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THE MINIMAX BOOKIE:
THE TWO-HORSE CASE
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Abstract

A bookmaker takes bets on a two-horse race, attempting to minimise expected loss over
all possible outcomes of the race. Profits are controlled by manipulation of customers’
betting behaviour, which is assumed to be determined uniquely by the price quoted for
each horse. We consider different strategies for choosing these prices as bets accumulate,
and examine the penalty incurred by the use of a strategy other than the optimal one, in
the general case where the distribution of the customers’betting probabilities is unknown.
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1. Introduction

A gambler enters a bookie’s (bookmaker’s) shop seeking to place a wager on a horse race
for which there are only two possible outcomes, which we will label A (horse A wins) and B

(horse B wins). Let p denote the gambler’s probability that outcome A will occur. The bookie
quotes odds of O1 against outcome A and of O2 against outcome B. This means that a winning
wager of one unit on outcome A produces a return of O1 +1 while a winning wager of one unit
on outcome B produces a return of O2 + 1. Hence, a wager on outcome A will be attractive to
the gambler if

p(O1 + 1) ≥ 1

or, equivalently,

p ≥ 1

O1 + 1
= θ1.

Similarly, a wager on outcome B will be attractive to the gambler if

1 − p ≥ 1

O2 + 1
= θ2

or, equivalently,
p ≤ 1 − θ2.

The quantities θ1 and θ2 are referred to as the bookie’s quoted probabilities for outcomes A

and B, respectively. Hence, the strategy for an individual gambler is simple: he places a wager
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on any outcome for which his probability exceeds that quoted by the bookie. In this paper we
focus on strategies that the bookie might follow.

We idealise the bookie’s shop by assuming that the bookie sells two types of tickets: one
which guarantees a return of one unit should outcome A occur, and costs θ1; and one which
guarantees a return of one unit should outcome B occur, and costs θ2. We also assume that the
bookie knows, before accepting wagers, that N customers will consider a wager on the horse
race and that their probabilities, p1, p2, . . . , pN , of outcome A occurring behave like a random
sample from a probability distribution whose cumulative distribution function, F , is known to
the bookie. Finally, we assume that customers can buy at most one of each type of ticket and
that the bookie is free to alter the quoted probabilities after each customer leaves. Let θl

1 be the
largest value of θ for which F(θ) = 0 and let θr

1 be the smallest value of θ for which F(θ) = 1.
We restrict the bookie to use quoted probabilities in the range [θl

1 , θr
1 ] for outcome A and in

the range [θl
2 , θr

2 ] for outcome B, where θl
2 = 1 − θr

1 and θr
2 = 1 − θl

1 .
At any particular time the bookie can calculate the state of the book for outcome A, which is

defined as the profit accruing to the bookie if he stops accepting bets at that time and outcome
A eventually occurs. Let An and Bn respectively denote the states of the book for outcomes A

and B when n of the N customers remain. Clearly, the bookie would like A0 and B0 to be large.
In Section 2 we consider a strategy which seeks to set quoted probabilities so as to maximise
E[min{A0, B0} | AN = BN = 0].

2. Optimal strategy (dynamic programming)

For i, j ∈ {0, 1}, let aij(θ1, θ2) denote the probability that a customer, faced with quoted
probabilities θ1 and θ2 on outcomes A and B, respectively, chooses to purchase i bets on A

and j bets on B. For 0 ≤ n ≤ N , define Rn(a, b) to be the maximum value achievable for
E[min{A0, B0} | An = a, Bn = b].
Lemma 1. We have

Rn(a, b) = a + b

2
+ Pn(d)

where d = a − b, P0(d) = −|d|/2, and, for n ≥ 1,

Pn(d) = Pn−1(d) + max
θ1,θ2

{a10(θ1, θ2)[θ1 − 1
2 + Pn−1(d − 1) − Pn−1(d)]

+ a01(θ1, θ2)[θ2 − 1
2 + Pn−1(d + 1) − Pn−1(d)]

+ a11(θ1, θ2)(θ1 + θ2 − 1)}.

We denote by θ̂ n
1 (d) and θ̂ n

2 (d) the respective values of θ1 and θ2 for which the maximum is
obtained.

Proof (by induction). We prove the lemma true for n = k + 1, given that it holds for n = k.
To prove that

Rk+1(a, b) = a + b

2
+ Pk+1(d),

we must maximise

Rk(a − (1 − θ1), b + θ1)a10(θ1, θ2) + Rk(a + θ2, b − (1 − θ2))a01(θ1, θ2)

+ Rk(a, b)a00(θ1, θ2) + Rk(a − (1 − θ1 − θ2), b − (1 − θ1 − θ2))a11(θ1, θ2).
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By substituting for Rk and regrouping, we find that this may be written as

a + b

2
[a10(θ1, θ2) + a01(θ1, θ2) + a00(θ1, θ2) + a11(θ1, θ2)]

+
(

θ1 − 1

2

)
[a10(θ1, θ2) + a11(θ1, θ2)] +

(
θ2 − 1

2

)
[a01(θ1, θ2) + a11(θ1, θ2)]

+ Pk(d)[a00(θ1, θ2) + a11(θ1, θ2)] + Pk(d − 1)a10(θ1, θ2) + Pk(d + 1)a01(θ1, θ2)

= a + b

2
+

(
θ1 − 1

2
+ Pk(d − 1)

)
a10(θ1, θ2) +

(
θ2 − 1

2
+ Pk(d + 1)

)
a01(θ1, θ2)

+ (θ1 + θ2 − 1)a11(θ1, θ2) + Pk(d)[1 − a10(θ1, θ2) − a01(θ1, θ2)].
Reorganising, we find this to be equal to

a + b

2
+ Pk(d) +

(
θ1 − 1

2
+ Pk(d − 1) − Pk(d)

)
a10(θ1, θ2)

+
(

θ2 − 1

2
+ Pk(d + 1) − Pk(d)

)
a01(θ1, θ2) + (θ1 + θ2 − 1)a11(θ1, θ2).

