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Abstract

We study ultrametric germs in one variable having an irrationally indifferent fixed
point at the origin with a prescribed multiplier. We show that for many values of the
multiplier, the cycles in the unit disk of the corresponding monic quadratic polynomial
are ‘optimal’ in the following sense: they minimize the distance to the origin among
cycles of the same minimal period of normalized germs having an irrationally indifferent
fixed point at the origin with the same multiplier. We also give examples of multipliers
for which the corresponding quadratic polynomial does not have optimal cycles. In those
cases we exhibit a higher-degree polynomial such that all of its cycles are optimal. The
proof of these results reveals a connection between the geometric location of periodic
points of ultrametric power series and the lower ramification numbers of wildly ramified
field automorphisms. We also give an extension of Sen’s theorem on wildly ramified field
automorphisms, and a characterization of minimally ramified power series in terms of
the iterative residue.

1. Introduction

In proving the optimality of the Bruno condition for the local linearization of fixed points of
holomorphic germs, Yoccoz showed the following dichotomy for quadratic polynomials of the
form

Pλ(z) := λz + z2, (1.1)

where the complex number λ satisfies |λ| = 1 and is not a root of unity: either Pλ is locally
linearizable at z = 0, or every neighborhood of z = 0 contains a periodic cycle different than z = 0;
see [Yoc95]. This last property is usually known as the small cycles property, and it is clearly
an obstruction for local linearization. In fact, in the case where Pλ is not locally linearizable
at z = 0, Yoccoz proved more: the distance of a small cycle of Pλ to z = 0 is essentially the
smallest possible among cycles of the same minimal period of normalized holomorphic germs of
the form

f(z) = λz + · · · ; (1.2)

see [Yoc95, § 6.6].
In this paper we prove an analogous result over an arbitrary ultrametric field. When the

residue characteristic of the ground field is odd and 0 < |λ − 1| < 1, we show that every cycle
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of the quadratic polynomial (1.1) that is in the open unit disk and that has minimal period at
least 2 is ‘optimal’ in the following sense: it minimizes the distance to z = 0 among cycles of
the same minimal period of normalized germs of the form (1.2); see Theorem C in § 1.3 and the
remarks that follow. When either the residue characteristic of the field is 2, or |λ − 1| = 1,
the quadratic polynomial (1.1) does not necessarily have this property. In this case we find
a higher-degree polynomial such that all of its cycles in the open unit disk are optimal; see
Theorem A in § 1.3. A consequence of these results is that irrationally indifferent periodic points
are isolated (Corollary 1.1 in § 2.3). This is new in positive characteristic (in characteristic zero
it follows from the local linearization result of Herman and Yoccoz [HY83]).

The proof of these results reveals a connection between the geometric location of periodic
points of ultrametric power series and the lower ramification numbers of wildly ramified
field automorphisms, as studied by Sen [Sen69], Keating [Kea92], Laubie and Säıne [LS98],
Wintenberger [Win04], and others. In fact, we show that for a generic power series of the
form f(z) = λz + · · · , normalized so that it has integer coefficients, the existence of an optimal
cycle is equivalent to the reduction of f having the least possible lower ramification numbers;
see Theorem B in § 1.4. Such ‘minimally ramified’ power series were previously considered by
Laubie et al. [LMS02] in their study of Lubin’s conjecture [Lub94].

In proving our main results, we give an extension of the main theorem of Sen in [Sen69]
(Theorem D in § 3.1), and give a characterization of minimally ramified power series in terms of
the iterative residue, which is a conjugacy invariant introduced by Écalle in the complex setting
(Theorem E in § 4).

We now proceed to describe our main results in more detail.

1.1 Periodic points of normalized power series
Let (K, | · |) be an ultrametric field and denote by OK the ring of integers of K, by mK the
maximal ideal of OK , and by K̃ := OK/mK the residue field of K.

Let λ in K be such that |λ| = 1, and let

f(z) = λz + · · · (1.3)

be a power series in K[[z]] converging on a neighborhood of z = 0. Through a scale change, we can
assume that f has coefficients in OK . We say that a power series f as in (1.3) is normalized if it
has coefficients in OK . When the ground field K is algebraically closed, the power f is normalized
if and only if it converges and is univalent on the open unit disk mK ; see, for example, [Riv03,
§ 1.3]. So this normalization is the same as the one used in the complex setting by Yoccoz
in [Yoc95]. In what follows we only consider normalized power series.

A normalized power series of the form (1.3) maps mK to itself isometrically; see, for

example, [Riv03, § 1.3]. If either the residue characteristic of K is zero or the reduction λ̃ of λ

has infinite order in K̃∗, then a normalized power series as in (1.3) has at most a finite number of
periodic points; see Lemma 2.1. Thus, to simplify the exposition, in the rest of this introduction
we assume that the residue characteristic p of K is positive and that the order q of λ̃ in K̃∗ is
finite. Then q is not divisible by p, and the minimal period of each periodic point in mK\{0} is
of the form qpn, for some integer n > 0; see Lemma 2.1.

1.2 Periodic points lower bound
The main theme of this paper is the optimality of the following lower bound.

Periodic points lower bound. Let p be a prime number, and (K, | · |) an ultrametric field of residue

characteristic p. Moreover, let λ in K be such that |λ| = 1, and such that the order q of λ̃ in K̃∗
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is finite. Then, for every power series

f(z) = λz + · · · in OK [[z]]

and every integer n > 1 such that λqp
n 6= 1, the following property holds: for every periodic

point z0 of f of minimal period qpn,

|z0| >
∣∣∣∣ λqpn − 1

λqpn−1 − 1

∣∣∣∣1/qpn . (1.4)

See Lemma 2.3 for a more detailed statement, which includes a lower bound for periodic points
of minimal period q.

Although the statement of the periodic points lower bound is new, similar estimates were
shown in [EEW04a, EEW04b] in the case where K is of characteristic zero. The idea of the proof
can be traced back, at least, to Cremer’s example of a complex polynomial having an irrationally
indifferent fixed point that is not locally linearizable; see, for example, [Mil06, § 11]. It boils down
to the observation that the product of the norms of all the fixed points of f qp

n
in mK\{0} is

equal to |λqpn − 1|.
Suppose that the characteristic of K is equal to p and that λq 6= 1. Then the lower bound

in (1.4) is equal to |λq − 1|(p−1)/qp, which is independent of n. Thus, the following corollary is a
direct consequence of the periodic points lower bound.

Corollary 1.1. Every irrationally indifferent periodic point is isolated in positive characteristic.

Combined with the fact that the quadratic polynomial λz + z2 in K[z] is not locally
linearizable at z = 0 when p is odd and |λ − 1| < 1 (see [Lin04, Theorem 2.3]),1 the corollary
above shows that in odd characteristic the existence of small cycles is not an obstruction to local
linearization2 (see [Lin13, Corollary C] for a somewhat analogous phenomenon in the p-adic
setting). This is in contrast to the complex field case: Yoccoz showed that if λ in C∗ is not a root
of unity and the quadratic polynomial λz + z2 in C[z] is not locally linearizable at z = 0, then
every neighborhood of z = 0 contains a periodic cycle; see [Yoc95, § 6.6].

In view of Corollary 1.1, we propose the following conjecture.

Conjecture 1.2. In positive characteristic, every periodic point whose multiplier is a root of
unity is either isolated as a periodic point, or has a neighborhood on which an iterate of the map
is the identity.

In [LR15] we solve this conjecture in the affirmative, in the case of generic parabolic points.
For an ultrametric ground field of characteristic zero, the assertion of the conjecture does
hold: when the residue characteristic is zero it follows from Lemma 2.1, and when the residue
characteristic is positive it follows from the fact that periodic points are the zeros of the iterative
logarithm; see [Riv03, Proposition 3.6] and also [Lub94] for the case where K is discretely valued.

Suppose now that K is of characteristic zero and that λ is not a root of unity. Then a
direct computation shows that the lower bound in (1.4) converges to 1 as n → +∞. So, the

1 According to Herman’s conjecture [Her87, Conjecture 2], in positive characteristic a typical indifferent periodic
point is not locally linearizable; yet, it is isolated as a periodic point by Corollary 1.1. Pérez-Marco showed that
in the complex setting there are maps with similar properties; see [Pér97, Theorem I.3.1].
2 In a field of characteristic 2, the quadratic polynomial λz + z2 is locally linearizable at z = 0 when |λ− 1| < 1;
see [Lin04, Theorem 2.3]. We can consider instead the polynomial λz+z3, which is not locally linearizable at z = 0
when |λ− 1| < 1; see [Lin10, Theorem 1.1]. Thus, Corollary 1.1 also proves that in characteristic 2 the existence
of small cycles is not an obstruction to local linearization.
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periodic points lower bound implies that for every r in (0, 1) the number of periodic points of f
in {z ∈ K : |z| 6 r} is finite.3 In fact, the periodic points lower bound gives a quantitative
estimate of the speed at which periodic points separate from z = 0 as the period increases: just
observe that there is n0 > 1 that only depends on λq, such that for every integer n > n0,∣∣∣∣ λqpn − 1

λqpn−1 − 1

∣∣∣∣ = |p|;

see also [EEW04a, Remark 3.6] and [EEW04b, Theorem 1].

1.3 Optimal cycles
Let p,K, λ, and q be as in the periodic points lower bound. Then we say that a power series f(z) =
λz + · · · in OK [[z]] has an optimal cycle of period qpn, if f has a periodic point z0 of minimal
period qpn such that (1.4) holds with equality. If f has an optimal cycle of period qpn, then this
is in fact the only cycle of minimal period qpn of f ; see Theorem B below.

Theorem A. Let p be a prime number, and (K, | · |) an algebraically closed ultrametric field of

residue characteristic p. Moreover, let λ in K be such that |λ| = 1, such that the order q of λ̃
in K̃∗ is finite, and such that λq 6= 1. If K is of characteristic zero, assume in addition that λ is
transcendental over the prime field of K. Then there is a polynomial P (z) = λz + · · · in OK [z]
of degree at most 2q + 1, having for each integer n > 1 an optimal cycle of period qpn.

We use some explicit polynomials to prove this theorem; see Propositions 5.3 and 5.6 in § 5.2
for details. For example, in the case where p is odd and q = 1, we prove that the polynomial λz+z2

satisfies the conclusions of Theorem A, in agreement with the situation in the complex setting;
see [Yoc95, § 6.6]. However, not every quadratic polynomial has this property: if p = 11 and

λ̃ = −1, then there is no integer n > 1 for which the quadratic polynomial λz + z2 has an
optimal cycle of period 2pn; see § 1.5.

Suppose that K is of characteristic p, and let P be a polynomial satisfying the conclusions
of Theorem A. Then all the periodic points of P of minimal period at least qp are in fact
concentrated in the sphere4

{z ∈ K : |z| = |λq − 1|(p−1)/qp}.

