same result with some implications in a slightly different way by employing Hilbert
space theory.

In 1997, Arnal and Ludwig [2] extended the notion of QUP to unimodular groups.
Let G be a unimodular group and Ĝ be the unitary dual of G. Let ν and ν̂ denote
the Haar measure and Plancherel measure on G and Ĝ, respectively. For f ∈ L1(G),
if ν{x ∈ G : f (x) � 0} < ν(G) and

∫
Ĝ rank(π( f ))d̂ν < ∞, then f = 0 a.e. Let us denote

R
∗ = R \ {0}. Then for the Heisenberg group Hn (see [24]), the above conditions

from [2] boil down to the fact that the set {λ ∈ R∗ : f̂ (λ) � 0} has finite Plancherel
measure in addition to almost all f̂ (λ) having finite rank. In [16], the authors obtained
a result on the Heisenberg group for partially compactly supported functions whose
Fourier transform is of finite rank. Later, Vemuri [26] relaxed the partial compact
support condition to finite Lebesgue measure of the nonvanishing set. However, the
above problem is of further interest if f ∈ L1(Hn) is nonvanishing on a subset of Hn

having finite Haar measure while f̂ (λ) satisfies some appropriate general conditions.
We are still clueless about this question. However, instead of this, a series of analogous
results related to Benedicks’ theorem has been obtained in various contexts, including
the Heisenberg group as well as the Euclidean motion group, see, for example [3, 9,
17, 19, 22]. There are many formulations of the uncertainty principle, and we refer
to an excellent survey article by Folland and Sitaram [7] and also the monograph by
Thangavelu [25].

We consider analogous results on certain step two nilpotent Lie groups related to the
Amrein–Berthier–Benedicks theorem in the sense of Narayanan and Ratnakumar [16].
That is, if the Weyl transform on step-two nilpotent Lie groups of MW-type is of finite
rank, then the function has to be zero almost everywhere as long as the nonvanishing
set for the function has finite measure.

It is well known that (Hn
� U(n), U(n)) is a Gelfand pair (for instance, see [5]).

So, the Fourier transform of a nonzero U(n)-bi-invariant integrable function f on
H

n
� U(n) has rank one, irrespective of the support of f . Thus, an exact analog of

the Benedicks-type theorem on the Heisenberg group, as in [16], is not possible
for the Heisenberg motion group. However, a close observation reveals that the
Fourier–Wigner representation of the function thinly conflicts with the Peter–Weyl rep-
resentation in the following sense. That is, if g ∈ L2(Cn

� U(n)) is U(n)-bi-invariant,
then g need not fall into the trivial Fourier–Wigner representation in Equation
(4-5) as compared with the Gelfand pair argument. This has been illustrated in a
one-dimensional Heisenberg motion group H1

� U(1) by Ghosh and Srivastava [8].
Thus, if the Weyl transform of each Fourier–Wigner piece of a suitable function on
the Heisenberg motion group is of finite rank, then the function has to be zero almost
everywhere as long as the nonvanishing set for each Fourier–Wigner piece has finite
measure. In the case of the Heisenberg motion group, Ghosh and Srivastava [8] have
proved a similar result using Hilbert space theory, however, the proof in this article is
different and we draw some comparisons through Remark 4.10.

We organize the paper as follows. In Section 2, we study a version of Benedicks’
theorem for the Weyl transform on the certain step two nilpotent Lie groups introduced
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[3] Qualitative uncertainty principle on certain Lie groups 291

by Moore and Wolf. In Section 3, we recall the necessary preliminaries regarding
group Fourier transform and the Plancherel formula on the Heisenberg motion
group. Finally, in Section 4, we explore the qualitative uncertainty principle for the
Heisenberg motion group.

2. Uniqueness results on certain step two nilpotent Lie group

2.1. Preliminaries. In this section, we study an analogous result of [16, Theorem
2.2] of Benedicks’ theorem for the Weyl transform on certain step-two nilpotent Lie
groups introduced by Moore and Wolf. A typical example of these groups are Métivier
groups (see [14]). When Métivier groups are quotiented by the hyperplane in the
center, they become Heisenberg groups. The Heisenberg-type groups introduced by
Kaplan (see [12]) are examples of Métivier groups. However, there are Métivier groups
which are distinct from the Heisenberg-type (or H-type) groups. For more details,
see [15].

Let G be a connected, simply connected, step-two nilpotent Lie group whose
Lie algebra g has the orthogonal decomposition g = b ⊕ z with [b, b] ⊂ z and
[g, [g, g]] = {0}, where z is the center of g. Since g is nilpotent, the exponential map
exp : g→ G is surjective. Thus, G can be expressed using exponential coordinates.

Consider an orthonormal basis {V1, . . . , Vm, Z1, . . . , Zk} such that b is spanned by
{V1, . . . , Vm} over R and z is spanned by {Z1, . . . , Zk} over R. For any element g ∈ G, we
can identify it with a point V + Z ∈ b ⊕ z so that g = exp(V + Z) and denote it by (V , Z).
Since [b, b] ⊂ z and [g, [g, g]] = {0}, by the Baker–Campbell–Hausdorff formula, the
group law on G can be expressed by

(V , Z)(V ′, Z′) = (V + V ′, Z + Z′ + (1/2)[V , V ′])

for all V + Z, V ′ + Z′ ∈ b ⊕ z. Let dV and dZ be the Lebesgue measures on b and
z, respectively. Then the left-invariant Haar measure on G can be expressed by
dg = dVdZ.

Let z∗ denote the dual of z. Next, for every ω ∈ z∗, consider the skew-symmetric
bilinear form Bω on b by letting

Bω(X, Y) = ω([X, Y]).