Thus, our expression for Rk+1(a, b) becomes

Rk+1(a, b) = a + b

2
+ Pk(d) + max

θ1,θ2

{[
θ1 − 1

2
+ Pk(d − 1) − Pk(d)

]
a10(θ1, θ2)

+
[
θ2 − 1

2
+ Pk(d + 1) − Pk(d)

]
a01(θ1, θ2)

+ (θ1 + θ2 − 1)a11(θ1, θ2)

}

= a + b

2
+ Pk+1(d).

We have proved the lemma to hold for n = k + 1 if it does for n = k. It is true for n = 0
since, by definition, R0(a, b) = min{a, b} = (a + b)/2 + P0(d), where P0(d) = −|d|/2.
Thus, it is true for all n ∈ N, the set of natural numbers.

Lemma 2. θ̂ n
1 (d) + θ̂ n

2 (d) ≥ 1.

Proof. By Lemma 1, the values θ̂ n
1 (d) and θ̂ n

2 (d) are chosen to maximise

(θ1 − 1
2 + G1)a10(θ1, θ2) + (θ2 − 1

2 + G2)a01(θ1, θ2) + (θ1 + θ2 − 1)a11(θ1, θ2),

where
G1 = Pn−1(d − 1) − Pn−1(d), G2 = Pn−1(d + 1) − Pn−1(d).

Let θ1 + θ2 ≥ 1 and recall that p denotes the customer’s probability of horse A winning the
race; the customer’s probability of horse B winning is thus 1 − p. The customer will bet only
on horse A if p > θ1 and 1 − p < θ2 or, equivalently, p > 1 − θ2. Now, 1 − θ2 ≤ θ1, so
the condition becomes simply p > θ1. This occurs with probability a10(θ1, θ2) = 1 − F(θ1).
Similarly, the customer will bet only on horse B if p < θ1 and 1 − p > θ2 or, equivalently,
p < 1 − θ2. Again, since 1 − θ2 ≤ θ1, this means that the necessary condition is p < 1 − θ2.
This occurs with probability a01(θ1, θ2) = F(1 − θ2).
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If, however, we restrict ourselves to having θ1 + θ2 ≥ 1, the customer cannot bet on both
horses, for the following reason: in order for the customer to bet on both horses, we must have
p > θ1 and 1 − p > θ2, i.e. p < 1 − θ2 ⇒ θ1 < 1 − θ2 ⇒ θ1 + θ2 < 1. Our only remaining
choice for the customer, therefore, is not to bet; the probability of this is

a00(θ1, θ2) = 1 − [1 − F(θ1) + F(1 − θ2)] = F(θ1) − F(1 − θ2).

The objective function is now

(θ1 − 1
2 + G1)[1 − F(θ1)] + (θ2 − 1

2 + G2)F (1 − θ2).

Next, let us consider the case where θ1 + θ2 = 1 − ε with ε > 0, so θ1 + θ2 < 1. Again,
the customer will bet only on horse A if p > θ1 and 1 − p < θ2. Now, 1 − θ2 > θ1, so the
condition becomes simply p > 1−θ2. This occurs with probability a10(θ1, θ2) = 1−F(1−θ2).
Similarly, the customer will bet only on horse B if p < θ1 and 1 − p > θ2 or, equivalently,
p < 1 − θ2. Again, since 1 − θ2 > θ1, the necessary condition is p < θ1. This occurs with
probability a01(θ1, θ2) = F(θ1).

The customer will bet on both horses if p > θ1 and 1 − p > θ2, i.e. p < 1 − θ2, so we have
a11(θ1, θ2) = F(1 − θ2) − F(θ1). The probabilities of these outcomes sum to 1; therefore,
they are the only outcomes possible in this case. We may now express the objective function
representing the bookie’s profit in this case as follows:

(θ1 − 1
2 + G1)[1 − F(1 − θ2)] + (θ2 − 1

2 + G2)F (θ1) + (θ1 + θ2 − 1)[F(1 − θ2) − F(θ1)]
= (1 − θ2 − 1

2 + G1)[1 − F(1 − θ2)] + (1 − θ1 − 1
2 + G2)F (θ1) − ε.

This is less than

(1 − θ2 − 1
2 + G1)[1 − F(1 − θ2)] + (1 − θ1 − 1

2 + G2)F (θ1).

Since (1 − θ1) + (1 − θ2) > 1, this is less than or equal to

max
θ1,θ2

{(θ1 − 1
2 + G1)[1 − F(θ1)] + (θ2 − 1

2 + G2)F (1 − θ2)},

where the maximum is taken over values of θ1 and θ2 such that θ1 + θ2 ≥ 1.

3. Alternative strategy

We now introduce an alternative strategy for determining the quoted probabilities, which
aims to maximise

min{E[A0 | AN = 0, BN = 0], E[B0 | AN = 0, BN = 0]}.
This greatly reduces the amount of calculation involved in the algorithm.