It is not clear to us how the periodic points are distributed in this sphere. For concreteness, we
propose the following problem.

Problem 1.3. Let p be an odd prime number, (K, | · |) an algebraically closed and complete
ultrametric field of characteristic p, and λ in K such that 0 < |λ − 1| < 1. Moreover, for each
integer n > 1 let Πn be the set of cardinality pn of all periodic points of Pλ(z) = λz + z2 in mK

of minimal period pn. Is the sequence of measures{
1

pn

∑
z∈Πn

δz

}+∞

n=1

convergent?

3 This also follows from the fact that the periodic points of f are the zeros of the iterative logarithm of f , which
is given by an analytic power series that converges on mK ; see [Riv03, Proposition 3.16] and also [Lub94] for the
case where K is discretely valued.
4 As pointed out in § 1.2, such a concentration of periodic points cannot occur in the case where the characteristic
of K is zero.
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It would be natural to consider the measures above as measures on the Berkovich projective

line of K, since they would accumulate on at least one measure with respect to the corresponding

weak* topology; see [Ber90]. Furthermore, every accumulation measure would be invariant by

the action of Pλ on the Berkovich projective line of K.

1.4 Minimally ramified power series

One of the main ingredients in the proof of Theorem A is (an extension of) the concept of

‘minimally ramified’ power series introduced by Laubie et al. [LMS02] in their study of Lubin’s

conjecture in [Lub94]. To introduce this concept, let p be a prime number, and k a field of

characteristic p. Denote by ord(·) the valuation on k[[ζ]] defined for a non-zero power series as

the lowest degree of its non-zero terms, and for the zero power series 0 by ord(0) = +∞. For a

power series of the form g(ζ) = ζ + · · · in k[[ζ]], define for each integer n > 0 the number

in(g) := ord

(
gp

n
(ζ)− ζ
ζ

)
.

As observed in [LMS02], the results of Sen in [Sen69] imply that for every integer n > 0 we have

in(g) > (pn+1 − 1)/(p− 1); following [LMS02], the power series g is called minimally ramified if

the equality holds for every n.5

To prove Theorem A, we need to deal with a more general class of power series, allowing g′(0)

to be an arbitrary root of unity. For this, we prove a higher-order version of the main theorem

of Sen in [Sen69]; see Theorem D in § 3.1. We use it to show that for every integer q > 1 not

divisible by p, every root of unity γ in k of order q, and every power series of the form

g(ζ) = γζ + · · · in k[[ζ]],

we have, for every integer n > 0,

in(gq) > q
pn+1 − 1

p− 1
; (1.5)

see Proposition 3.2 in § 3.2. We say that g is minimally ramified if equality holds for every n;

see Definition 3.2. We give a characterization of minimally ramified power series in terms of the

iterative residue; see Theorem E in § 4.

The following theorem links the existence of optimal cycles to minimally ramified maps.

To simplify the exposition we have restricted to ground fields of odd residue characteristic. An

analogous statement holds for ground fields of residue characteristic 2; see Theorem B′ in § 5.1.

Theorem B. Let p be an odd prime number, (K, | · |) an algebraically closed field of residue

characteristic p, and q > 1 an integer that is not divisible by p. Then the following properties

hold.

(1) Let λ in K be such that |λ| = 1 and such that the order of λ̃ in K̃∗ is q. Moreover, let

n > 1 be an integer and P (z) = λz + · · · a polynomial in OK [z] having an optimal cycle of

period qpn. Then this is the only cycle of minimal period qpn of P , and the reduction of P is

minimally ramified.

5 We note that in the case p = 2, a minimally ramified power series in the sense of [LMS02] is what we call here
an ‘almost minimally ramified’ power series; see § 3.3 for more details.
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(2) Let γ be a root of unity in K̃ of order q, and g(ζ) = γζ+ · · · a polynomial in K̃[ζ] that is
minimally ramified. Given an integer d > max{deg(g), p}, let a1, . . . , ad in OK be algebraically
independent over the prime field of K, and such that the reduction of the polynomial P (z) :=
a1z + · · · + adz

d is g. Then for every integer n > 1, the polynomial P has a unique cycle of
minimal period qpn, and this cycle is an optimal cycle of period qpn of P .

See Proposition 5.1 for a related result that holds under a weaker form of the genericity
condition in part (2). This genericity condition is necessary to prevent the concentration of
periodic points, as occurs, for example, for the polynomials studied in the Appendix.

1.5 Optimal cycles of quadratic polynomials
The following is a more precise version of Theorem B for quadratic polynomials.

Theorem C. Let p be an odd prime number, and (K, | · |) an algebraically closed ultrametric
field of residue characteristic p. Moreover, let λ in K be such that |λ| = 1, such that the order q

of λ̃ in K̃∗ is finite, and such that λq 6= 1. If K is of characteristic zero, assume in addition
that λ is transcendental over the prime field of K. Then the following dichotomy holds for the
polynomial Pλ(z) := λz + z2.

(1) If the reduction of Pλ is minimally ramified, then for each integer n > 1 the polynomial Pλ
has a unique cycle of minimal period qpn, and this cycle is an optimal cycle of period qpn of Pλ.

(2) If the reduction of Pλ is not minimally ramified, then there is no integer n > 1 for which
the polynomial Pλ has an optimal cycle of period qpn.

The first alternative of the theorem always holds when q = 1, because the polynomial ζ + ζ2

in K̃[ζ] is minimally ramified; see [Riv03, Exemple 3.19] or Proposition 4.4 in § 4.2. For an
example where the second alternative holds, suppose that p = 11 and consider the quadratic
polynomial

g0(ζ) := −ζ + ζ2 in K̃[ζ];

a direct computation shows that i0(g2
0) = 2 and i1(g2

0) > 24, so g0 is not minimally ramified. So,

when p = 11 and λ̃ = −1, the second alternative of Theorem C holds.

Problem 1.4. Let p be an odd prime number, Fp a field of p elements, and Fp an algebraic closure
of Fp. Determine all those γ in F∗p for which the quadratic polynomial γζ+ζ2 in Fp[ζ] is minimally
ramified.

To prove that for γ in F∗p the polynomial γζ + ζ2 is minimally ramified, it is enough to show
that (1.5) holds with equality with g(ζ) = γζ + ζ2 and n = 1; see Proposition 3.2 in § 3.2.

We note that for γ in Fp, the property of γζ + ζ2 being minimally ramified does not depend
on the order of γ alone. For example, when p = 7, the orders of 2 and 4 in F∗7 are both equal
to 3, but 2ζ + ζ2 is not minimally ramified, and 4ζ + ζ2 is.

1.6 Organization
In § 2 we give general properties of normalized power series. After some preliminaries in § 2.1,
in § 2.2 we describe the minimal periods of cycles of a normalized power series (Lemma 2.1).
In § 2.3 we prove a more general version of the periodic points lower bound (Lemma 2.3).

In § 3 we introduce and study minimally ramified power series. We start by proving a
higher-order version of Sen’s theorem in § 3.1. In § 3.2 we use this result to define and characterize
minimally ramified power series. In § 3.3 we study a variant of this concept for fields of
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characteristic 2. In our characterization of minimally ramified power series we use an extension
of Laubie and Säıne [LS98] of a result of Keating [Kea92].

In § 4 we characterize, for each integer q not divisible by p and each root of unity γ of
order q, those power series of the form g(ζ) = γζ + · · · that are minimally ramified in terms of
the iterative residue of g (Theorem E). A direct consequence is that there is a minimally ramified
polynomial g as above of degree q + 1 or 2q + 1.

In § 5 we prove Theorems A–C. In § 5.1 we prove a general version of Theorem B which
we state as Theorem B′. In § 5.2 we exhibit concrete polynomials that satisfy the conclusions
of Theorem A (see Propositions 5.3 and 5.6). In the Appendix we study a concentration of
periodic points phenomenon showing that a very natural candidate to have optimal cycles in
characteristic 2 has none. The proof of Theorem C is given at the end of § 5.2.

2. Periodic points lower bound

The purpose of this section is to prove general facts about periodic points of normalized power
series. After some preliminaries in § 2.1, in § 2.2 we describe the minimal periods of periodic
points of normalized power series. In § 2.3 we prove a general version of the periodic points lower
bound, stated in § 1.2, which we state as Lemma 2.3.

2.1 Preliminaries
Given a ring R and an element a of R, we denote by 〈a〉 the ideal of R generated by a.

Given a field k, denote by k∗ := k\{0} the multiplicative subgroup of k. A non-zero element γ
of k∗ has infinite order in k∗, if for every integer q > 1 we have γq 6= 1. If γ is not of infinite
order in k∗, then the order of γ in k∗ is the least integer q > 1 such that γq = 1. When k is of
positive characteristic, in this last case the order γ is not divisible by the characteristic of k.

Let p be a prime number, and k a field of characteristic p. The order of a non-zero power
series g(ζ) in k[[ζ]] is the lowest degree of a non-zero term in g(ζ). The order of the zero power
series in k[[ζ]] is +∞. For g(ζ) in k[[ζ]], denote by ord(g) the order of g. The function ord so
defined is a valuation on k[[ζ]].

Let (K, | · |) be an ultrametric field. Denote by OK the ring of integers of K, by mK the
maximal ideal of OK , and by K̃ := OK/mK the residue field of K. Moreover, denote the
projection in K̃ of an element a of OK by ã; it is the reduction of a. The reduction of a power
series f(z) in OK [[z]] is the power series in K̃[[ζ]] whose coefficients are the reductions of the
corresponding coefficients of f .

For such a power series f(z) in OK [[z]], the Weierstrass degree wideg(f) of f is the

order in K̃[[ζ]] of the reduction f̃(ζ) of f(z). When K is algebraically closed and wideg(f)
is finite, wideg(f) is equal to the number of zeros of f in mK , counted with multiplicity; see for
example [Lan02, §VI, Theorem 9.2].

Notice that a power series f(z) in OK [[z]] converges in mK . If in addition |f(0)| < 1, then by
the ultrametric inequality f maps mK to itself. In this case, a point z0 in mK is periodic for f ,
if there is an integer n > 1 such that fn(z0) = z0. In this case z0 is of period n, and n is a period
of z0. If in addition n is the least integer with this property, then n is the minimal period of z0

and (fn)′(z0) is the multiplier of z0. Note that an integer n > 1 is a period of z0 if and only if it
is divisible by the minimal period of z0. Given a periodic point z0 of f of multiplier λ, we say
that z0 is attracting if |λ| < 1, indifferent if |λ| = 1, and repelling if |λ| > 1. In the case where z0

is indifferent, z0 is rationally indifferent or parabolic if λ is a root of unity, and it is irrationally
indifferent otherwise.
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2.2 Minimal periods of normalized power series
The purpose of this section is to prove the following lemma, where we gather well-known results
on periodic points of a normalized power series.

Lemma 2.1. Let (K, | · |) be an ultrametric field and λ in K such that |λ| = 1. Then for every
power series f(z) = λz + · · · in OK [[z]], the following properties hold.