Let mω be the orthogonal complement of sω = {X ∈ b : Bω(X, Y) = 0 for all Y ∈ b}
in b. Then Bω is called a nondegenerate bilinear form when sω is trivial. Let
Λ = {ω ∈ z∗ : dim mω is maximum}, which is a Zariski open subset of z∗. If Bω is
nondegenerate for all ω ∈ Λ, then G is called an MW group.

Since mω is invariant under the skew-symmetric bilinear form Bω, it follows that the
dimension of mω is even; let dim mω = 2n. Then there exists an orthonormal almost
symplectic basis {Xi(ω), Yj(ω) : i = 1, . . . , n} of b and di(ω) > 0 such that

ω[Xi(ω), Yj(ω)] =

⎧⎪⎪⎨⎪⎪⎩δijdi(ω) when Xi � Yj;
0 otherwise.
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Let ζω = span{Xi(ω) : i = 1, . . . , n} and ηω = span{Yj(ω) : j = 1, . . . , n} be two real
vector spaces. Then we can write b = ζω ⊕ ηω and each (X, Y , Z) ∈ G can be repre-
sented by

(X, Y , Z) =
n∑

i=1

xi(ω)Xi(ω) +
n∑

i=1

yi(ω)Yi(ω) +
k∑

i=1

ti(ω)Zi(ω),

where x = (x1, . . . , xn), y = (y1, . . . , yn) are in Rn and t = (t1, . . . , tk) ∈ Rk. Hence, a
typical element (X, Y , Z) ∈ G can be identified with (x, y, t), where x, y ∈ Rn and t ∈ Rk.
That is, in these coordinates, G can be realized as R2n+k. Moreover, the left-invariant
Haar measure dg on G can be expressed by dg = dx dy dt, which is a Lebesgue measure
on R2n+k. For more details, we refer to [6, 13, 14, 20].

Next, we briefly introduce the unitary irreducible representation of the MW
group G. There are two types of representations of G. The trivial representations on
exp z can be parameterized by b∗, which are basically scalars, and the nontrivial repre-
sentations of G on exp b can be parameterized by Λ, which appears in the Plancherel
formula. More precisely, each ω ∈ Λ induces an irreducible unitary representation πω
of G on L2(ηω) by letting

(πω(x, y, t)φ)(ξ) = ei
∑k

j=1 ωjtj+i
∑n

j=1 dj(ω)(xjξj+(1/2)xjyj)φ(ξ + y),

where φ ∈ L2(ηω). We write v = (x, y). The group Fourier transform of f ∈ L1(G) is
defined by

f̂ (ω) =
∫
z

∫
b

f (v, t)πω(v, t) dv dt,

where ω ∈ Λ. The Fourier inversion of f in the variable t is given by fω(v) =∫
z
ei
∑k

j=1 ωjtj f (v, t)dt. Then for suitable functions f and g on b, we can define the
ω-twisted convolution of f and g by

f ∗ω g(v) =
∫

b
f (v − v′)g(v′)e(i/2)ω([v,v′]) dv′.

It is immediate that ( f ∗ g)ω = f ω ∗ω gω. Let p(ω) := Πn
i=1di(ω) be the symmetric

function of degree n corresponding to Bω. For any f ∈ L1 ∩ L2(G), the Fourier
transform f̂ (ω) is a Hilbert–Schmidt operator that satisfies

p(ω)‖ f̂ (ω)‖2HS = (2π)n
∫
b

| f ω(v)|2 dv.

If we write πω(v) = πω(v, o), the function f ω can be recovered from the identity

f ω(v) = (2π)−n p(ω) tr(πω(v)∗ f̂ (ω)).
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2.2. QUP for the Weyl transform. For ω ∈ Λ and h ∈ L1 ∩ L2(b), the Weyl trans-
form Wω(h) is defined by

Wω(h) =
∫
b

h(v)πω(v) dv.

It is well known that Wω(h) is a Hilbert–Schmidt operator on L2(ηω) which satisfies
the following Plancherel formula (see [18] for more general cases). For h ∈ L2(b), the
following equality holds:

‖Wω(h)‖2HS = c(ω)
∫
b

|h(v)|2 dv,

where c(ω) = (2π)n p(ω)−1. Notice that for h ∈ L1 ∩ L2(b), we have that Wω(h∗) =
Wω(h)∗ and hence Wω(h∗ ∗ω h) = Wω(h)∗Wω(h), where h∗(v) = h(v−1).

Next, we recall that for φ,ψ ∈ L2(Rn), the Fourier–Wigner transform of φ,ψ is a
function on Cn and is defined by

T(φ,ψ)(z) = 〈π(z)φ,ψ〉.

It is observed in [10, 11] that Fourier–Wigner transforms of nontrivial functions will
never be nonvanishing on a set of finite Lebesgue measure in R2n. This in turn (as
noted in [16]), implies that if the Weyl transform of function F ∈ L1(Cn) is of rank one,
then the function has to be zero almost everywhere as long as the nonvanishing set for
the function has finite measure.

THEOREM 2.1 [10, 11]. For φ,ψ ∈ L2(Rn), write X = T(φ,ψ). If {z ∈ Cn : X(z) � 0}
has finite Lebesgue measure, then X is zero almost everywhere.

By abuse of notation, we use the same notation for the Fourier–Wigner transform
on G. For φ,ψ ∈ L2(ηω), the Fourier–Wigner transform of φ and ψ is a function on b
defined by

T(φ,ψ)(v) = 〈πω(v)φ,ψ〉.

Then the following orthogonality relation holds (see Wolf [27]).

LEMMA 2.2 [27]. Let φj,ψj ∈ L2(ηω) be such that T(φj,ψj); j = 1, 2 are square
integrable on b. Then∫

b

T(φ1,ψ1)(v)T(φ2,ψ2)(v) dv = c(ω)〈φ1, φ2〉〈ψ1,ψ2〉.