For 0 ≤ n ≤ N , define Sn(a, b) to be the maximum value achievable for

min{E[A0 | An = a, Bn = b], E[B0 | An = a, Bn = b]},
and let {θ1i (d/n) : 1 ≤ i ≤ n} and {θ2i (d/n) : 1 ≤ i ≤ n} denote the optimal sets of quoted
probabilities. We now prove a number of lemmas relating to this strategy, culminating in
Lemma 6, which gives the most concise form of the algorithm for maximum profit.
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Definition 1. The function F(θ) is said to be of concave character if

(a) the functions θ [1 − F(θ)] and (θ − 1)[1 − F(θ)] are concave over the interval [θ∗
1 , θr

1 ]
and

(b) the functions θF (1 − θ) and (θ − 1)F (1 − θ) are concave over the interval [θ∗
2 , θr

2 ],
where θ∗

1 is the maximum value that θ1 takes, and is the value of θ that maximises θ [1−F(θ)],
and θ∗

2 is the maximum value that θ2 takes, and is the value of θ that maximises θF (1 − θ), as
we will prove in Lemma 5.

In the remainder of the paper we shall assume that F(θ) is of concave character.

Lemma 3. The maximum value Sn(a, b) is attained by choosing θ1 and θ2 to maximise
g(θ1, θ2; d/n), where

g(θ1, θ2; x) = a10(θ1, θ2)θ1 + a01(θ1, θ2)θ2 + a11(θ1, θ2)(θ1 + θ2 − 1)

+ min

{
x

2
− a10(θ1, θ2), −x

2
− a01(θ1, θ2)

}
.

Furthermore, we can write

Sn(a, b) = a + b

2
+ Qn(d),

where d = a − b and Qn(d) = nG(d/n) with G(x) = g(θ̃1(x), θ̃2(x); x), θ̃1(x) and θ̃2(x)

being chosen to maximise g(θ1, θ2; x).

Proof. Barry and Hartigan (1996) proved that if F is of concave character then this alternative
approach produces quoted probabilities which are independent of i, the number of bets on A

purchased. Observe that we can write

E[A0 | An = a, Bn = b] = a+n[a10(θ1, θ2)(θ1−1)+a01(θ1, θ2)θ2+a11(θ1, θ2)(θ1+θ2−1)]

and

E[B0 | An = a, Bn = b] = b+n[a10(θ1, θ2)θ1+a01(θ1, θ2)(θ2−1)+a11(θ1, θ2)(θ1+θ2−1)].

Hence, we may write min{E[A0 | An = a, Bn = b], E[B0 | An = a, Bn = b]} as

n[a10(θ1, θ2)θ1 + a01(θ1, θ2)θ2 + a11(θ1, θ2)(θ1 + θ2 − 1)]
+ min{a − na10(θ1, θ2), b − na01(θ1, θ2)},

which may be written as
a + b

2
+ ng

(
θ1, θ2; d

n

)
,

thus establishing the result.

Lemma 4. θ̃1(x) + θ̃2(x) ≥ 1, where the values θ̃1(x) and θ̃2(x) are chosen to maximise
g(θ1, θ2; x).
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Proof. As previously shown in the dynamic programming case, if θ1 + θ2 ≥ 1 then
a10(θ1, θ2) = 1 − F(θ1), a01(θ1, θ2) = F(1 − θ2), and a11(θ1, θ2) = 0; thus, in this case,
we must maximise

min{a + n([1 − F(θ1)](θ1 − 1) + F(1 − θ2)θ2), b + n([1 − F(θ1)]θ1 + F(1 − θ2)(θ2 − 1))},
which we may rewrite as

n

(
[1 − F(θ1)]θ1 + F(1 − θ2)θ2 + min

{
a

n
− [1 − F(θ1)], b

n
− F(1 − θ2)

})
.

Next, consider values of θ1 and θ2 which satisfy θ1 + θ2 < 1, i.e. θ1 + θ2 = 1 − ε with
ε > 0. In this case, as before, a10(θ1, θ2) = 1 − F(1 − θ2), a01(θ1, θ2) = F(θ1), and
a11(θ1, θ2) = F(1 − θ2) − F(θ1). Hence, the objective function becomes

min{a + n([1 − F(1 − θ2)](θ1 − 1) + F(θ1)θ2 + [F(1 − θ2) − F(θ1)](θ1 + θ2 − 1)),

b + n([1 − F(1 − θ2)]θ1 + F(θ1)(θ2 − 1) + [F(1 − θ2) − F(θ1)](θ1 + θ2 − 1))}
or, alternatively,

n

(
[1 − F(1 − θ2)]θ1 + F(θ1)θ2 + [F(1 − θ2) − F(θ1)](θ1 + θ2 − 1)

+ min

{
a

n
− [1 − F(1 − θ2)], b

n
− F(θ1)

})
.

We may rewrite this as

n

(
(1 − θ2)[1 − F(1 − θ2)] + (1 − θ1)F (θ1) + min

{
a

n
− [1 − F(1 − θ2)], b

n
− F(θ1)

}
− ε

)
,

which is strictly less than

n

(
u1[1 − F(u1)] + u2F(1 − u2) + min

{
a

n
− [1 − F(u1)], b

n
− F(1 − u2)

})
,

where we let u1 = 1 − θ2 and u2 = 1 − θ1. We find that u1 + u2 = 2 − θ1 − θ2 ≥ 1, so this, in
turn, is less than or equal to the maximum over the set where θ1 + θ2 ≥ 1; hence, θ1 + θ2 ≥ 1
is optimal.

Lemma 5. Let θ∗
1 be the value of θ for which θ [1−F(θ)] is a maximum and let θ∗

2 be the value
of θ for which θF (1 − θ) is a maximum. Then θ1 ≥ θ∗

1 and θ2 ≥ θ∗
2 .