(1) If r > 1 is an integer such that |λr − 1| = 1, then f has no periodic point of period r,

other than z = 0. In particular, if λ̃ has infinite order in K̃∗, then f has no periodic point other
than z = 0.

(2) Suppose that the order q of λ̃ in K̃∗ is finite.

(a) If the residue characteristic of K is zero, then the minimal period of each periodic point
of f in mK\{0} is equal to q.

(b) If the residue characteristic p of K is positive, then p does not divide q and the minimal
period of each periodic point of f in mK\{0} is of the form qpn, for some integer n > 0.

Before proving this lemma, we state and prove the following result.

Lemma 2.2. Let (K, | · |) be a complete ultrametric field and g(z) a power series in OK [[z]] such
that |g(0)| < 1. Then for each integer m > 1 the power series g(z)−z divides gm(z)−z in OK [[z]].

Proof. We proceed by induction on m, the case m = 1 being trivial. Let m > 1 be an integer for
which the lemma holds. Note that it is enough to show that g(z) − z divides gm+1(z) − gm(z)
in OK [[z]]. Writing gm(z) =

∑+∞
n=0 anz

n and using |g(0)| < 1, we have that
∑+∞

n=0 an(g(z)n− zn)

converges to a power series in OK [[z]] and that

+∞∑
n=0

an(g(z)n − zn) = gm+1(z)− gm(z). (2.1)

On the other hand, again using |g(0)| < 1, we have that the series

+∞∑
n=0

an

n−1∑
j=0

zjg(z)n−1−j

converges to a power series h(z) in OK [[z]], and that h(z)(g(z) − z) is equal to (2.1). This
completes the proof of the lemma. 2

Proof of Lemma 2.1. To prove part (1), let r > 1 be an integer such that |λr − 1| = 1, and
note that the constant term of the power series (f r(z) − z)/z is equal to λr − 1. Thus, by the
ultrametric inequality, for each z0 in mK\{0} we have

|f r(z0)− z0| = |λr − 1| · |z0| = |z0| 6= 0.

Thus f r(z0) 6= z0 and therefore z0 is not a periodic point of period r of f . This proves part (1).
To prove part (2), suppose first the residue characteristic p of K is positive. We prove first

that q is not divisible by p. Suppose by contradiction that q is divisible by p, and put m = q/p. By

the minimality of q we have λ̃m 6= 1̃. On the other hand, (λ̃m)p = λ̃q = 1̃. Since the characteristic

of K̃ is equal to p, this implies that λ̃m = 1̃. This contradiction proves that q is not divisible
by p.
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To complete the proof of part (2), we prove simultaneously part (2)(a) and the second
assertion of part (2)(b). To do this, let ` > 1 be an integer and z0 a periodic point of f in mK\{0}
of minimal period `. By part (1) we must have |λ` − 1| < 1, or equivalently λ̃` = 1̃. Thus q
divides `. If the residue characteristic of K is zero, put q0 := q. If the residue characteristic p
of K is positive, let n > 0 be the largest integer such that pn divides ` and put q0 := qpn. In
both cases we have that q0 divides `. To complete the proof of part (2), it is enough to prove
that ` = q0. Suppose by contradiction that ` is not equal to q0, so that m := `/q0 > 2. Then, by
Lemma 2.2 with g = f q0 , the power series f q0(z)− z divides f `(z)− z in OK [[z]]. Note that z0 is
a zero of the power series (f `(z)− z)/(f q0(z)− z). However, if λq0 6= 1, then the constant term
of this power series is equal to

λ` − 1

λq0 − 1
= 1 + λq0 + · · ·+ λ(m−1)q0 ,

whose norm equal to 1; so the power series (f `(z)− z)/(f q0(z)− z) does not have zeros in mK .
We thus obtain a contradiction that completes the proof of part (2) when λq 6= 1. It remains
to consider the case where λq = 1. In this case the order of f q0(z) − z in K[[z]] is at least 2. If
the order of this power series is infinite, then f q0(z) = z and therefore every point of mK would
be periodic of period q0; but this is not possible because z0 is periodic of minimal period `, and
by assumption ` > q0. This proves that the order t of the power series f q0(z) − z is finite and
at least 2. If we denote by a the coefficient of zt in f q0(z), then a straightforward induction
argument shows that for every integer s > 1 we have

fsq0(z) = z + sazt + · · · .

When s = m, we obtain

f `(z) = z +mazt + · · · .

This implies that the constant term of the power series (f `(z) − z)/(f q0(z) − z) is equal to m,
which has norm 1. As before, this implies that this power series has no zeros in mK , and we
obtain a contradiction that completes the proof of the lemma. 2

2.3 Periodic points lower bound
The purpose of this section is to give, for a normalized power series with an irrationally indifferent
fixed point at z = 0, a lower bound for the norms of periodic points different from z = 0. The
bound depends only on the multiplier of the fixed point z = 0, and on the minimal period of the
periodic point.

Lemma 2.3. Let p be a prime number, and (K, |·|) an ultrametric field of residue characteristic p.

Let λ in K be such that |λ| = 1, and such that the order q of λ̃ in K̃∗ is finite. Then for every
power series f(z) = λz + · · · in OK [[z]], the following properties hold.

(1) Suppose that λq 6= 1, and let w0 be a periodic point of f of minimal period q. In the
case q = 1, assume that w0 6= 0. Then

|w0| > |λq − 1|1/q, (2.2)

with equality if and only if wideg(f q(z)− z) = q + 1. Moreover, if equality holds, then the cycle
containing w0 is the only cycle of minimal period q of f in mK\{0}, and for every point w′0 in
this cycle the inequality above holds with equality with w0 replaced by w′0.
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(2) Let n > 1 be an integer such that λqp
n 6= 1, and z0 a periodic point of f of minimal

period qpn. Then

|z0| >
∣∣∣∣ λqpn − 1

λqpn−1 − 1

∣∣∣∣1/qpn , (2.3)

with equality if and only if

wideg

(
f qp

n
(z)− z

f qpn−1(z)− z

)
= qpn. (2.4)

Moreover, if equality holds, then the cycle containing z0 is the only cycle of minimal period qpn

of f , and for every point z′0 in this cycle the inequality above holds with equality with z0 replaced
by z′0.

Note that in (2.4) above we use the fact that f qp
n−1

(z) − z divides f qp
n
(z) − z in OK [[z]],

given by Lemma 2.2 with g = f qp
n−1

and m = p.
Before proving this lemma, we state and prove the following result.

Lemma 2.4. Let K be a complete ultrametric field and let h(z) be a power series in OK [[z]]. If ξ
is a zero of h in mK , then z − ξ divides h(z) in OK [[z]].

Proof. Put T (z) = z + ξ and note that h ◦ T (z) vanishes at z = 0 and is in OK [[z]]. This
implies that z divides h ◦ T (z) in OK [[z]]. Letting g(z) := h ◦ T (z)/z, it follows that the power
series g ◦ T−1(z) = h(z)/(z − ξ) is in OK [[z]], as desired. 2

Proof of Lemma 2.3. Replacing K by one of its completions if necessary, assume K complete.
We use the fact that, since |f ′(0)| = 1, the power series f maps mK to itself isometrically;

see, for example, [Riv03, § 1.3].
(1) To prove (2.2), let w0 in mK\{0} be a periodic point of f of minimal period q. Note that

every point in the forward orbit O of w0 under f is a zero of the power series (f q(z)− z)/z, and
that the constant term of this power series is λq − 1. On the other hand, O consists of q points,
and, since f maps mK to itself isometrically, all the points in O have the same norm. Applying
Lemma 2.4 inductively with ξ replaced by each element of O, it follows that

∏
w′0∈O

(z − w′0)

divides (f q(z)− z)/z in OK [[z]]. In particular, the constant term

λq − 1∏
w′0∈O

(−w′0)
(2.5)

of the power series ((f q(z)− z)/z)/
∏
w′0∈O

(z − w′0) is in OK . We thus have

|w0|q =
∏
w′0∈O

|w′0| > |λq − 1|, (2.6)

and therefore (2.2). Moreover, equality holds precisely when the constant term (2.5) of ((f q(z)−
z)/z)/

∏
w′0∈O

(z − w′0) has norm equal to 1. Equivalently, equality in (2.6) holds if and only

if wideg(f q(z)− z) = q+ 1. Finally, when this last equality holds, the set O is the set of all zeros
of (f q(z)− z)/z in mK , so O is the only cycle of minimal period q of f . This completes the proof
of part (1).

(2) To prove (2.3), let n > 1 be an integer such that λqp
n 6= 1, and z0 a periodic point of f of

minimal period qpn. By Lemma 2.2 with g = f qp
n−1

and m = p, the power series f qp
n−1

(z) − z
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divides f qp
n
(z) − z in OK [[z]]. Note that every point in the forward orbit O of z0 under f is a

zero of the power series

h(z) :=
f qp

n
(z)− z

f qpn−1(z)− z
,

and that the constant term of this power series is

λqp
n − 1

λqpn−1 − 1
.

On the other hand, O consists of qpn points, and, since f maps mK to itself isometrically, all
the points in O have the same norm. Applying Lemma 2.4 inductively with ξ replaced by each
element of O, it follows that

∏
z′0∈O

(z − z′0) divides h(z) in OK [[z]]. In particular, the constant
term (

λqp
n − 1

λqpn−1 − 1

)/ ∏
z′0∈O

(−z′0) (2.7)

of the power series h(z)/
∏
z′0∈O

(z − z′0) is in OK . We thus have

|z0|qp
n

=
∏
z′0∈O

|z′0| >
∣∣∣∣ λqpn − 1

λqpn−1 − 1

∣∣∣∣, (2.8)

and therefore (2.3). Note that equality holds if and only if the constant term (2.7) of the
power series h(z)/

∏
z′0∈O

(z − z′0) has norm equal to 1. Equivalently, equality holds if and only

if wideg(h(z)/
∏
z′0∈O

(z − z′0)) = 0. Using

wideg

(
h(z)∏

z′0∈O
(z − z′0)

)
= wideg

(
f qp

n
(z)− z

f qpn−1(z)− z

)
− qpn,

we conclude that equality holds if and only if wideg((f qp
n
(z)− z)/(f qpn−1

(z)− z)) = qpn. Finally,
note that if this last equality holds, then O is the set of all zeros of (f qp

n
(z)− z)/(f qpn−1

(z)− z)
in mK , so O is the only cycle of minimal period qpn of f . This completes the proof of part (2). 2

3. Minimally ramified power series

Our main goal in this section is study condition (2.4) appearing in the optimality part of
Lemma 2.3. To do this, for a given prime number p and a field k of characteristic p, define,
for each power series g0(ζ) = ζ + · · · in k[[ζ]] and each integer n > 0, the order

in(g0) := ord

(
gp

n

0 (ζ)− ζ
ζ

)
.