We observe that the functions T(φ,ψ) form an orthonormal basis for L2(b). Let
{ϕj : j ∈ N} be an orthonormal basis for L2(ηω).

PROPOSITION 2.3. The set {T(ϕi,ϕj) : i, j ∈ N} is an orthonormal basis for L2(b).
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PROOF. It is immediate from Lemma 2.2 that {T(ϕi,ϕj) : i, j ∈ N} is an orthonormal
set. Now, it only remains to verify the completeness. For this, let f ∈ L2(b) be such
that 〈 f , T(ϕi,ϕj)〉 = 0, whenever i, j ∈ N. A simple calculation shows that

〈Wω( f̄ )φi, φj〉 = 〈 f , T(φi, φj)〉 = 0

and hence Wω( f̄ ) = 0. Thus, by the Plancherel formula, f is zero almost
everywhere. �

The following analog of Theorem 2.1 for the Fourier–Wigner transform on G holds
true.

PROPOSITION 2.4. Let F = T(φ,ψ), where φ,ψ ∈ L2(ηω). If the set {v ∈ b : F(v) � 0}
has finite Lebesgue measure, then F is zero almost everywhere.

PROOF. The proof of Proposition 2.4 is similar to the proof of Theorem 2.1 and hence
we omit it here. �

Let E and F be measurable subsets of ζω and ηω, respectively, such that
0 < m(E)m(F ) < ∞. Denote Σ = E × F . The following result is crucial in proving
Theorem 2.6.

LEMMA 2.5. For hj ∈ L2(ηω), write Ky(ξ) =
∑N

j=1 hj(ξ + y)hj(ξ), where y ∈ ηω. If
Ky(ξ) = 0 for all y ∈ ηω \ F and for almost all ξ ∈ ηω, then each hj is nonvanishing on
a set of finite measure.

PROOF. Since hj ∈ L2(ηω), the functions |hj| are finite almost everywhere on ηω. Define
a function χ on ηω by χ = (h1, . . . , hN). Then, we get that

Ky(ξ) = 〈χ(ξ + y), χ(ξ)〉CN

for almost every ξ ∈ ηω. By assumption, Ky = 0 for all y ∈ ηω \ F . Thus, it follows that

〈χ(ξ + y), χ(ξ)〉CN = 0

for almost every ξ ∈ ηω and y ∈ ηω \ F . In contrast, assume that the nonvanishing set
S := {ζ ∈ Rn : χ(ζ) � 0} has infinite Lebesgue measure. Since F has finite measure,
there exists v1 ∈ S ∩ (ηω \ F ). Observe that χ(v1) � 0 and

〈χ(ξ + v1), χ(ξ)〉CN = 0.

Next, take v2 ∈ S ∩ (ηω \ (F + v1)), then χ(v2) � 0, and since v2 − v1 � F , it is imme-
diate that 〈χ(ξ + v2 − v1), χ(ξ)〉CN = 0. In particular, 〈χ(v2), χ(v1)〉CN = 0. In this way,
after m steps, we get that {vj : 1 ≤ j ≤ m} such that χ(vj) � 0 and

〈χ(ξ + vj − vj′), χ(ξ)〉CN = 0 for 1 ≤ j � j′ ≤ m. (2-1)

If we consider vm+1 ∈ S ∩ (ηω \
m⋃

j=1
(F + vj)), then χ(vm+1) � 0 and for j ≤ m,

〈χ(ξ + vm+1 − vj), χ(ξ)〉CN = 0. (2-2)
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In particular, taking ξ = vj′ in Equation (2-1) and ξ = vj in Equation (2-2),

〈χ(vj), χ(vj′)〉CN = 0 for 1 ≤ j � j′ ≤ m + 1.

For m = N, we obtain N + 1 nonzero mutually orthogonal vectors in CN , which is a
contradiction. It follows that S must have finite measure and hence all hj terms are
nonvanishing on S. �

Next, we prove our main result of this section which is motivated by [16, Theorem
2.2].

THEOREM 2.6. Let h ∈ L1 ∩ L2(b) be nonvanishing on Σ in b. If Wω(h) is a finite rank
operator, then h = 0 a.e.

PROOF. Let τ̄ = h∗ ∗ω h, where h∗(v) = h(v−1). Then Wω(τ̄) = Wω(h)∗Wω(h) is a pos-
itive and finite rank operator on L2(ηω). By the spectral theorem, there exists an
orthonormal set {φj ∈ L2(ηω) : j = 1, . . . , N} and scalars aj ≥ 0 such that

Wω(τ̄)φ =
N∑

j=1

aj〈φ, φj〉φj,

whenever φ ∈ L2(ηω). Now, for ψ ∈ L2(ηω), the orthogonality relation gives

〈Wω(τ̄)φ,ψ〉 =
N∑

j=1

aj〈φ, φj〉〈φj,ψ〉

= c(ω)−1
N∑

j=1

aj

∫
b

T(φ,ψ)(v)T(φj, φj)(v) dv. (2-3)

Further, by definition of Wω(τ̄),

〈Wω(τ̄)φ,ψ〉 =
∫
b

τ̄(v)T(φ,ψ)(v) dv. (2-4)

Hence, by comparing Equation (2-3) with Equation (2-4) in view of Proposition 2.3, it
follows that

τ =

N∑
j=1

T(hj, hj), (2-5)

where hj = c(ω)−1/2 √aj φj ∈ L2(ηω). Now, for v = (x, y), write τy(x) = τ(x, y). Then
Equation (2-5) becomes

τy(x) =
∫
ηω

ei
∑n

j=1 dj(ω)(xjξj+(1/2)xjyj)Ky(ξ) dξ.