Proof. As previously described, we must maximise the minimum of

E[A0 | An = a, Bn = b] = a +
n∑

i=1

{a10(θ1i , θ2i )(θ1i − 1) + a01(θ1i , θ2i )θ2i

+ a11(θ1i , θ2i )(θ1i + θ2i − 1)}
and

E[B0 | An = a, Bn = b] = b +
n∑

i=1

{a10(θ1i , θ2i )θ1i + a01(θ1i , θ2i )(θ2i − 1)

+ a11(θ1i , θ2i )(θ1i + θ2i − 1)}.
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Using Lemma 3 and the probabilities derived in consequence of Lemma 4, we may rewrite
this as the minimum of

E[A0 | An = a, Bn = b] = a + n([1 − F(θ1)](θ1 − 1) + F(1 − θ2)θ2)

and
E[B0 | An = a, Bn = b] = b + n([1 − F(θ1)]θ1 + F(1 − θ2)(θ2 − 1)),

which minimum may be rewritten in turn as

n([1 − F(θ1)]θ1 + F(1 − θ2)θ2) + min
θ1,θ2

{a − n[1 − F(θ1)], b − nF(1 − θ2)}.

The first term is maximised for θ1 = θ∗
1 and the second term is maximised for θ2 = θ∗

2 . Of the
two terms within braces, the first is an increasing function of θ1 and the second is an increasing
function of θ2. This shows that we want the values of θ1 and θ2 never to fall below θ∗

1 and θ∗
2 .

As they are probabilities, neither may be greater than 1. This completes the proof.

Lemma 6. Define xr = 1 − F(θ∗
1 ) and xl = −F(1 − θ∗

2 ). The following statements then
hold.

(a) For x ≥ xr, we have θ̃1(x) = θ∗
1 , θ̃2(x) = 1, and G(x) = −x/2 + θ∗

1 [1 − F(θ∗
1 )].

(b) For x ≤ xl, we have θ̃1(x) = 1, θ̃2(x) = θ∗
2 , and G(x) = x/2 + θ∗

1 F(1 − θ∗
2 ).

(c) For xl < x < xr, θ̃1(x) and θ̃2(x) are chosen to maximise

g(θ1, θ2; x) = (θ1 − 1
2 )[1 − F(θ1)] + (θ2 − 1

2 )F (1 − θ2).

Hence,
G(x) = (θ̃1(x) − 1

2 )[1 − F(θ̃1(x))] + (θ̃2(x) − 1
2 )F (1 − θ̃2(x))

with
x = 1 − F(θ̃1(x)) − F(1 − θ̃2(x)).

Proof. (a) We have x = d/n > 1 − F(θ∗
1 ) or, equivalently, d > n[1 − F(θ∗

1 )]. We must
maximise

Qn(d) = max
θ1,θ2

{
n[1−F(θ1)]θ1 +nF(1−θ2)θ2 +min

{
d

2
−n[1−F(θ1)], −d

2
−nF(1−θ2)

}}
.

Now, by Lemma 5, θ∗
1 is the minimum value which θ1 may take, so 1 − F(θ∗

1 ) ≥ 1 − F(θ1)

and
d > n[1 − F(θ∗

1 )] ≥ n[1 − F(θ1)] > n[1 − F(θ1) − F(1 − θ2)].
By inspection, we find that

min

{
d

2
− n[1 − F(θ1)], −d

2
− nF(1 − θ2)

}
= −d

2
− nF(1 − θ2)

if and only if d ≥ n[1 −F(θ1)−F(1 − θ2)], as is the case here. Thus, we must now maximise

Qn(d) = max
θ1,θ2

{
n[1 − F(θ1)]θ1 + nF(1 − θ2)θ2 − d

2
− nF(1 − θ2)

}

= max
θ1,θ2

{
n[1 − F(θ1)]θ1 + nF(1 − θ2)(θ2 − 1) − d

2

}
.
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The maximum occurs for θ1 = θ∗
1 and θ2 = 1, and we obtain

Qn(d) = −d

2
+ nθ∗

1 [1 − F(θ∗
1 )] = n

{
− d

2n
+ θ∗

1 [1 − F(θ∗
1 )]

}
= nG(x),

where G(x) = −x/2 + θ∗
1 [1 − F(θ∗

1 )].
(b) We have x = d/n < −F(1 − θ∗

2 ) or, equivalently, d < n[−F(1 − θ∗
2 )]. Again, we must

maximise

Qn(d) = max
θ1,θ2

{
n[1−F(θ1)]θ1 +nF(1−θ2)θ2 +min

{
d

2
−n[1−F(θ1)], −d

2
−nF(1−θ2)

}}
.

By Lemma 5, θ∗
2 is the minimum value which θ2 may take, so −F(1 − θ∗

2 ) ≤ −F(1 − θ2) and

d < n[−F(1 − θ∗
2 )] ≤ n[−F(1 − θ2)] < n[1 − F(θ1) − F(1 − θ2)].

By inspection, we find that

min

{
d

2
− n[1 − F(θ1)], −d

2
− nF(1 − θ2)

}
= d

2
− n[1 − F(θ1)]

if and only if d ≤ n[1 − F(θ1) − F(1 − θ2)], as is the case here. Thus, in this case we must
now maximise

Qn(d) = max
θ1,θ2

{
n[1 − F(θ1)]θ1 + nF(1 − θ2)θ2 + d

2
− n[1 − F(θ1)]

}

= max
θ1,θ2

{
n[1 − F(θ1)](θ1 − 1) + nF(1 − θ2)θ2 + d

2

}
.