Note that if K, q, λ, and f are as in Lemma 2.3 and k = K̃, then λ̃ is a root of unity of order q
in k, and for each integer n > 1 such that

wideg(f qp
n−1

(z)− z) = in−1(f̃ q) + 1

is finite, we have

wideg

(
f qp

n
(ζ)− ζ

f qpn−1(ζ)− ζ

)
= in(f̃ q)− in−1(f̃ q).
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Thus, (2.4) naturally leads us to consider, for a root of unity γ of order q in k and a power

series g(ζ) = γζ + · · · in k[[ζ]], the sequence {in(gq)}+∞n=0. When p is odd, we show that for an

integer n > 1 such that in−1(gq) is finite, the equality

in(gq)− in−1(gq) = qpn (3.1)

can only hold if g is ‘minimally ramified’, in the sense that the sequence {in(gq)}+∞n=0 is the smallest

possible; see Corollary 3.10 in § 3.3, which also includes a characterization in the case p = 2.

Thus, in the case where p is odd and f(z) = λz + · · · is a polynomial in OK [z] with non-linear

reduction, the existence of an optimal cycle of period qpn implies that f̃ is minimally ramified;

see Corollary 3.11.

The structure of this section is as follows. In § 3.1 we establish a ‘higher-order’ version of the

main theorem of Sen in [Sen69]. In § 3.2 we combine this result with a result of Laubie and Säıne

in [LS98], extending a previous result of Keating in [Kea92], to characterize minimally ramified

power series. In § 3.3 introduce the notion of ‘almost minimally ramified’ power series, and we

use it to handle the case p = 2.

3.1 A higher-order version of Sen’s theorem

The purpose of this section is to prove the following theorem.

Theorem D. Let p be a prime number, and k a field of characteristic p. Moreover, let γ be a

root of unity in k, q > 1 the order of γ, and

g(ζ) = γζ + a2ζ
2 + · · ·

a power series in k[[ζ]]. Then i0(gq) is divisible by q when finite. Furthermore, for every integer

n > 1 such that in(gq) is finite, in−1(gq) is also finite and

in(gq) ≡ in−1(gq) mod qpn.

In particular, for every n > 0 such that in(gq) is finite, in(gq) is divisible by q.

When restricted to q = 1, the theorem above is [Sen69, Theorem 1]. Sen’s original proof

in [Sen69] is based on a careful analysis of the orders of cocycles of power series in k[[ζ]]. Lubin

gave a conceptual proof of this result in [Lub95] that is even shorter than Sen’s original proof;

Lubin interprets in(g) − in−1(g) as the number of periodic points of minimal period pn of a

certain ‘lift’ of g. See also [Li96, Theorem 3.1] for a variant of Lubin’s proof.

To prove Theorem D, we follow Lubin’s strategy. The main difficulty is to find, for a given n,

a lift g such that the zeros of gqp
n
(z) − z are simple. Lubin achieved this through an inductive

perturbative procedure. We use the fact that a generic polynomial has no parabolic periodic

point.

Lemma 3.1. Let K be a field of characteristic zero, d > 2 an integer, and a1, . . . , ad in K

algebraically independent over the prime field of K. Then the polynomial

a1z + · · ·+ adz
d

in K[z] has no parabolic periodic point.
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Proof. Denote by Q the prime field of K, and by | · | the usual absolute value in C.
Suppose by contradiction there is an integer n > 1 and a periodic point z0 of period n

of the polynomial P (z) := a1z + · · · + adz
d in K[z], such that (Pn)′(z0) is a root of unity.

Let σ : Q[z0, a1, . . . , ad] → C be a ring homomorphism such that σ(ad) = 1, and such that for
each j in {1, . . . , d−1} we have σ(aj) = 0. Then σ(P )(z) = zd, σ(z0) is a periodic point of period n
of σ(P ), and (σ(P )n)′(σ(z0)) = σ((Pn)′(z0)) is a root of unity. This implies that σ(z0) 6= 0, and
therefore that |σ(z0)| = 1. Thus,

|(σ(P )n)′(σ(z0))| = |dnσ(z0)d
n−1| = dn.

This contradicts our hypothesis that σ((Pn)′(z0)) is a root of unity, and proves the lemma. 2

Proof of Theorem D. Replacing k by one of its algebraic closures if necessary, assume that k is
algebraically closed. Then k is perfect and therefore there is an algebraically closed field K of
characteristic zero that is complete with respect to a non-trivial ultrametric norm and whose
residue field K̃ is isomorphic to k; see, for example, [Ser68, II, Théorème 3]. Identify k with K̃.
Then K is uncountable and therefore we can choose for each j in {1, . . . , in(gq)+1} an element aj
of K, such that the a1, . . . , ain(gq)+1 are algebraically independent over the prime field of K and

such that the reduction P̃ of the polynomial

P (z) = a1z + · · ·+ ain(gq)+1z
in(gq)+1

in K[z] satisfies P̃ (ζ) ≡ g(ζ) mod 〈ζin(gq)+2〉 in k[ζ]. Then

wideg(P qp
n
(z)− z) = in(gq) + 1,

and by Lemma 3.1 the polynomial P has no parabolic periodic points.
Suppose that n = 0. From aq1 6= 1, it follows that P q(z) − z has precisely i0(gq) zeros

in mK\{0}, counted with multiplicity. Note that if P q(z)− z had a double zero of z0 in mK\{0},
then z0 would also be a zero of (P q)′(z)−1, and therefore z0 would be a parabolic periodic point
of P . We conclude that all zeros of P q(z)−z in mK\{0} are simple, and therefore that P q(z)−z
has precisely i0(gq) zeros in mK\{0}. By part (2) of Lemma 2.1, every zero of P q(z)−z in mK\{0}
is a periodic point of minimal period q of P . Combined with P (mK) = mK , it follows that the
set Z0 of zeros of P q(z) − z in mK\{0} is a union of periodic orbits of minimal period q. We
conclude that #Z0 = i0(gq) is divisible by q. This completes the proof of the theorem in the
case n = 0.

Suppose that n > 1. Our assumption that in(gq) is finite, together with the straightforward
inequality in−1(gq) 6 in(gq), implies that in−1(gq) is also finite. So, by our choice of P , we have

wideg(P qp
n−1

(z)− z) = in−1(gq) + 1,

and therefore h(z) := (P qp
n
(z)− z)/(P qpn−1

(z)− z) has precisely in(gq)− in−1(gq) zeros in mK ,
counted with multiplicity. As in the previous case, if P qp

n
(z)− z had a double zero z0, then z0

would also be a zero of (P qp
n
)′(z) − 1, and therefore z0 would be a parabolic periodic point

of P . We conclude that all zeros of P qp
n
(z) − z, and hence of h, are simple. In particular,

h has precisely in(gq) − in−1(gq) zeros in mK . It also follows that a zero of h cannot be a
zero of P qp

n−1
(z) − z. In view of part (2) of Lemma 2.1, this implies that the zeros of h are

precisely the periodic points of P of minimal period qpn. Since P (mK) = mK , it follows that
the set Zn of zeros of h in mK is a union of periodic orbits of minimal period qpn. We conclude
that #Zn = in(gq)− in−1(gq) is divisible by qpn. This completes the proof of the theorem. 2
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3.2 Minimally ramified power series
In this section we introduce the notion of ‘minimally ramified’ power series, which is motivated
by the following proposition.

Proposition 3.2. Let p be a prime number, k a field of characteristic p, and γ a root of unity
in k. If we denote by q the order of γ, then for every power series g(ζ) = γζ + · · · in k[[ζ]] and
every integer n > 0, we have

in(gq) > q
pn+1 − 1

p− 1
. (3.2)

If p is odd (respectively, p = 2) and equality holds for some n > 1 (respectively, n > 2), then
equality holds for every n > 0.

Remark 3.3. In contrast with the case where p is odd, when p = 2 equality in (3.2) for n = 1 does
not necessarily imply that we have equality in (3.2) for every n > 0. In fact, suppose that p = 2
and put g(ζ) := γζ(1 + ζq) if q ≡ 1 mod 4, and g(ζ) := γζ(1 + ζq + ζ2q) if q ≡ −1 mod 4. Then
a direct computation shows that i1(gq) = 3q and i2(gq) > 7q.

The proof of Proposition 3.2 is at the end of this section.
Motivated by Proposition 3.2, and following the terminology introduced by Laubie et al.

[LMS02] in the case q = 1, we make the following definition.

Definition 3.4. Let p be a prime number, k a field of characteristic p, γ a root of unity in k,
and q the order of γ. Then a power series g(ζ) = γζ + · · · in k[[ζ]] is minimally ramified if, for
every integer n > 0,

in(gq) = q
pn+1 − 1

p− 1
.

To prove Proposition 3.2, we use several times the following consequence of [LS98,
Corollary 1]; see also [Kea92, Theorem 7] for the case q = 1.

Lemma 3.5. Let p be a prime number, k a field of characteristic p, γ a root of unity, and g(ζ) =
γζ + · · · a power series in k[[ζ]]. If p is odd (respectively, p = 2), then g is minimally ramified if
and only if (3.2) holds with equality for n = 0 and n = 1 (respectively, n = 0, n = 1, and n = 2).

We also use the following lemma several times; see also [Ser68, Exercice 3, § 4] or [Kea92,
Lemma 3] for the case q = 1.

Lemma 3.6. Let p be a prime number, k a field of characteristic p, γ a root of unity in k, and q
the order of γ. Then for each power series

g(ζ) = γζ + · · ·

in k[[ζ]] and every integer n > 0 such that in(gq) is finite, the following properties hold:

(1) if in(gq) is not divisible by p, then in+1(gq) > pin(gq) + q;

(2) if in(gq) is divisible by p, then in+1(gq) = pin(gq).

Proof. For each integer m > 1 define the power series ∆m(ζ) inductively by ∆1(ζ) := gqp
n
(ζ)−ζ,

and for m > 2 by
∆m(ζ) := ∆m−1(gqp

n
(ζ))−∆m−1(ζ).