Since τ̄ is nonvanishing on E × F , it follows that Ky(ξ) = 0 for almost every ξ and for
all y ∈ ηω \ F . Then in view of Lemma 2.5, it follows that each hj is nonvanishing on a
set of finite measure and hence each Ky is nonvanishing on a set of finite measure.
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Since τy is nonvanishing on E, whenever y ∈ ηω, we infer that τy is zero for all
y ∈ ηω. Now, by the Plancherel formula, we conclude that h = 0. This completes the
proof. �

REMARK 2.7

(i) For the rank-one case (that is, N = 1), instead of taking Σ = E × F with 0 <
m(E)m(F ) < ∞, if we assume that Σ has finite Lebesgue measure in b = ζω ⊕ ηω,
in view of Equation (2-5), it is immediate from Proposition 2.4 that τ = 0. Hence,
h = 0.

(ii) Instead of taking the set E × F in b, if we consider a finite Lebesgue measure set
Σ in b, then the projection of Σ on ζω or ηω need not be a set of finite Lebesgue
measure. Thus, the idea of the proof of Theorem 2.6 does not work in this case.

3. Preliminaries on the Heisenberg motion group

The Heisenberg group Hn = Cn × R is a step two nilpotent Lie group having center
R equipped with the group law

(z, t) · (w, s) = (z + w, t + s + 1
2 Im(z · w̄)).

By the Stone–von Neumann theorem, the infinite-dimensional irreducible unitary
representations of Hn can be parameterized by R∗. That is, each λ ∈ R∗ defines a
Schrödinger representation πλ of Hn via

πλ(z, t)ϕ(ξ) = eiλteiλ(x·ξ+(1/2)x·y)ϕ(ξ + y),

where z = x + iy and ϕ ∈ L2(Rn).
The Heisenberg motion group G consists of isometries of Hn that commute with

the sub-Laplacian L on Hn. Since the unitary group K = U(n) acts on Hn by the
automorphism k · (z, t) = (kz, t), where k ∈ K, the group G can be expressed as the
semidirect product of Hn and K, that is, Hn

� K. Hence, the group law on G can be
understood by

(z, t, k) · (w, s, h) = (z + kw, t + s + 1
2 Im(z · kw), kh).

Since a right K-invariant function on G can be thought of as a function on Hn and the
Lebesgue measure dz dt is the Haar measure on Hn, we infer that the Haar measure on
G is dg = dk dz dt, where dk stands for the normalized Haar measure on K.

For k ∈ K, define a new set of irreducible representations of the Heisenberg group
H

n through πλ,k(z, t) = πλ(kz, t). Since πλ,k agrees with πλ on the center ofHn, it follows
by the Stone–Von Neumann theorem for the Schrödinger representation that πλ,k is
equivalent to πλ. Hence, there exists an intertwining operator μλ(k) satisfying

πλ(kz, t) = μλ(k)πλ(z, t)μλ(k)∗.

Also, μλ(k) is unitary as well and could be chosen to represent K in L2(Rn), known as
a metaplectic representation. Let φλα(x) = |λ| n4φα(

√
|λ|x); α ∈ Zn

+, where the φα terms
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are the Hermite functions on Rn. Then for each λ ∈ R∗, the set {φλα : α ∈ Zn
+} forms

an orthonormal basis for L2(Rn). By letting Pλ
m = span{φλα : |α| = m}, μλ becomes an

irreducible unitary representation of K on Pλ
m. Hence, the action of μλ can be realized

on Pλ
m by

μλ(k)φλα =
∑
|γ|=|α|

ηλγα(k)φλγ,

where the ηλγα terms are the matrix coefficients of μλ(k). For details on the metaplectic
representation and spherical function, see [5]. Let (σ,Hσ) be an irreducible unitary
representation of K, and {eσj : 1 ≤ j ≤ dσ} be an orthonormal basis forHσ. Denote the

matrix coefficients of σ ∈ K̂ by

ϕσij (k) = 〈σ(k)eσj , eσi 〉.

Define a set of bilinear forms φλα ⊗ eσi on L2(Rn) ×Hσ by φλα ⊗ eσi = φ
λ
α eσi . Then

Bσ = {φλα ⊗ eσi : 1 ≤ i ≤ dσ,α ∈ Nn} forms an orthonormal basis for L2(Rn) ⊗Hσ.
DenoteH2

σ := L2(Rn) ⊗Hσ. Define a representation ρλσ of G onH2
σ by

ρλσ(z, t, k) = πλ(z, t)μλ(k) ⊗ σ(k). (3-1)

Then ρλσ are all possible irreducible unitary representations of G that appear in
the Plancherel formula [21]. Thus, in view of the above discussion, we denote the
partial dual of the group G by G′ � R∗ × K̂. For (λ,σ) ∈ G′, the Fourier transform of
f ∈ L1(G), defined by

f̂ (λ,σ) =
∫

K

∫
R

∫
Cn

f (z, t, k)ρλσ(z, t, k) dz dt dk, (3-2)

is a bounded linear operator on H2
σ. Let f λ be the inverse Fourier transform of

the function f in the variable t which is given by f λ(z, k) =
∫
R

f (z, t, k)eiλt dt. Then
Equation (3-2) reduces to

f̂ (λ,σ) =
∫

K

∫
Cn

f λ(z, k)ρλσ(z, k) dz dk,

where ρλσ(z, k) = ρλσ(z, 0, k). Since Bσ is an orthonormal basis for H2
σ, the action of

f̂ (λ,σ) is given by

f̂ (λ,σ)(φλγ ⊗ eσi ) =
∑
|α|=|γ|

∫
K
ηλγα(k)

∫
Cn

f λ(z, k)(πλ(z)φλα ⊗ σ(k)eσi ) dz dk.