The maximum occurs for θ1 = 1 and θ2 = θ∗
2 , and we obtain

Qn(d) = d

2
+ nθ∗

2 [F(1 − θ∗
2 )] = n

{
d

2n
+ θ∗

2 [F(1 − θ∗
2 )]

}
= nG(x),

where G(x) = x/2 + θ∗
2 [F(1 − θ∗

2 )].
(c) As (a) corresponds to the case d > n[1 − F(θ∗

1 )] and (b) corresponds to the case d <

n[−F(1 − θ∗
2 )], we now have −nF(1 − θ∗

2 ) ≤ d ≤ n[1 − F(θ∗
1 )]. We may write the objective

function to be maximised as follows:

min

{
d

2
−n(1− θ1)[1−F(θ1)]+nθ2F(1− θ2), −d

2
+nθ1[1−F(θ1)]−n(1− θ2)F (1− θ2)

}
.

This is a minimum of two functions, the first of which is an increasing function of θ1 and a
decreasing function of θ2 for θ2 ≥ θ∗

2 , and the second of which is an increasing function of θ2
and a decreasing function of θ1 for θ1 ≥ θ∗

1 . Hence, the maximum occurs at values of θ1 and
θ2 for which the two functions are equal.

We may express θ2 in terms of θ1 because, by equating the two functions, we find that

d

n
= 1 − F(θ1) − F(1 − θ2) �⇒ θ2 = 1 − F−1

[
1 − F(θ1) − d

n

]
,
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which gives us

Qn(d) = max
θ

{
d

2
− n(1 − θ)[1 − F(θ)] + n

[
1 − F−1

(
1 − F(θ) − d

n

)][
1 − F(θ) − d

n

]}
.

We may rewrite this as Qn(d) = nG(d/n), where

G

(
d

n

)
= max

θ

{
d

2n
− (1 − θ)[1 − F(θ)] +

[
1 − F−1

(
1 − F(θ) − d

n

)][
1 − F(θ) − d

n

]}
.

This completes the proof.

4. The ‘changing expectations’ strategy

In this section we use the algorithm associated with the strategy introduced and examined
in the previous section. We now calculate the quoted probabilities based on the expectation
that they will remain fixed for all remaining customers, thus reducing the complexity of the
algorithm; in reality, we will recalculate them after each customer. We then place a bound on
the difference between profits obtained using the different methods.

Let R̂n(a, b) be the value of E[min{A0, B0} | An = a, Bn = b] achieved if the bookie
quotes probabilities θ̃1(d/n) and θ̃2(d/n) instead of the optimal values θ̂ n

1 (d) and θ̂ n
2 (d). Then

clearly, by definition,
R̂n(a, b) ≤ Rn(a, b).

How much worse (less) than Rn(a, b) is R̂n(a, b)? Using the formula derived in Lemma 1, we
can write

R̂n(a, b) = a + b

2
+ P̂n(d),

where P̂0(d) = −|d|/2 and, for n ≥ 1,

P̂n(d) = P̂n−1(d) +
[

1 − F

(
θ̃1

(
d

n

))][
θ̃1

(
d

n

)
− 1

2
+ P̂n−1(d − 1) − P̂n−1(d)

]

+ F

(
1 − θ̃2

(
d

n

))[
θ̃2

(
d

n

)
− 1

2
+ P̂n−1(d + 1) − P̂n−1(d)

]
.

Theorem 1. Assume that F is of concave character. Define γ0 = 0 and, for n ≥ 1,

γn = γn−1 + max
d

{Vn(d)},

where
Vn(d) = Qn(d) − Qn−1(d)

−
[

1 − F

(
θ̃1

(
d

n

))][
θ̃1

(
d

n

)
− 1

2
+ Qn−1(d − 1) − Qn−1(d)

]

− F

(
1 − θ̃2

(
d

n

))[
θ̃2

(
d

n

)
− 1

2
+ Qn−1(d + 1) − Qn−1(d)

]
.

Then
Qn(d) − γn ≤ P̂n(d) ≤ Pn(d) ≤ Qn(d)

for all d.
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Proof. It follows from Theorem 1 of Barry and Hartigan (1996) that Pn(d) ≤ Qn(d).
It remains to prove that P̂n(d) ≥ Qn(d) − γn.

The theorem is true for n = 0 since Q0(d) = P̂0(d) = −|d|/2. We now proceed by
induction. Assume that

P̂n−1(d) ≥ Qn−1(d) − γn−1

for all d. Then, since the function

x +
[

1 − F

(
θ̃1

(
d

n

))][
θ̃1

(
d

n

)
− 1

2
+ y − x

]
+ F

(
1 − θ̃2

(
d

n

))[
θ̃2

(
d

n

)
− 1

2
+ z − x

]

is an increasing function of y and z, and an increasing function of x provided that F(θ̃1(d/n))−
F(1 − θ̃2(d/n)) ≥ 0 (which is true by Lemma 4), we have

P̂n(d) ≥ Qn−1(d) − γn−1 +
[

1 − F

(
θ̃1

(
d

n

))][
θ̃1

(
d

n

)
− 1

2
+ Qn−1(d − 1) − Qn−1(d)

]

+ F

(
1 − θ̃2

(
d

n

))[
θ̃2

(
d

n

)
− 1

2
+ Qn−1(d + 1) − Qn−1(d)

]

≥ Qn(d) − γn,

provided that γn ≥ γn−1 + Vn(d), which is true by definition. The result follows by induction.

Lemma 7. Assume that the function G(x) has a first derivative, denoted G′(x), and that there
exists a constant M < ∞ such that

|G′(x) − G′(y)| ≤ M|x − y|
for all x and y. Then the sequence {γn} converges to ∞ at the same rate as log n.