An induction argument shows that

∆m(ζ) =

m∑
j=0

(
m

j

)
(−1)m−jgqp

nj(ζ).
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Taking m = p, we obtain ∆p(ζ) = gqp
n+1

(ζ)− ζ. Noting that i := ord(∆1) is equal to in(gq) + 1,
put

∆1(ζ) =

+∞∑
j=i

ajζ
j ,

so that ai 6= 0.
Given an integer m > 1, put

o := ord(∆m) and ∆m(ζ) =

+∞∑
j=o

bjζ
j ,

so that bo 6= 0. Then we have

∆m+1(ζ) =

+∞∑
j=o

bj((ζ + ∆1(ζ))j − ζj)

=
+∞∑
j=o

bj(ζ
j(1 + aiζ

i−1 + · · ·)j − ζj)

≡ boaioζo+i−1 mod 〈ζo+i〉

in k[[ζ]]. It follows that
ord(∆m+1) > ord(∆m) + in(gq), (3.3)

with equality if and only if ord(∆m) is not divisible by p. Since ord(∆1) = in(gq)+1, when in(gq)
is divisible by p for every integer m > 1 we have ord(∆m) = min(gq) + 1. Taking m = p and
using ord(∆p) = in+1(gq)+1, we conclude that in+1(gq) = pin(gq). This proves part (2). To prove
part (1), suppose that in(gq) is not divisible by p and that in+1(gq) is finite. Let ` be the integer
in {1, . . . , p−1} such that ` · in(gq) ≡ −1 mod 〈p〉. Applying (3.3) inductively, we obtain that for
every m in {1, . . . , `} we have ord(∆m) = min(gq)+1. Since ` ·in(gq)+1 is divisible by p, by (3.3)
with m = ` we have ord(∆`+1) > (` + 1)in(gq) + 2. In the case ` = p − 1 we obtain ord(∆p) >
pin(gq) + 2. If ` 6= p − 1, then using (3.3) inductively we also obtain ord(∆p) > pin(gq) + 2. So
this last inequality holds in all cases. Using ord(∆p) = in+1(gq) + 1 and the fact that in+1(gq)
and in(gq) are both divisible by q by Theorem D, we conclude that in+1(gq) > pin(gq) + q. This
proves part (1) and completes the proof of the lemma. 2

Proof of Proposition 3.2. To prove that we have (3.2) for every n > 0, we proceed by induction.
The case n = 0 follows from the fact that i0(gq) is divisible by q when finite; see Theorem D.
Let n > 0 be an integer for which (3.2) holds, and suppose that in+1(gq), and hence in(gq), is
finite. Using in+1(gq) > in(gq)+1 (cf. Lemma 3.6) and that in+1(gq)−in(gq) is divisible by qpn+1

(Theorem D), we have

in+1(gq) > in(gq) + qpn+1 > q
pn+1 − 1

p− 1
+ qpn+1 = q

pn+2 − 1

p− 1
.

This completes the proof of the induction step, and that (3.2) holds for every n > 0.
To prove the last part of the proposition, suppose p is odd (respectively, p = 2) and that for

some n > 1 (respectively, n > 2) we have in(gq) = q(pn+1 − 1)/(p− 1). We prove by induction
that for every ` in {0, . . . , n} we have in−`(g

q) = q(pn−`+1 − 1)/(p− 1). When ` = 0 this holds by
hypothesis. Suppose this holds for some ` in {0, . . . , n−1}. In particular, in−`(g

q) is not divisible
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by p, and by part (2) of Lemma 3.6 the number in−`−1(gq) is not divisible by p either. Thus, by

part (1) of the same lemma we have

pin−`−1(gq) + q 6 in−`(g
q) = q

pn−`+1 − 1

p− 1
,

and therefore in−`−1(gq) 6 q(pn−` − 1)/(p− 1). Since we have already proved the reverse

inequality, we obtain in−`−1(gq) = q(pn−` − 1)/(p− 1). This completes the proof of the induction

step, and of the fact that for every ` in {0, . . . , n} we have in−`(g
q) = q(pn−`+1 − 1)/(p− 1).

Combined with Lemma 3.5, this implies the last part of the proposition. 2

3.3 Almost minimally ramified power series

For a ground field of characteristic 2, in this section we study those power series that are ‘almost

minimally ramified’ (Proposition 3.7 and Definition 3.8). We use this and the results in § 3.2 to

characterize in arbitrary characteristic the occurrence of (3.1) in terms of (almost) minimally

ramified power series (Corollary 3.10). In turn, this allows us to show that, in some cases, the

existence of an optimal cycle implies that the reduction of the map is (almost) minimally ramified

(Corollary 3.11).

Proposition 3.7. Let k be a field of characteristic 2, γ a root of unity in k, q the order of γ,

and g(ζ) = γζ + · · · a power series in k[[ζ]]. Then the following properties hold:

(1) if g is not minimally ramified, then, for every integer n > 2,

in(gq) > 2n+1q; (3.4)

(2) if equality holds in (3.4) for n = 0 or for some n > 2, then it holds for every n > 0.

The proof of this proposition is at the end of this section.

Definition 3.8. Let k be a field of characteristic 2, γ a root of unity in k, and q the order

of γ. Then a power series g(ζ) = γζ + · · · in k[[ζ]] is almost minimally ramified if, for every

integer n > 0,

in(gq) = 2n+1q.

The following is a direct consequence of Proposition 3.7.

Corollary 3.9. Let k be a field of characteristic 2, γ a root of unity in k, and q the order of γ.

If g(ζ) = γζ+· · · is a power series in k[[ζ]] such that for some integer n> 2 we have in(gq) 6 2n+1q,

then g is either minimally ramified or almost minimally ramified.

The following corollary is a consequence of Propositions 3.2 and 3.7.

Corollary 3.10. Let p be a prime number, and k a field of characteristic p. Then for every

root of unity γ in k of order q, and every power series g(ζ) = γζ + · · · in k[[ζ]], the following

properties hold.

(1) Suppose that p is odd and that for some integer n > 1 such that in−1(gq) is finite, we

have in(gq)− in−1(gq) = qpn. Then g is minimally ramified.

(2) Suppose that p = 2 and that for some n > 2 such that in−1(gq) is finite, we have in(gq)−
in−1(gq) = 2nq. Then g is either minimally ramified, or almost minimally ramified.
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Proof. To prove part (1), suppose that p is odd and let n > 1 be such that in−1(gq) is finite
and in(gq) = in−1(gq) + qpn. Suppose by contradiction that in−1(gq) is divisible by p. Then by
part (2) of Lemma 3.6 we have in(gq) = pin−1(gq), so

qpn = in(gq)− in−1(gq) = (p− 1)in−1(gq).

Since in−1(gq) is divisible by q (Theorem D), this implies that p− 1 divides pn. However, this is
not possible because p− 1 is even and pn is odd. We conclude that in−1(gq) is not divisible by p.
Then part (1) of Lemma 3.6 implies that in(gq) > pin−1(gq) + q, so

in(gq) = in−1(gq) + qpn 6 (in(gq)− q)/p+ qpn,

and in(gq) 6 q(pn+1 − 1)/(p− 1). Then Proposition 3.2 implies that g is minimally ramified.
This proves part (1).

To prove part (2), suppose that p = 2 and let n > 2 be such that in−1(gq) is finite and in(gq) =
in−1(gq) + 2nq. By Lemma 3.6,

in(gq) = in−1(gq) + 2nq 6 in(gq)/2 + 2nq.

We thus have in(gq) 6 2n+1q, and by Corollary 3.9 the power series g is either minimally ramified
or almost minimally ramified. 2

Corollary 3.11. Let p, K, λ, and q be as in Lemma 2.3 and let n > 1 be an integer and P (z) =
λz + · · · in OK [z] a polynomial having an optimal cycle of period qpn. Then the following
properties hold:

(1) if p is odd, then P̃ is minimally ramified;

(2) if p = 2 and n > 2, then P̃ is either minimally ramified, or almost minimally ramified.

Proof. If the reduction of P is non-linear, then for every integer n the order in(P̃ q) is finite,
and therefore the assertions are direct consequences of Lemma 2.3 and Corollary 3.10. Thus, to
complete the proof of the corollary we just need to show that the reduction of P is non-linear.
Suppose by contradiction that this is not the case. Extending K if necessary, we assume that it
is algebraically closed. Then there is µ in mK\{0} such that the polynomial Q(w) := µ−1P (µw)
is in OK [w]. Note that the map Mµ(w) = µw maps the periodic points of Q to those of P
preserving minimal periods. Thus, applying Lemma 2.3 to Q, we conclude that P cannot have
an optimal cycle. This contradiction proves that the reduction of P is non-linear and completes
the proof of the corollary. 2

Proof of Proposition 3.7. To prove (3.4) with n = 2, note first that by Proposition 3.2 with n = 1
we have i1(gq) > 3q. Suppose that i1(gq) = 3q, and note that by Theorem D we have i0(gq) = q,
and either i2(gq) = 7q or i2(gq) > 11q. But we cannot have i2(gq) = 7q, for otherwise Lemma 3.5
would imply that g is minimally ramified. Thus, i2(gq) > 11q. This proves (3.4) with n = 2
when i1(gq) = 3q. If i1(gq) > 3q, then by Theorem D we have i1(gq) > 4q, and by Lemma 3.6 we
have i2(gq) > 2i1(gq) > 8q. This proves that in all the cases we have (3.4) with n = 2. For n > 3
inequality (3.4) is then obtained by applying Lemma 3.6 inductively. This completes the proof
of part (1).

To prove part (2), suppose that i0(gq) = 2q. Applying Lemma 3.6 repeatedly, we conclude that
for every n > 1 we have in(gq) = 2n+1q. Suppose now that for some n > 2 we have in(gq) = 2n+1q.
If n > 3, then, applying Lemma 3.6 repeatedly, we obtain

i2(gq) 6 in(gq)/2n−2 = 8q, i1(gq) 6 i2(gq)/2 6 4q, i0(gq) 6 i1(gq)/2 6 2q. (3.5)
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Together with Theorem D, this implies either i0(gq) = q or i0(gq) = 2q. In the latter case we
obtain the desired conclusion by applying part (2) of Lemma 3.6 repeatedly. It remains to consider
the case i0(gq) = q. Since i1(gq) 6 4q and i2(gq) 6 8q, by Theorem D we must have i1(gq) = 3q
and i2(gq) = 7q. However, by Lemma 3.5 this implies that g is minimally ramified. We thus
obtain a contradiction that completes the proof of part (2) and of the proposition. 2

4. Characterizing minimally ramified power series

In this section we give a characterization of minimally ramified power series (Theorem E). This
characterization is best expressed in terms of the iterative residue, which is a conjugacy invariant
introduced by Écalle in the complex setting; see [Éca75]. We define this invariant for a restricted
class of power series that is sufficient for our purposes.

Let p be a prime number and k a field of characteristic p. Denote by Kk the set of power
series g(ζ) in k[[ζ]] satisfying g(0) = 0 and g′(0) 6= 0. It is a group under composition. We say
that two power series g(ζ) and ĝ(ζ) in Kk are conjugate if there is a power series h(ζ) in Kk such
that ĝ(ζ) = h◦g◦h−1(ζ). Note that in this case we have ĝ′(0) = g′(0). Moreover, if γ := g′(0) is a
root of unity and we denote by q its order, then for every integer n > 0 we have in(gq) = in(ĝq).6

In particular, minimal ramification is invariant under conjugacy.
Let γ be a root of unity in k, let q be its order, and let g(ζ) be a power series in k[[ζ]]

satisfying g′(0) = γ. In the case γ = 1, so that q = 1, put

g(ζ) = ζ(1 + a1ζ + a2ζ
2 + · · ·),

and assume that a1 6= 0. Then the iterative residue résit(g)7 of g is

résit(g) := 1− a2

a2
1

.