Moreover, if f ∈ L1 ∩ L2(G), then f̂ (λ,σ) becomes a Hilbert–Schmidt operator satis-
fying the Plancherel formula [21]:∫

K

∫
Hn
| f (z, t, k)|2 dz dt dk = (2π)−n

∑
σ∈K̂

dσ

∫
R\{0}
‖ f̂ (λ,σ)‖2HS|λ|

ndλ.
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4. Uniqueness results on the Heisenberg motion group

As in the case of a Heisenberg group, in a natural way, one can define the Weyl
transform on G× := Cn

� K. For (λ,σ) ∈ G′, define the Weyl transform Wλ
σ on L1(G×)

by letting

Wλ
σ(F) =

∫
K

∫
Cn

F(z, k)ρλσ(z, k) dz dk.

Let f , g be two functions on the Heisenberg motion group G. Then the convolution of
f and g is defined by

( f ∗ g)(z, t, k) =
∫

K

∫
Hn

f ((z, t, k)(−w,−s, h−1))g(w, s, h) dw ds dh.

By the definition of the Fourier transform on G, it is easy to see that ̂( f ∗ g)(λ,σ) =
f̂ (λ,σ)ĝ(λ,σ). Recall that f λ(z, k) is the inverse Fourier transform of f in the variable t.
A simple computation shows that

( f ∗ g)λ(z, k) =
∫

K

∫
Cn

f λ(z − kw, kh−1)gλ(w, h)e(iλ/2)Im(z·kw) dw dh. (4-1)

The right-hand expression in Equation (4-1) is called the λ-twisted convolution of the
functions f λ, gλ, and it is denoted by f λ ×λ gλ. Since f̂ (λ,σ) = Wλ

σ( f λ), it is immediate
that Wλ

σ( f λ ×λ gλ) = Wλ
σ( f λ)Wλ

σ(gλ). In a more general way, the λ-twisted convolutions
of F, H ∈ L1 ∩ L2(G×) can be defined by letting

F ×λ H(z, k) =
∫

K

∫
Cn

F(z − kw, kh−1)H(w, h)e(iλ/2)Im(z·kw) dw dh.

For λ = 1, we use the notation F × H instead of F ×1 H and simply call it the twisted
convolution of F and H. A simple observation shows that Wλ

σ(F∗) = Wλ
σ(F)∗, where

F∗(z, k) = F((z, k)−1), and Wλ
σ(F ×λ H) = Wλ

σ(F)Wλ
σ(H). We identify Wσ with the Weyl

transform on L1(G×) whenever λ = 1. Next, we derive the Plancherel formula for Wσ

and the general case follows similarly.

PROPOSITION 4.1. If F ∈ L2(G×), then the following holds:

∑
σ∈K̂

dσ||Wσ(F)||2HS = (2π)n
∫

K

∫
Cn
|F(z, k)|2 dz dk.

PROOF. Since L1 ∩ L2(G×) is dense in L2(G×), it is enough to prove the result for
L1 ∩ L2(G×). For convenience, let φσα,i = φ

λ
α ⊗ eσi and φαβ = (2π)n/2φλαβ whenever λ = 1.

By the Parseval identity,
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‖Wσ(F)φσγ,i‖
2
H2
σ
=
∑
β∈Nn

dσ∑
j=1

|〈Wσ(F)φσγ,i, φ
σ
β,j〉|

2

= (2π)n
∑
β∈Nn

dσ∑
j=1

∣∣∣∣∣ ∑
|α|=|γ|

∫
K
ηγα(k)

∫
Cn

F(z, k)φαβ(z)ϕσji (k) dz dk
∣∣∣∣∣2.

Recall that the matrix coefficient functions φνij of a dν-dimensional unitary irre-
ducible representation (ν,Hν) of K satisfy the identity

dν∑
q=1

( dν∑
j=1

cjφ
ν
qj(k)

dν∑
n=1

anφ
ν
qn(k)
)
=

dν∑
n=1

cnan, (4-2)

where aj, cj ∈ C; 1 ≤ j ≤ dν and k ∈ K. Also, the matrix coefficients of (ν,Hν) satisfy
the orthogonality condition

dν〈φνqj, φ
ν
ln〉 = δqlδjn. (4-3)

Let ηγα represent the (α, γ) th matrix coefficient of μλ|Pλm . In view of Equation (4-2), it
follows that ∑

|γ|=m

∣∣∣∣∣ ∑
|α|=m

cαηγα(k)
∣∣∣∣∣2 = ∑

|α|=m

|cα|2, (4-4)

where k ∈ K and cα ∈ C. Now, by Plancherel theorem for L2(K) and the identity in
Equation (4-4), we infer that

∑
σ∈K̂

dσ||Wσ(F)||2HS = (2π)n
∑
β,γ∈Nn

∫
K

∣∣∣∣∣ ∑
|α|=|γ|

ηγα(k)
∫
Cn

F(z, k)φαβ(z) dz
∣∣∣∣∣2 dk

= (2π)n
∑
α,β∈Nn

∫
K

∣∣∣∣∣
∫
Cn

F(z, k)φαβ(z) dz
∣∣∣∣∣2 dk

= (2π)n
∫

K

∫
Cn
|F(z, k)|2 dz dk. �

4.1. Fourier–Wigner transform. For σ ∈ K̂, define the Fourier–Wigner transform
of f , g ∈ H2

σ on G× by letting

Vg
f (z, k) = 〈ρσ(z, k) f , g〉.

Then Vg
f satisfies the following orthogonality relation.