Proof. Recall that we can write Qn(d) = nG(d/n) and that, hence,

Vn(d) = nG

(
d

n

)
− (n − 1)G

(
d

n − 1

)

−
[

1 − F

(
θ̃1

(
d

n

))][
θ̃1

(
d

n

)
− 1

2
+ (n − 1)

(
G

(
d − 1

n − 1

)
− G

(
d

n − 1

))]

− F

(
1 − θ̃2

(
d

n

))[
θ̃2

(
d

n

)
− 1

2
+ (n − 1)

(
G

(
d + 1

n − 1

)
− G

(
d

n − 1

))]
.

The theorem will follow if we can prove that maxd{Vn(d)} is of order 1/n for sufficiently
large n.

We must consider a number of cases.
Case (a): d/n ≥ xr. Here θ̃1(d/n) = θ∗

1 and θ̃2(d/n) = 1. Hence,

Vn(d) = nG

(
d

n

)
− (n − 1)G

(
d

n − 1

)

− [1 − F(θ∗
1 )]

[
θ∗

1 − 1

2
+ (n − 1)

(
G

(
d − 1

n − 1

)
− G

(
d

n − 1

))]
.

Since d/(n − 1) ≥ d/n ≥ xr, we have

G

(
d

n

)
= − d

2n
+ θ∗

1 [1 − F(θ∗
1 )]
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and

G

(
d

n − 1

)
= − d

2(n − 1)
+ θ∗

1 [1 − F(θ∗
1 )].

Hence,

Vn(d) = [1 − F(θ∗
1 )]

[
1

2
− (n − 1)

(
G

(
d − 1

n − 1

)
− G

(
d

n − 1

))]

= [1 − F(θ∗
1 )]

[
1

2
+ G′(a)

]

for some a ∈ ((d − 1)/(n − 1), d/(n − 1)). However,

| 1
2 + G′(a)| = | − G′(xr) + G′(a)|.

If a ≥ xr then |−G′(xr) + G′(a)| = 0, and if a ≤ xr then |−G′(xr) + G′(a)| ≤ M|a − xr| ≤
M/(n − 1). In either case, we have

Vn(d) ≤ M

n − 1
.

Case (b): d/n ≤ xl. Here θ̃2(d/n) = θ∗
2 and θ̃1(d/n) = 1. Hence,

Vn(d) = nG

(
d

n

)
− (n − 1)G

(
d

n − 1

)

− [F(1 − θ∗
2 )]

[
θ∗

2 − 1

2
+ (n − 1)

(
G

(
d + 1

n − 1

)
− G

(
d

n − 1

))]
.

Since d/(n − 1) ≤ d/n ≤ xl, we have

G

(
d

n

)
= d

2n
+ θ∗

2 F(1 − θ∗
2 )

and

G

(
d

n − 1

)
= d

2(n − 1)
+ θ∗

2 F(1 − θ∗
2 ).

Hence,

Vn(d) = F(1 − θ∗
2 )

[
1

2
− (n − 1)

(
G

(
d + 1

n − 1

)
− G

(
d

n − 1

))]

= F(1 − θ∗
2 )

[
1

2
− G′(b)

]

for some b ∈ ((d + 1)/(n − 1), d/(n − 1)). However,

| 1
2 − G′(b)| = |G′(xl) − G′(b)|.

If b ≤ xl then |G′(xl) − G′(b)| = 0, and if b ≥ xl then |G′(xl) − G′(b)| ≤ M|b − xl| ≤
M/(n − 1). In either case, we have

Vn(d) ≤ M

n − 1
.
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Case (c): xl < d/n < xr. Here, by virtue of Lemma 5(c), we can write

Vn(d) = (n − 1)

[
G

(
d

n

)
− G

(
d

n − 1

)]

− (n − 1)

[
1 − F

(
θ̃1

(
d

n

))][
G

(
d − 1

n − 1

)
− G

(
d

n − 1

)]

− (n − 1)F

(
1 − θ̃2

(
d

n

))[
G

(
d + 1

n − 1

)
− G

(
d

n − 1

)]
.

Define

� =
{

d

n
,

d

n − 1
,
d − 1

n − 1
,
d + 1

n − 1

}
and Ĝ(x) = G

(
d

n − 1

)
+

(
x − d

n − 1

)
G′

(
d

n − 1

)
.

Since

G(x) = G

(
d

n − 1

)
+ G′(c)

(
x − d

n − 1

)

for some c ∈ (x, d/(n − 1)), we have

|Ĝ(x) − G(x)| =
∣∣∣∣
[
G′

(
d

n − 1

)
− G′(c)

][
x − d

n − 1

]∣∣∣∣.
Since all points in � are within a distance 2/(n − 1) of d/(n − 1), we can bound the difference
between Vn(d) and V̂n(d) (i.e. Vn(d) with G replaced by Ĝ) by a multiple of 1/n. This just
leaves the term

(n − 1)G′
(

d

n − 1

)[
d

n
− d

n − 1
−

[
1 − F

(
θ̃1

(
d

n

))](
d − 1

n − 1
− d

n − 1

)

− F

(
1 − θ̃2

(
d

n

))(
d + 1

n − 1
− d

n − 1

)]

= G′
(

d

n − 1

)[
−d

n
+ 1 − F

(
θ̃1

(
d

n

))
− F

(
1 − θ̃2

(
d

n

))]
,

which is equal to 0 since

1 − F

(
θ̃1

(
d

n

))
− F

(
1 − θ̃2

(
d

n

))
= d

n
.