Note that the condition a1 6= 0 is equivalent to i0(g) = 1. To define the iterative residue in the
case γ 6= 1, so that q > 2, we use the fact that g(ζ) is conjugate to a power series of the form

ĝ(ζ) = γζ

(
1 +

+∞∑
j=1

ajζ
jq

)
,

see Proposition 4.1. In general, the power series ĝ is not uniquely determined by g. To define
the ‘iterative residue’ of g we restrict to the case when a1 6= 0. This last condition is equivalent
to i0(gq) = q (Proposition 4.1), so it only depends on g. When this condition is satisfied, the
quotient a2/a

2
1 only depends on g (Proposition 4.1) and we define the iterative residue of g by

résit(g) :=
q + 1

2
− a2

a2
1

.

Note that in the case p = 2 the number q is odd, so the quotient (q + 1)/2 is an integer and it
thus represents an element of k. Note also that in this case we have q = 1 in k.

6 In fact, in(gq) + 1 is equal to the multiplicity of ζ = 0 as a fixed point of gqp
n

(ζ), and this is clearly invariant
under conjugacy.
7 We use Écalle’s notation ‘résit’, which is an abbreviation of the French term résidue itératif corresponding to
‘iterative residue’.
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Theorem E. Let p be a prime number, k a field of characteristic p, and γ a root of unity in k.
Moreover, let q be the order of γ and let g(ζ) be a power series in k[[ζ]] of the form

g(ζ) = γζ + · · · .

If p is odd (respectively, p = 2), then g is minimally ramified if and only if

i0(gq) = q and résit(g) 6= 0

(respectively, i0(gq) = q, résit(g) 6= 0, and résit(g) 6= 1).

When p is odd and q = 1, Theorem E is [Riv03, Exemple 3.19], phrased in terms of the
iterative residue.

A direct consequence of Theorem E is that for every integer q and every root of unity γ of
order q in a field of positive characteristic k, there is a minimally ramified polynomial g(ζ) =
γζ + · · · in k[ζ] of degree q + 1 or 2q + 1. This is exploited in § 5.

The proof of Theorem E is given in § 4.2, after showing in § 4.1 the results needed to define
the iterative residue.

4.1 Conjugacy classes
The purpose of this section is to prove the following proposition that was used above to define
the iterative residue.

Proposition 4.1. Let p be a prime number, k a field of characteristic p, γ a root of unity in k,
and q the order of γ. Then every power series g(ζ) in k[[ζ]] satisfying g(ζ) = γζ+ · · · is conjugate
to a power series of the form

ĝ(ζ) = γζ

(
1 +

+∞∑
j=1

ajζ
jq

)
.

Moreover, we have a1 6= 0 if and only if i0(gq) = q, and in this case the quotient a2/a
2
1 depends

only on g.

The proof of this proposition depends on a couple of lemmas.
The following lemma is stated in a stronger form than is needed for the proof of

Proposition 4.1; it is used in the proofs of Propositions 5.3 and 5.6.

Lemma 4.2. Let p be a prime number, k a field of characteristic p, and q > 2 an integer that is
not divisible by p. Given γ in k∗ satisfying γq = 1, and a1 and a2 in k, let g(ζ) be a power series
in k[[ζ]] satisfying

g(ζ) ≡ γζ(1 + a1ζ
q + a2ζ

2q) mod 〈ζ2q+2〉

in k[[ζ]]. Then for every integer ` > 1,

g`(ζ) ≡ γ`ζ
(

1 + `a1ζ
q +

(
`a2 + (q + 1)

`(`− 1)

2
a2

1

)
ζ2q

)
mod 〈ζ2q+2〉. (4.1)

Proof. We proceed by induction. When ` = 1 the congruence (4.1) holds by definition of g.
Let ` > 1 be an integer for which (4.1) holds. Then, using q > 2, we have

g`+1(ζ) ≡ γ`[γζ(1 + a1ζ
q + a2ζ

2q)]

×
(

1 + `a1ζ
q(1 + a1ζ

q)q +

(
`a2 + (q + 1)

`(`− 1)

2
a2

1

)
ζ2q

)
mod 〈ζ2q+2〉

205

https://doi.org/10.1112/S0010437X15007575 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007575


K.-O. Lindahl and J. Rivera-Letelier

≡ γ`+1ζ(1 + a1ζ
q + a2ζ

2q)

×
(

1 + `a1ζ
q +

(
`a2 +

(
q`+ (q + 1)

`(`− 1)

2

)
a2

1

)
ζ2q

)
mod 〈ζ2q+2〉

≡ γ`+1ζ

(
1 + (`+ 1)a1ζ

q +

(
(`+ 1)a2 + (q + 1)

`(`+ 1)

2
a2

1

)
ζ2q

)
mod 〈ζ2q+2〉.

This proves the induction step, and completes the proof of the lemma. 2

Lemma 4.3. Let p be a prime number, k a field of characteristic p, γ a root of unity in k, and
let q be the order of γ. Given A and Â in k∗ and B and B̂ in k, let g(ζ) and ĝ(ζ) be power series
in k[[ζ]] satisfying

g(ζ) ≡ γζ(1 +Aζq +Bζ2q) mod 〈ζ2q+2〉

and

ĝ(ζ) ≡ γζ(1 + Âζq + B̂ζ2q) mod 〈ζ2q+2〉

in k[[ζ]]. If g(ζ) and ĝ(ζ) are conjugate, then

B

A2
=

B̂

Â2
.

Proof. Let λ be in k∗ and let h(ζ) be a power series in k[[ζ]] of the form

h(ζ) = λζ(1 + β1ζ + β2ζ
2 + · · ·),

such that ĝ(ζ) = h ◦ g ◦ h−1(ζ). Then

h ◦ g(ζ) ≡ λγζ(1 + β1γζ + · · ·+ βq−1γ
q−1ζq−1) mod 〈ζq+1〉,

and on the other hand

ĝ ◦ h(ζ) ≡ γλζ(1 + β1ζ + · · ·+ βq−1ζ
q−1) mod 〈ζq+1〉.

Comparing coefficients, we obtain

β1 = · · · = βq−1 = 0.

Therefore,

h ◦ g(ζ) ≡ λγζ(1 +Aζq)

× (1 + βqζ
q + βq+1γζ

q+1 + · · ·+ β2q−1γ
q−1ζ2q−1) mod 〈ζ2q+1〉

≡ λγζ(1 + (A+ βq)ζ
q + βq+1γζ

q+1 + · · ·+ β2q−1γ
q−1ζ2q−1) mod 〈ζ2q+1〉.

On the other hand,

ĝ ◦ h(ζ) ≡ γλζ(1 + βqζ
q + · · ·+ β2q−1ζ

2q−1)(1 + Âλqζq) mod 〈ζ2q+1〉
≡ γλζ(1 + (βq + Âλq)ζq + βq+1ζ

q+1 + · · ·+ β2q−1ζ
2q−1) mod 〈ζ2q+1〉.

Comparing coefficients, we obtain

A = Âλq and βq+1 = · · · = β2q−1 = 0.
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In particular, we have

h(ζ) ≡ λζ(1 + βqζ
q + β2qζ

2q) mod 〈ζ2q+2〉.

Thus

h ◦ g(ζ) ≡ λγζ(1 +Aζq +Bζ2q)(1 + βqζ
q(1 +Aζq)q + β2qζ

2q) mod 〈ζ2q+2〉
≡ λγζ(1 +Aζq +Bζ2q)(1 + βqζ

q + (qβqA+ β2q)ζ
2q) mod 〈ζ2q+2〉

≡ λγζ(1 + (A+ βq)ζ
q + (B + (q + 1)βqA+ β2q)ζ

2q) mod 〈ζ2q+2〉,

and, on the other hand,

ĝ ◦ h(ζ) ≡ γλζ(1 + βqζ
q + β2qζ

2q)(1 + Âλqζq(1 + βqζ
q)q + B̂λ2qζ2q) mod 〈ζ2q+2〉

≡ γλζ(1 + βqζ
q + β2qζ

2q)(1 + Âλqζq + (qÂλqβq + B̂λ2q)ζ2q) mod 〈ζ2q+2〉
≡ γλζ(1 + (βq + Âλq)ζq + (β2q + (q + 1)Âλqβq + B̂λ2q)ζ2q) mod 〈ζ2q+2〉.

Comparing coefficients and using λq = A/Â, we obtain the lemma. 2

Proof of Proposition 4.1. The last assertion is given by Lemma 4.3. Since i0(ĝq) = i0(gq), the
equivalence between a1 6= 0 and i0(gq) = q is trivial when q = 1, and it follows from Lemma 4.2
with ` = q when q > 2.

It remains to prove the first assertion of the proposition. In the case q = 1, take ĝ = g.
Assume that q > 2. Let s0(ζ) and h0(ζ) be the power series in k[[ζ]] defined by

s0(ζ) := 1 and h0(ζ) := ζ.

We define inductively for every integer ` > 1 polynomials s`(ζ) and h`(ζ) in k[ζ] of degree at
most `+ 1 and [`/q], respectively, such that

h`(ζ) ≡ h`−1(ζ) mod 〈ζ`+1〉 and s`(ζ) ≡ s`−1(ζ) mod 〈ζ [(`−1)/q]〉,

and such that the power series g`(ζ) := h` ◦ g ◦ h−1
` (ζ) in k[[ζ]] satisfies

g`(ζ) ≡ γζs`(ζq) mod 〈ζ`+2〉. (4.2)

This clearly implies the first assertion of the proposition.
Note that

g0(ζ) := h0 ◦ g ◦ h−1
0 (ζ) = g(ζ) ≡ γζ mod 〈ζ2〉,

so (4.2) is satisfied when ` = 0. Let ` > 1 be an integer for which s`−1(ζ) and h`−1(ζ) are already
defined and satisfy (4.2) with ` replaced by `− 1, and let A in k be such that

g`−1(ζ) ≡ γζ(s`−1(ζq) +Aζ`) mod 〈ζ`+2〉.

In the case where ` is divisible by q, the congruence (4.2) is verified if we put

h`(ζ) := h`−1(ζ) and s`(ζ) := s`−1(ζ) +Aζ`/q.

Suppose that ` is not divisible by q. Put α := −A/(γ` − 1), and define

h(ζ) := ζ(1 + αζ`).
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Moreover, put
h`(ζ) := h ◦ h`−1(ζ) and s`(ζ) := s`−1(ζ).

Then
g`(ζ) = h` ◦ g ◦ h−1

` (ζ) = h ◦ g`−1 ◦ h−1(ζ),

so there is B in k such that

g`(ζ) ≡ γζ(s`−1(ζq) +Bζ`) mod 〈ζ`+2〉
≡ γζ(s`(ζ

q) +Bζ`) mod 〈ζ`+2〉.