LEMMA 4.2. For fl, gl ∈ H2
σ, l = 1, 2, the following identity holds:∫

K

∫
Cn

Vg1
f1

(z, k)Vg2
f2

(z, k) dz dk = (2π)nd−1
σ 〈 f1, f2〉〈g1, g2〉.
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PROOF. Since fl, gl ∈ H2
σ, we can express the functions fl, gl as

fl =
∑
γ∈Nn

∑
1≤i≤dσ

f l
γ,iφγ ⊗ eσi

and

gl =
∑
β∈Nn

∑
1≤j≤dσ

gl
β,jφβ ⊗ eσj , l = 1, 2,

where f l
γ,i and gl

β,j are constants. Thus, Vgl
fl

takes the form

Vgl
fl

(z, k) = (2π)n/2
∑
α,β∈Nn

∑
1≤i,j≤dσ

∑
|γ|=|α|

f l
γ,ig

l
β,jηγα(k)φαβ(z)ϕσji (k).

By orthogonality of the functions φαβ and Equation (4-2), it follows that

∫
Cn

Vg1
f1

(z, k)Vg2
f2

(z, k) dz = (2π)n
∑
γ,β∈Nn

[ dσ∑
i,j=1

( f 1
γ,ig

1
β,j)φ

σ
ji (k)

dσ∑
i,j=1

( f 2
γ,ig

2
β,j)φ

σ
ji (k)
]
.

On integrating the above equation with respect to k and using Equation (4-3),

dσ

∫
K

∫
Cn

Vg1
f1

(z, k)Vg2
f2

(z, k) dz dk = (2π)n
( ∑
γ∈Nn

∑
1≤i≤dσ

f 1
γ,i f 2

γ,i

)( ∑
β∈Nn

∑
1≤j≤dσ

g2
β,jg

1
β,j

)

= (2π)n〈 f1, f2〉〈g1, g2〉. �

Note that for f , g ∈ H2
σ, Lemma 4.2 implies that Vg

f ∈ L2(G×). Consider the set
Vσ = span{Vg

f : f , g ∈ H2
σ}. Since Bσ forms an orthonormal basis for H2

σ, it follows
from Lemma 4.2 that

VBσ = {V
ψσβ,j

ψσ
α,i

: ψσα,i,ψ
σ
β,j ∈ Bσ}

forms an orthonormal basis for Vσ. We need to recall the following Peter–Weyl
theorem, see [23].

THEOREM 4.3. Let K̂ be the unitary dual of a compact Lie group K. Then the set
{
√

dσφσij : 1 ≤ i, j ≤ dσ,σ ∈ K̂} is an orthonormal basis for L2(K).

PROPOSITION 4.4. The set VB = {VBσ : σ ∈ K̂} is a complete orthogonal set for
L2(G×). Moreover, L2(G×) =

⊕
σ∈K̂

Vσ.

PROOF. By Lemma 4.2 and Theorem 4.3, it follows that VB is an orthogonal set. For
completeness, suppose F ∈ V⊥B . Then
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〈Wσ(F)ψσα,i,ψ
σ
β,j〉 =

∫
K

∫
Cn

F(z, k)V
ψσβ,j

ψσ
α,i

(z, k) dz dk

= 〈F, V
ψσβ,j

ψσα,i
〉 = 0,

whenever ψσα,i,ψ
σ
β,j ∈ Bσ. Hence, Wσ(F) = 0 for arbitrary σ ∈ K̂. Thus, by Proposition

4.1, we conclude that F = 0. Since VBσ is a complete orthogonal set for Vσ, L2(G×) is
the direct sum of Vσ terms. �

4.2. QUP for the Heisenberg motion group. Let A and B be Lebesgue measurable
subsets of Rn with 0 < m(A)m(B) < ∞. Write τλ = f λ∗ ×λ f λ, where g∗(v) = g(v−1).
Then Wλ

σ(τλ) = f̂ (λ,σ)
∗

f̂ (λ,σ). From Proposition 4.4, we can express

τλ =
⊕
σ∈K̂

τλ,σ, (4-5)

which we call the Fourier–Wigner decomposition, and τλ,σ the Fourier–Wigner
representation.

Those functions in L1(G) that are K-bi-invariant form a commutative convolution
algebra. Therefore, the Fourier transform of a K-bi-invariant integrable function has
rank one. However, these functions differ from the Fourier–Wigner transform in terms
of the Fourier–Wigner representations.

Though the decomposition in Equation (4-5) follows from the Peter–Weyl theorem,
it is finer than the usual Peter–Weyl decomposition of functions on K, which might be
due to the presence of the metaplectic representation. As an effect, even if f ∈ L2(G×)
is K-bi-invariant on G×, it need not fall into the trivial Fourier–Wigner representation.
Thus, the question of uncertainty arises in the sense that if the Weyl transform of each
Fourier–Wigner piece of f ∈ L2(G×) is of finite rank, then f is zero almost everywhere
as long as the nonvanishing set for each Fourier–Wigner piece of f has finite measure.

The following QUP holds for the Heisenberg motion group.

THEOREM 4.5. Let f ∈ L1 ∩ L2(G) be such that each τλ,σ is nonvanishing on the set
Σσ × K.

(i) If Σσ has finite measure, and each Wλ
σ(τλ)(·) = a0〈·, φ ⊗ ψ〉φ ⊗ ψ for some φ ⊗

ψ ∈ H2
σ and a0 ≥ 0, then f = 0 a.e.

(ii) If Σσ = A × B ⊂ Rn × Rn has finite measure, and each Wλ
σ(τλ)(·) =

∑N
j=1 aj〈·, fj〉 fj,

where aj ≥ 0 and { fj = φj ⊗ ψj ∈ H2
σ : 1 ≤ j ≤ N} is an orthonormal set, then

f = 0 a.e.

As a corollary to Theorem 2.1, the following analog holds for the Fourier–Wigner
transform on G×.