This completes the proof.

5. The effect of F

The expected average gain per customer when dynamic programming is used is rN =
RN(0, 0)/N . In many instances, we have

rN = sN + O

(
log N

N

)
,

where sN = SN(0, 0)/N = G(0). Therefore, we can examine G(0) to investigate the effects
of different choices of F(θ).
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Example 1. Suppose that

F(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ

2a
, 0 ≤ θ ≤ a,

1

2
, a ≤ θ ≤ 1 − a,

1 − 1 − θ

2a
, 1 − a ≤ θ ≤ 1,

for some value of a ∈ [0, 1
2 ]. Observe that a = 1

2 corresponds to the uniform distribution. It
is easy to check that θ∗

1 = θ∗
2 = 1 − a, xl = − 1

2 , and xr = 1
2 . It follows in a straightforward

manner that the functions θ [1 −F(θ)] = θF (1 − θ) and (θ − 1)[1 −F(θ)] = (θ − 1)F (1 − θ)

are concave on the interval [1 − a, 1], whence F is of concave character.
There are two different solutions depending on whether or not a ≥ 1

4 . Since G(x) is
symmetric, we need only consider the case x ≥ 0. For a ≥ 1

4 , we have

θ̃1(x) =

⎧⎪⎪⎨
⎪⎪⎩

3

4
− ax, 0 ≤ x ≤ 1 − 1

4a
,

1 − a, x ≥ 1 − 1

4a
,

and

θ̃2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3

4
+ ax, 0 ≤ x ≤ 1 − 1

4a
,

1 − a + 2ax, 1 − 1

4a
≤ x ≤ 1

2
,

1, x ≥ 1

2
.

Hence, using symmetry, we have

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

2
+ 1 − a

2
, x ≤ −1

2
,

(
1

2
− a

)
+

(
1

2
− 2a

)
x − 2ax2, −1

2
≤ x ≤ 1

4a
− 1,

1

16a
− ax2,

1

4a
− 1 ≤ x ≤ 1 − 1

4a
,

(
1

2
− a

)
−

(
1

2
− 2a

)
x − 2ax2, 1 − 1

4a
≤ x ≤ 1

2
,

−x

2
+ 1 − a

2
, x ≥ 1

2
.

It is easy to check that G′(x) is continuous and piecewise linear and, therefore, that there exists
an M such that |G′(x) − G′(y)| ≤ M|x − y|. Observe that G(0) = 1/16a and we would thus
like a to be as small as possible, i.e. the uniform distribution is worst.

For a ≤ 1
4 , we have

θ̃1(x) = 1 − a, x ≥ 0,
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and

θ̃2(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − a + 2ax, 0 ≤ x ≤ 1

2
,

1, x ≥ 1

2
.

Hence, using symmetry, we have

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x

2
+ 1 − a

2
, x ≤ −1

2
,

(
1

2
− a

)
−

(
1

2
− 2a

)
|x| − 2ax2, −1

2
≤ x ≤ 1

2
,

−x

2
+ 1 − a

2
, x ≥ 1

2
.

It is easy to check that G′(x) is continuous and piecewise linear for x > 0. Observe that
G(0) = 1

2 − a and, so, we would again like a to be as small as possible.

Example 2. Suppose that

F(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 ≤ θ ≤ a,

θ − a

1 − 2a
, a ≤ θ ≤ 1 − a,

1, 1 − a ≤ θ ≤ 1,

for some value of a ∈ [0, 1
2 ]. Observe that a = 0 corresponds to the uniform distribution. It is

easy to check that

θ∗
1 = θ∗

2 = 1 − a

2
, xl = − 1 − a

2(1 − 2a)
, xr = 1 − a

2(1 − 2a)
, a ≤ 1

3
,

θ∗
1 = θ∗

2 = a, xl = −1, xr = 1, a >
1

3
.

It follows in a straightforward manner that the functions θ [1 − F(θ)] = θF (1 − θ) and
(θ − 1)[1 − F(θ)] = (θ − 1)F (1 − θ) are concave on the interval [a, 1 − a] and, thus, that F

is of concave character.
There are two different solutions depending on whether or not a ≤ 1

3 . Since G(x) is again
symmetric, we need only consider the case x ≥ 0. For a ≤ 1

3 , we have

θ̃1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
3

2
− x(1 − 2a) − a

]
, 0 ≤ x ≤ 1

2
,

1 − a − x + 2ax,
1

2
≤ x ≤ 1 − a

2(1 − 2a)
,

1 − a

2
, x ≥ 1 − a

2(1 − 2a)
,

and

θ̃2(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

[
3

2
+ x(1 − 2a) − a

]
, 0 ≤ x ≤ 1

2
,

1 − a, x >
1

2
.
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Hence, using symmetry, we have

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

2
+ (1 − a)2

4(1 − 2a)
, x ≤ − 1 − a

2(1 − 2a)
,

−x(1 − 2a)(1 + 2x)

2
, − 1 − a

2(1 − 2a)
≤ x ≤ −1

2
,

(
a − 1

2

)(
x2 − 1

4

)
, −1

2
≤ x ≤ 1

2
,

x(1 − 2a)(1 − 2x)

2
,

1

2
≤ x ≤ 1 − a

2(1 − 2a)
,

−x

2
+ (1 − a)2

4(1 − 2a)
, x ≥ 1 − a

2(1 − 2a)
.

It is easy to check that G′(x) is continuous and piecewise linear and, therefore, that there exists
an M such that |G′(x) − G′(y)| ≤ M|x − y|.