Thus, to complete the proof of the induction step it is enough to show that B = 0. To do this,
note that by our definition of α,

h ◦ g`−1(ζ) = g`−1(ζ)(1 + αg`−1(ζ)`)

≡ γζ(s`−1(ζq) +Aζ`)(1 + αγ`ζ`) mod 〈ζ`+2〉
≡ γζ(s`−1(ζq) + (A+ αγ`)ζ`) mod 〈ζ`+2〉
≡ γζ(s`−1(ζq) + αζ`) mod 〈ζ`+2〉.

On the other hand,

g` ◦ h(ζ) ≡ γh(ζ)(s`−1(h(ζ)q) +Bh(ζ)`) mod 〈ζ`+2〉
≡ γζ(1 + αζ`)(s`−1(ζq) +Bζ`) mod 〈ζ`+2〉
≡ γζ(s`−1(ζq) + (α+B)ζ`) mod 〈ζ`+2〉.

Comparing coefficients, we conclude that B = 0. This completes the proof of the induction step
and of the proposition. 2

4.2 Proof of Theorem E
The proof of Theorem E is given after the following proposition, which is the special case q = 1.
When p is odd, the proposition is [Riv03, Exemple 3.19]. We include its short proof for
completeness.

Proposition 4.4. Let p be a prime number and k a field of characteristic p. Given a1 and a2

in k, let g(ζ) be a power series in k[[ζ]] satisfying

g(ζ) ≡ ζ(1 + a1ζ + a2ζ
2) mod 〈ζ4〉

in k[[ζ]]. If p is odd (respectively, p = 2), then g is minimally ramified if and only if

a1 6= 0 and a2 6= a2
1 (respectively, a1 6= 0, a2 6= 0, and a2 6= a2

1).

Proof. Note that i0(g) = 1 is equivalent to a1 6= 0. Since this is necessary for g to be minimally
ramified, we assume that a1 6= 0. In part (1) we prove the proposition when p is odd, and in
part (2) when p = 2.

(1) Suppose that p is odd. Note that by Proposition 3.2 the power series g is minimally
ramified if and only if i1(g) = p+ 1.

For n in {1, . . . , p} define the power series ∆n(ζ) in k[[ζ]] inductively by ∆1(ζ) := g(ζ)− ζ,
and for n in {2, . . . , p} by

∆n(ζ) := ∆n−1(g(ζ))−∆n−1(ζ).

Note that ∆p(ζ) = gp(ζ)− ζ.
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We prove first that

∆p−1(ζ) ≡ −ap−1
1 ζp − ap−2

1 (a2 − a2
1)ζp+1 mod 〈ζp+2〉. (4.3)

To do this, first we prove by induction that, for every n in {1, . . . , p− 1},

∆n(ζ) ≡ n!an1ζ
n+1 mod 〈ζn+2〉. (4.4)

When n = 1 this is true by the definition of ∆1. Let n in {1, . . . , p− 2} be such that (4.4) holds,
and let B in k be such that

∆n(ζ) ≡ n!an1ζ
n+1 +Bζn+2 mod 〈ζn+3〉.

Then

∆n+1(ζ) ≡ n!an1ζ
n+1(1 + a1ζ)n+1 +Bζn+2

− (n!an1ζ
n+1 +Bζn+2) mod 〈ζn+3〉.

≡ (n+ 1)!an+1
1 ζn+2 mod 〈ζn+3〉.

This proves the induction step and (4.4). To prove (4.3), put A′ := ap−2
1 and note that by (4.4)

with n = p− 2 there are B′ and C ′ in k such that

∆p−2(ζ) ≡ A′ζp−1 +B′ζp + C ′ζp+1 mod 〈ζp+2〉.

We thus have

∆p−1(ζ) ≡ A′ζp−1(1 + a1ζ + a2ζ
2)p−1 +B′ζp(1 + a1ζ)p + C ′ζp+1

− (A′ζp−1 +B′ζp + C ′ζp+1) mod 〈ζp+2〉
≡ −A′a1ζ

p +A′(a2
1 − a2)ζp+1 mod 〈ζp+2〉.

This proves (4.3).
To complete the proof, put

A′′ := −ap−1
1 and B′′ := −ap−2

1 (a2 − a2
1),

and note that by (4.3) there is C ′′ in k such that

∆p−1(ζ) ≡ A′′ζp +B′′ζp+1 + C ′′ζp+2 mod 〈ζp+3〉.

Using p > 3, we have

∆p(ζ) ≡ A′′ζp(1 + a1ζ + a2ζ
2)p +B′′ζp+1(1 + a1ζ)p+1 + C ′′ζp+2

− (A′′ζp +B′′ζp+1 + C ′′ζp+2) mod 〈ζp+3〉
≡ a1B

′′ζp+2 mod 〈ζp+3〉
≡ −ap−1

1 (a2 − a2
1)ζp+2 mod 〈ζp+3〉.

This proves that we have i1(g) = p + 1 if and only if a2 6= a2
1, and completes the proof of the

proposition when p is odd.
(2) Suppose that p = 2. Note that by Proposition 3.2 the power series g is minimally ramified

if and only if i2(gq) = 7.
Put

∆1(ζ) := g(ζ)− ζ and ∆2(ζ) := ∆1(g(ζ))−∆1(ζ),

209

https://doi.org/10.1112/S0010437X15007575 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007575


K.-O. Lindahl and J. Rivera-Letelier

and note that ∆2(ζ) = g2(ζ)− ζ. Letting a3 and a4 in k be such that

g(ζ) ≡ ζ(1 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4) mod 〈ζ6〉,

we have

∆2(ζ) ≡ a1ζ
2(1 + a1ζ + a2ζ

2 + a3ζ
3)2 + a2ζ

3(1 + a1ζ + a2ζ
2)3

+ a3ζ
4(1 + a1ζ)4 + a4ζ

5

− (a1ζ
2 + a2ζ

3 + a3ζ
4 + a4ζ

5) mod 〈ζ6〉
≡ a1ζ

2(1 + a2
1ζ

2) + a2ζ
3(1 + a1ζ + (a2 + a2

1)ζ2)

− (a1ζ
2 + a2ζ

3) mod 〈ζ6〉
≡ a1(a2 + a2

1)ζ4 + a2(a2 + a2
1)ζ5 mod 〈ζ6〉.

We thus obtain

g2(ζ) ≡ ζ(1 + a1(a2 + a2
1)ζ3 + a2(a2 + a2

1)ζ4) mod 〈ζ6〉. (4.5)

Put
∆̂1(ζ) := g2(ζ)− ζ and ∆̂2(ζ) := ∆̂1(g2(ζ))− ∆̂1(ζ),

and note that ∆̂1(ζ) = ∆2(ζ) and ∆̂2(ζ) = g4(ζ)− ζ. So, if we put

A := a1(a2 + a2
1) and B := a2(a2 + a2

1),

then by (4.5) there are C, D, and E in k such that

∆̂1(ζ) ≡ Aζ4 +Bζ5 + Cζ6 +Dζ7 + Eζ8 mod 〈ζ9〉.
Then we have

∆̂2(ζ) ≡ Aζ4(1 +Aζ3 +Bζ4)4 +Bζ5(1 +Aζ3)5 + Cζ6 +Dζ7 + Eζ8

− (Aζ4 +Bζ5 + Cζ6 +Dζ7 + Eζ8) mod 〈ζ9〉
≡ ABζ8 mod 〈ζ9〉
≡ a1a2(a2 + a2

1)2ζ8 mod 〈ζ9〉.
This proves that i2(gq) = 7 if and only if a2 6= 0 and a2 6= a2

1, and completes the proof of the
proposition when p = 2. 2

Proof of Theorem E. Since minimal ramification is invariant under conjugacy, by Proposition 4.1
we can assume that g(ζ) is of the form

g(ζ) = γζ

(
1 +

+∞∑
j=1

ajζ
jq

)
.

By Proposition 4.1 when q > 2, we have a1 6= 0 if and only if i0(gq) = q. Since this last condition
is necessary for g to be minimally ramified, from now on we assume that a1 6= 0.

Put

π(ζ) := ζq and ĝ(ζ) := ζ

(
1 +

+∞∑
j=1

ajζ
j

)q
,

and note that π ◦g = ĝ ◦π. Since q is not divisible by p, this implies that, for every integer n > 1,

in(g) = ord

((
gqp

n
(ζ)

ζ

)q
− 1

)
= ord

(
ĝqp

n ◦ π(ζ)− π(ζ)

π(ζ)

)
= qin(ĝq) = qin(ĝ).

Thus g is minimally ramified if and only if ĝ is. Then the theorem is a direct consequence of
Proposition 4.4. 2
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5. Optimal cycles

In this section we address the optimality of the periodic points lower bounds (1.4) and (2.2).
In § 5.1 we prove a general version of Theorem B which we state as Theorem B′. This result implies
in particular that the lower bound (1.4) is optimal. In § 5.2 we exhibit concrete polynomials that
satisfy the conclusions of Theorem A; see Propositions 5.3 and 5.6. Part (1) of Proposition 5.3
implies that inequality (2.2) is optimal. The proof of Theorem C is given at the end of § 5.2.

5.1 Optimality of the periodic points lower bound
The purpose of this section is to prove the following result, which is a more general version of
Theorem B.

Theorem B′. Let p be a prime number, (K, | · |) an algebraically closed field of residue
characteristic p, and q > 1 an integer that is not divisible by p. Then the following properties
hold.

(1) Let λ in K be such that |λ| = 1 and such that the order of λ̃ in K̃∗ is q. Moreover, let
n > 1 be an integer and P (z) = λz + · · · a polynomial in OK [z] having an optimal cycle of
period qpn. Then this is the only cycle of minimal period qpn of f , and if p is odd, then the
reduction of P is minimally ramified. If p = 2 and n > 2, then the reduction of P is minimally
ramified or almost minimally ramified.

(2) Let F be the prime field of K, γ a root of unity in K̃ of order q, and g(ζ) = γζ + · · · a
polynomial in K̃[ζ] that is either minimally ramified if p is odd, or minimally ramified or almost
minimally ramified if p = 2. Then for all integers n > 1 and d > max{deg(g), p}, there is a
non-zero polynomial Rn(α1, . . . , αd) in F [α1, . . . , αd] such that the following property holds. If
a1, . . . , ad in OK are such that the reduction of the polynomial P (z) := a1z+ · · ·+ adz

d is g and
such that Rn(a1, . . . , an) 6= 0, then P has an optimal cycle of period qpn.

The proof of Theorem B′ is at the end of this section. We use the following general criterion,
which is stated in a more general form than is needed for this section.

Proposition 5.1. Let p be a prime number, and (K, | · |) an algebraically closed ultrametric
field of residue characteristic p. Given an integer q > 1 that is not divisible by p, let λ in K

be such that |λ| = 1, and such that the order of λ̃ in K̃∗ is equal to q. Then, for every power
series f(z) = λz + · · · in OK [[z]], the following properties hold.