PROPOSITION 4.6. Let fj = φj ⊗ hj ∈ H2
σ; j = 1, 2, and F = V f2

f1
. If for each k ∈ K the

set {z ∈ Cn : F(z, k) � 0} has finite Lebesgue measure, then F = 0.
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PROOF. It follows from Equation (3-1) that

F(z, k) = 〈π(z)μ(k) ⊗ σ(k)(φ1 ⊗ h1), φ2 ⊗ h2〉
= 〈π(z)μ(k)φ1, φ2〉〈σ(k)h1, h2〉
= T(μ(k)φ1, φ2)(z)〈σ(k)h1, h2〉,
= X(z, k)〈σ(k)h1, h2〉,

where X(z, k) = T(μ(k)φ1, φ2)(z). If 〈σ(k)h1, h2〉 = 0, then F(., k) = 0. However, if
〈σ(k)h1, h2〉 � 0 for some k ∈ K, then T(μ(k)φ1, φ2) is nonvanishing on a set of finite
Lebesgue measure. Hence, Theorem 2.1 yields that F = 0. �

For proving our main results of Theorems 4.5 and 4.9, we need the following crucial
result.

PROPOSITION 4.7. Let φ1, . . . , φN ∈ L2(Rn) and k ∈ U(n). Define bj(k) = 〈σ(k)ψj,ψj〉,
where ψj ∈ Hσ. For z ∈ Cn, let

ψ(z, k) =
N∑

j=1

bj(k)〈π(z)μ(k)φj, φj〉.

Let E,F be two subsets of Rn of finite Lebesgue measure. If ψ is nonvanishing on
E × F × U(n), then ψ ≡ 0.

PROOF. We prove the proposition in the following two steps.

Step I. In this step, we show that all φj; 1 ≤ j ≤ N are nonvanishing on a set of finite
Lebesgue measure. Let k = e ∈ U(n) be the identity matrix. Then μ(e) = I, the identity
operator on L2(Rn). For z = x + iy ∈ Cn, we introduce the function ψy(x) = ψ(z, e).
Since φj ∈ L2(Rn), except on a set of measure zero, |φj| is finite on Rn. Let us introduce
a function χ on Rn by χ(ξ) = (‖ψ1‖φ1(ξ), . . . , ‖ψN‖φN(ξ)), and hence

Ky(ξ) :=
N∑

j=1

‖ψj‖2φj(ξ + y)φj(ξ) = 〈χ(ξ + y), χ(ξ)〉CN

for almost every ξ ∈ Rn, so that

ψy(x) =
∫
Rn

ei(x·ξ+(1/2)x·y)Ky(ξ) dξ

is the Fourier transform of Ky (up to the factor eix·y/2). By assumption, it follows that
ψy = 0 for all y ∈ Rn \ F . Hence, we infer that Ky = 0. Thus, we have shown that

〈χ(ξ + y), χ(ξ)〉CN = 0

for almost every ξ ∈ Rn and y ∈ Rn \ F .
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Assume toward a contradiction that S := {ζ ∈ Rn : χ(ζ) � 0} has infinite Lebesgue
measure. Since F has finite measure, without loss of generality, there exists s1 ∈ S ∩
(Rn \ F ). Note that χ(s1) � 0 and

〈χ(ξ + s1), χ(ξ)〉CN = 0.

Next, take s2 ∈ S ∩ (Rn \ (F + s1)), then χ(s2) � 0, and since s2 − s1 � F , we have
that 〈χ(ξ + s2 − s1), χ(ξ)〉CN = 0. In particular, 〈χ(s2), χ(s1)〉CN = 0. In this way, after
m steps, we get that {sj : 1 ≤ j ≤ m} such that χ(sj) � 0 and

〈χ(ξ + sj − sj′), χ(ξ)〉CN = 0 for 1 ≤ j � j′ ≤ m. (4-6)

If we consider sm+1 ∈ S ∩ (Rn \⋃m
j=1(F + sj)), then χ(sm+1) � 0 and for j ≤ m,

〈χ(ξ + sm+1 − sj), χ(ξ)〉CN = 0. (4-7)

In particular, taking ξ = sj′ in Equation (4-6) and ξ = sj in Equation (4-7),

〈χ(sj), χ(sj′)〉CN = 0 for 1 ≤ j � j′ ≤ m + 1.

For m = N, we obtain N + 1 nonzero mutually orthogonal vectors in CN , which is a
contradiction. It follows that S must have finite measure and hence all φj terms are
nonvanishing on S.

Step II. From Step I, it follows that Ky is nonvanishing on a set of finite Lebesgue
measure for all y ∈ Rn. Since ψy is nonvanishing on E, by Benedicks’ theorem on Rn,
we get that Ky = 0 for all y ∈ Rn. Hence, ψ(x + iy, e) = 0 for all x, y ∈ Rn.

Let k ∈ U(n) and for z = x + iy ∈ Cn, consider the function ψy,k(x) = ψ(z, k). If we
write

Hy,k(ξ) :=
N∑

j=1

bj(k)(μ(k)φj)(ξ + y)φj(ξ) for almost every ξ ∈ Rn,

then ψy,k(x) =
∫
Rn ei(x·ξ+1/2x·y)Hy,k(ξ) dξ is the Fourier transform of Hy,k up to the factor

eix·(y/2). Recall that each φj is nonvanishing on a set of finite Lebesgue measure on
R

n, and Hy,k is nonvanishing on a set of finite measure for all y ∈ Rn. Since ψy,k is
nonvanishing on E, by Benedicks’ theorem, we get that Hy,k = 0 for all y ∈ Rn. Hence,
ψ(x + iy, k) = 0 for all x, y ∈ Rn and k ∈ U(n). �

REMARK 4.8. Instead of the rectangle E × F in R2n, if we consider a set E of finite
Lebesgue measure in R2n, then the projection of E on Rn need not be a set of finite
measure. Hence, the above proof of Proposition 4.7 does not work.