For a ≥ 1
3 , again taking only values of x ≥ 0, we have

θ̃1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2

[
3

2
− x(1 − 2a) − a

]
, 0 ≤ x ≤ 1

2
,

1 − a − x + 2ax,
1

2
≤ x ≤ 1,

a, x ≥ 1,

and

θ̃2(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

[
3

2
+ x(1 − 2a) − a

]
, 0 ≤ x ≤ 1

2
,

1 − a, x ≥ 1

2
.

Hence, using symmetry, we have

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

2
+ (1 − a)2

4(1 − 2a)
, x ≤ −1,

−x(1 − 2a)(1 + 2x)

2
, −1 ≤ x ≤ −1

2
,

(
a − 1

2

)(
x2 − 1

4

)
, −1

2
≤ x ≤ 1

2
,

x(1 − 2a)(1 − 2x)

2
,

1

2
≤ x ≤ 1,

−x

2
+ (1 − a)2

4(1 − 2a)
, x ≥ 1.

It is easy to check that G′(x) is continuous and piecewise linear and, therefore, that there exists
an M such that |G′(x) − G′(y)| ≤ M|x − y|.

https://doi.org/10.1017/S0001867800001385 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001385


914 D. BARRY AND C. LYNCH

Observe that, in each case, G(0) = 1
8 − a/4, so we would like a to be as small as possible,

i.e. the uniform distribution is best.

Example 3. Suppose that

F(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 ≤ θ ≤ a,

θ − a

b − a
, a ≤ θ ≤ b,

1, b ≤ θ ≤ 1,

for some values of a, b ∈ [0, 1] with b ≥ max{(a + 1)/2, 2a}. Observe that having a = 0 and
b = 1 corresponds to having the uniform distribution and that having b = 1 −a corresponds to
the situation in Example 2 in the case a ≤ 1

3 . Generally, in this case we must have θ1 ∈ [a, b]
and θ2 ∈ [1 − b, 1 − a]. We observe that θ∗

1 = b/2 and θ∗
2 = (1 − a)/2 and that

xl = − 1 − a

2(b − a)
and xr = b

2(b − a)
.

It follows in a straightforward manner that the functions

θ [1 − F(θ)] = θF (1 − θ)

and

(θ − 1)[1 − F(θ)] = (θ − 1)F (1 − θ)

are concave on the interval [a, b] and, so, that F is of concave character.
We have

θ̃1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b, x ≤ −1

2
,

a

4
+ ax

2
+ 3b

4
− bx

2
, −1

2
≤ x ≤ 1

2
,

b − (b − a)x,
1

2
≤ x ≤ b

2(b − a)
,

b

2
, x ≥ b

2(b − a)
,

and

θ̃2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − a

2
, x ≤ − 1 − a

2(b − a)
,

(b − a)x + 1 − a, − 1 − a

2(b − a)
≤ x ≤ −1

2
,

−3a + b

4
+ 1 + (b − a)x

2
, −1

2
≤ x ≤ 1

2
,

1 − a, x ≥ 1

2
.
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Hence, we have

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

2
+ (1 − a)2

4(b − a)
, x ≤ − 1 − a

2(b − a)
,

(
a − 1

2

)
x − (b − a)x2, − 1 − a

2(b − a)
≤ x ≤ −1

2
,

− (b − a)x2

2
+ (a + b)x

2
+ b − a

8
− x

2
, −1

2
≤ x ≤ 1

2
,

(
b − 1

2

)
x − (b − a)x2,

1

2
≤ x ≤ b

2(b − a)
,

−x

2
+ b

2

(
1 − b/2 − a

b − a

)
, x ≥ b

2(b − a)
.

It is easy to check that G′(x) is continuous and piecewise linear and, therefore, that there exists
an M such that |G′(x) − G′(y)| ≤ M|x − y|.

Observe that G(0) = (b − a)/8 and, so, we would like b − a to be as large as possible,
i.e. the uniform distribution, for which a = 0 and b = 1, is best.

6. Final comments

In summary, in this paper we have presented a useful alternative strategy which the bookie
may utilise to set odds. A bound has been placed on the penalty which the bookie may expect to
incur by using this strategy, and it has been demonstrated using different examples of customers’
betting behaviour. It is interesting to note from these examples that, of the cases where the
customers’ probabilities are distributed ‘in the middle’ of the range [0, 1] (i.e. Examples 2
and 3), the closer the range of probabilities is to [0, 1], the better it is for the bookie. On the
other hand, as we saw in Example 1, if the customers’ probabilities are extreme, i.e. clustered
around 0 and 1 with few in the middle, this works out even better from the bookie’s perspective.
This would seem to correspond to the real world, in the sense that the bookie can better predict
the behaviour of customers who have strong preferences for one horse or the other.

Throughout this paper, F , the distribution of customers’ betting probabilities, was assumed
to be known. In reality, of course, this is not generally the case, and the question of what to do
when F is unknown provides scope for further investigation.

An important consideration involves the assumptions which were made, in particular those
associated with Lemma 6. Future research could include the examination of the necessity of
these assumptions and the possibility of relaxing them. We also assumed that the number of
customers is known in advance, and placed a restriction on the amount which customers are
allowed to bet. We could examine the effects of removing these restrictions.

Our bookie is not assumed to have any opinion on the outcome of the race. We could in
future investigate how any such opinion might affect the bookie’s strategy for setting odds. We
have also restricted the number of horses in the race to only two. An obvious course for potential
future research involves increasing the number of horses. This would involve an increase in the
number of betting options available to customers, the possibility of betting on multiple horses,
and the introduction of different distributions to represent the probabilities customers associate
with the different horses.
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