4.3. QUP for the Weyl transform. Let E and F be Lebesgue measurable sets in Rn

satisfying the condition 0 < m(E)m(F ) < ∞. We write Σ′ = E × F and F∗(v) = F(v−1).
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Recall from Proposition 4.4 that every τ ∈ L2(G×) can be expressed as τ =
⊕

σ∈K̂ τσ.
Then the following QUP holds for the Weyl transform on the Heisenberg motion group.

THEOREM 4.9. Let f ∈ L1 ∩ L2(G×) and let τ̄ = f ∗ × f be such that each τσ is
nonvanishing on the set of the type Σ′ × K. If for each σ ∈ K̂, the Weyl transform of τ̄
has the form

Wσ(τ)(·) =
N∑

j=1

aj〈·, fj〉 fj,

where aj ≥ 0 and BN
σ = { fj = φj ⊗ ψj ∈ H2

σ : 1 ≤ j ≤ N} is an orthonormal set, then
f = 0 a.e.

PROOF. By hypothesis, Wσ(τ̄) = Wσ( f )∗Wσ( f ) is a positive operator which satisfies
Wσ(τ̄) fj = aj fj with aj ≥ 0 and fj = φj ⊗ ψj. Now, for f , g ∈ H2

σ, it is immediate that

〈Wσ(τ̄) f , g〉 =
N∑

j=1

aj〈 f , fj〉〈 fj, g〉

= (2π)−n
N∑

j=1

aj

∫
K

∫
Cn

Vg
f (z, k)V fj

fj
(z, k) dz dk. (4-8)

In view of the decomposition τ =
⊕

σ∈K̂ τσ and by the definition of Wσ(τ̄), we can
write

〈Wσ(τ̄) f , g〉 =
∫

K

∫
Cn
τ̄(z, k)〈ρ1

σ(z, k) f , g〉 dz dk

=

∫
K

∫
Cn
τσ(z, k)Vg

f (z, k) dz dk. (4-9)

Hence, by comparing Equation (4-8) with Equation (4-9), it follows that

τσ =

N∑
j=1

Vhj

hj
, (4-10)

where hj = (2π)−n/2 √aj fj ∈ H2
σ. Now, let hj = φj ⊗ ψj for some φj ∈ L2(Rn) and

ψj ∈ Hσ. Then from Equation (4-10), we have that

τσ(z, k) =
N∑

j=1

〈ρσ(z, k)hj, hj〉 =
N∑

j=1

bj(k)〈π(z)μ(k)φj, φj〉,

where bj(k) = 〈σ(k)ψj,ψj〉. Since τσ is nonvanishing on a set of finite Lebesgue
measure in the Cn-variable, by Proposition 4.7, it follows that τσ = 0, whenever σ ∈ K̂.
Thus, Proposition 4.1 yields that f = 0 a.e. �
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REMARK 4.10. (i) Observe that in Theorem 4.9, if we assume that f is nonvanishing
on the set E × F × K so that 0 < m(E)m(F ) < ∞, then τ̄ = f ∗ × f is nonvanishing
on the set E × F of finite measure, but from the decomposition τ =

⊕
σ∈K̂ τσ, each

Fourier–Wigner piece τσ need not be nonvanishing on a set of finite measure.
In the case above, the proof of Theorem 4.9 does not work. Moreover, if each τσ is
nonvanishing on a set of finite measure, then τ may or may not be nonvanishing on
a set of finite measure. Thus, the hypothesis of Theorem 4.9 is different as compared
with [16, Theorem 2.2], but still we have that f = 0 a.e.

(ii) If τ ∈ L2(G×) is K-bi-invariant and nonvanishing on a set of finite measure, then
τ need not be identical with τσ for any σ ∈ K̂. This fact is verified by considering the
example of the one-dimensional Heisenberg motion group H1

� U(1) in the article by
Ghosh and Srivastava [8].

4.4. Proof of Theorem 4.5.

PROOF. (i) For f ∈ L1 ∩ L2(G), since τλ = f λ∗ × f λ and it is given that Wλ
σ(τλ) has

rank one, it is enough to show that f λ = 0. Consider the case when λ = 1, and for
simplicity, we use the notation τ and τσ instead of τ1 and τ1,σ. By hypothesis, we
have that Wσ(τ̄)h = 〈h, f1〉 f2 for all h ∈ H2

σ, where f1 = φ ⊗ ψ and f2 = a0 f1. Hence,
for g, h ∈ H2

σ, Lemma 4.2 yields

〈Wσ(τ̄)h, g〉 = 〈h, f1〉〈 f2, g〉

= (2π)−n
∫

K

∫
Cn

Vg
h (z, k)V f2

f1
(z, k) dz dk. (4-11)

Let τ =
⊕
σ∈K̂

τσ, where τσ ∈ VBσ . Then by definition of Wσ(τ̄), it follows that

〈Wσ(τ̄)h, g〉 =
∫

K

∫
Cn
τσ(z, k)Vg

h (z, k) dz dk. (4-12)

Now, by comparing Equation (4-11) with Equation (4-12) in view of Proposition 4.4,
we infer that τσ = (2π)−nV f2

f1
. Since each τσ is nonvanishing on Σσ × K, it follows from

Proposition 4.6 that τσ = 0 for all σ ∈ K̂. That is, τ = 0 and hence f 1 = 0. Similarly,
we can show that f λ = 0 for all λ ∈ R∗. Thus, we conclude that f = 0 a.e.

(ii) For λ = 1, it follows from Theorem 4.9 that f 1 = 0. Similarly, it can be shown
that f λ = 0 for all λ ∈ R∗. Thus, we conclude that f = 0 a.e. �
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