(1) Suppose that wideg(f q(z) − z) = q + 1 and λq 6= 1. Then f has a unique periodic orbit
in mK\{0} of minimal period q, and for every periodic point w0 in this orbit, inequality (2.2)
holds with equality.

(2) Let n > 1 be an integer, and suppose that

wideg

(
f qp

n
(z)− z

f qpn−1(z)− z

)
= qpn,

and that for every periodic point z0 of period qpn−1 we have (f qp
n
)′(z0) 6= 1. Then there is a

unique cycle of f of minimal period qpn, and this cycle is optimal.

Note that to formulate part (2), we used the fact that the power series f qp
n−1

(z) − z
divides f qp

n
(z)−z in OK [[z]]; this is obtained by applying Lemma 2.2 with g = f qp

n−1
and m = p.

Proof of Proposition 5.1. To prove part (1), note first that every periodic point of f in mK\{0} of
minimal period q is a zero of (f q(z)−z)/z. Thus, our hypothesis wideg(f q(z)−z) = q+1 implies
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that there is at most one periodic orbit of f in mK\{0} of minimal period q. To prove that such a
periodic orbit exists, note that our hypotheses λq 6= 1 and wideg(f q(z)−z) = q+1 imply that there
is at least one zero w0 of (f q(z)− z)/z in mK\{0}. Then w0 is a periodic point of f of period q,
and Lemma 2.1 implies that the minimal period of w0 is q. This proves that there is a unique
periodic orbit of f in mK\{0} of period q. In view of our hypothesis wideg(f q(z) − z) = q + 1,
part (1) of Lemma 2.3 implies that (2.2) holds with equality. This completes the proof of part (1).

To prove part (2), put

h(z) :=
f qp

n
(z)− z

f qpn−1(z)− z
,

and note that every periodic point of f of minimal period qpn is a zero of h. Thus, our
hypothesis wideg(h) = qpn implies that there is at most one periodic orbit of f of minimal
period qpn. To prove that such a periodic orbit exists, note that our hypothesis wideg(h) = qpn

implies that h has a zero z0 in mK . Then z0 is also a zero of f qp
n
(z) − z, and therefore z0 is

a periodic point of f of period qpn. Suppose by contradiction that the minimal period of z0 is
not qpn. Then Lemma 2.1 implies that z0 is of period qpn−1, and therefore a zero of f qp

n−1
(z)−z.

By hypothesis we also have (f qp
n
)′(z0) 6= 1. On the other hand, since z0 is also a zero of h, it

follows that z0 is a multiple zero of f qp
n
(z)−z. This implies that z0 is also a zero of (f qp

n
)′(z)−1,

so (f qn)′(z0) = 1. We thus obtain a contradiction that shows that the minimal period of z0

is qpn, and that there is a unique periodic orbit of f of minimal period qpn. Finally, note that
our hypothesis wideg(h) = qpn, together with part (2) of Lemma 2.3, implies that (2.2) holds
with equality. This completes the proof of part (2), and of the lemma. 2

Lemma 5.2. Let K be a field, d > 2 an integer, and a1, . . . , ad in K algebraically independent
over the prime field of K. If the characteristic p of K is positive, suppose in addition that d > p.
Then the polynomial

a1z + · · ·+ adz
d

in K[z] has no parabolic periodic point.

Proof. When the characteristic of K is zero, the desired assertion is Lemma 3.1. Suppose that
the characteristic p of K is positive and that d > p. Denote by Fp the prime field of K, and by Fp
an algebraic closure of Fp.

Suppose by contradiction that there are an integer n > 1 and a periodic point z0 of period n
of the polynomial P (z) := a1z + · · · + adz

d in K[z], such that (Pn)′(z0) is a root of unity.
Let σ : Fp[z0, a1, . . . , ad] → Fp be a ring homomorphism such that σ(ap) = 1, and such that for
each j in {1, . . . , d} different from p we have σ(aj) = 0. Then σ(P )(z) = zp, σ(z0) is a periodic
point of period n of σ(P ), and (σ(P )n)′(σ(z0)) = σ((Pn)′(z0)) is a root of unity. On the other
hand, σ(P )′ is the zero polynomial, so (σ(P )n)′(σ(z0)) = 0. This contradiction completes the
proof of the lemma. 2

Proof of Theorem B ′. The uniqueness statement in part (1) is given by part (2) of Lemma 2.3.
The rest of the assertions of part (1) are given by Corollary 3.11.

To prove part (2), let α0, . . . , αd be algebraically independent over F , and consider the
polynomial

Q(z) = α1z + · · ·+ αdz
d

in F [α1, . . . , αd][z]. Let Rn(α0, . . . , αd) in F [α0, . . . , αd] be the resultant of the polynomials

Qqp
n−1

(z)− z and (Qqp
n
)′(z)− 1.
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Lemma 5.2 with P =Q implies that Rn(α0, . . . , αd) is non-zero. If n and P are as in the statement
of part (2) of the theorem, then

wideg

(
P qp

n
(z)− z

P qpn−1(z)− z

)
= in(gq)− in−1(gq) = qpn,

and for every periodic point z0 of P of period qpn−1 we have (P qp
n
)′(z0) 6= 1. Then by part (2) of

Proposition 5.1 with f = P , the polynomial P has an optimal cycle of period qpn. This completes
the proof. 2

5.2 Concrete polynomials having optimal cycles
The purpose of this section is to exhibit concrete polynomials having optimal cycles. The case
where p is odd is covered by Proposition 5.3, and the case p = 2 by Proposition 5.6. Theorem A
is a direct consequence of these propositions.

The proof of Theorem C is given at the end of this section.

Proposition 5.3. Let p be a prime number, and (K, | · |) an algebraically closed ultrametric
field of residue characteristic p. Given an integer q > 1 that is not divisible by p, let λ in K be
transcendental over the prime field of K, such that |λ| = 1, and such that the order of λ̃ in K̃∗

is equal to q. Moreover, let P (z) be the polynomial in K[z] defined by

P (z) := λz(1 + zq),

if p does not divide q + 1, and by

P (z) := λz(1 + zq + z2q)

otherwise. Then the following properties hold.

(1) There is a unique periodic orbit of P in mK\{0} of minimal period q, and for every
periodic point w0 in this orbit, inequality (2.2) holds with equality.

(2) If p is odd, then for every n> 1 there is a unique periodic orbit of P of minimal period qpn.
Furthermore, for every point z0 in this orbit, inequality (1.4) holds with equality.

Remark 5.4. If K in the proposition above is of positive characteristic, then for λ in K such
that |λ| = 1 and such that the order of λ̃ in K̃∗ is q, the hypothesis that λ is transcendental over
the prime field of K is equivalent to λq 6= 1.

Remark 5.5. In the case where p divides q+ 1, our results imply that the conclusions of part (2)
of Proposition 5.3 are false for the polynomial λz(1 + zq).

Proposition 5.6. Let (K, | · |) be an algebraically closed ultrametric field of residue
characteristic 2. Given an odd integer q > 1, let λ in K be transcendental over the prime
field of K, such that |λ| = 1, and such that the order of λ̃ in K̃∗ is q. In the case where the
characteristic of K is zero, put

Q(z) := λz(1 + z2q).

In the case where the characteristic of K is 2, let µ in mK be algebraically independent with
respect to λ over the prime field of K, and put

Q(z) := λz(1 + µzq + z2q).

Then, for every integer n > 1 there is a unique periodic orbit of Q of minimal period 2nq.
Furthermore, for every periodic point z0 in this orbit, inequality (1.4) holds with equality.
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Remark 5.7. If K in either Proposition 5.3 or 5.6 is of characteristic zero, then λ can be allowed
to be algebraic over the prime field of K, as long as λ avoids a finite set of exceptional values that
depends on n. Similarly, in the case where K in Proposition 5.6 is of characteristic 2, we show
that for each n there is a non-zero polynomial Rn in λ and µ with coefficients in the prime field
of K, such that the conclusions of the proposition hold whenever Rn(λ, µ) is non-zero. Thus, λ
and µ can be allowed to be algebraic over the prime field of K, as long as (λ, µ) avoids a curve
in K ×K that depends on n.

Remark 5.8. In the Appendix we show that, when K is of characteristic 2, the conclusions of
Proposition 5.6 are false if we let µ = 0; see Remark A.2.

The following lemma is the main ingredient in the proofs of Propositions 5.3 and 5.6, and of
Theorem C.

Lemma 5.9. Let K be a field, and λ in K that is transcendental over the prime field of K.
Moreover, let q > 1 be an integer, and let P (z) be the polynomial in K[z] defined by either

P (z) := λz(1 + zq) or P (z) := λz(1 + zq + z2q).

If the characteristic p of K is positive, suppose in addition that p does not divide q. Then P (z)
has no parabolic periodic point.

Proof. Let F be the prime field of K. Without loss of generality assume that K is an algebraic
closure of the field F (λ).

Case 1: the characteristic of K is zero. We give the proof in the case P (z) = λz(1+zq+z2q). The
proof in the case P (z) = λz(1+zq) is analogous.8 Given α in K, consider the polynomial Qα(z) :=
α2z + αzq+1 + z2q+1 in K[z]. Note that if for β in K we put hβ(z) := βz, then

h−1
β ◦Qβq ◦ hβ(z) = β2qz(1 + zq + z2q).

Thus, to prove that P (z) has no parabolic periodic point, it is enough to show that if α is
transcendental over F , then Qα has no parabolic periodic point.

Let m > 1 be an integer, and let R(α) be the resultant of the polynomials

Qmα (z)− z and (Qmα )′(z)− 1,

viewed as a polynomial in α with coefficients in F . Note that Qα has a periodic point of period m
and multiplier 1 if and only if R(α) = 0. Since α is transcendental over F , to show that R(α) is
different from zero it is enough to show that the polynomial R is non-zero. Note that when α = 0
we have Qm0 (z) = z(2q+1)m , and that the polynomials

Qm0 (z)− z = z(2q+1)m − z and (Qm0 )′(z)− 1 = (2q + 1)mz(2q+1)m−1 − 1

have no common zero. This implies that R(0) is different from zero, and therefore that R is
non-zero. We conclude that R(α) is different from zero, and that Qα has no periodic point of
period m and multiplier 1. Since m > 1 is arbitrary, we conclude that Qα, and hence P , has no
parabolic periodic point.

8 Note also that the proof in Case 2.1, stated for the case where the characteristic of K is positive, also works in
the case where the characteristic of K is zero.
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Case 2: the characteristic p of K is positive. Let m > 1 be an integer, and let R(λ) be the
resultant of the polynomials

Pm(z)− z and (Pm)′(z)− 1,

viewed as a polynomial in λ with coefficients in F . Note that P has a periodic point of period m
and multiplier 1 if and only if R(λ) = 0. Since λ is transcendental over the prime field of K, to
prove that R(λ) is different from zero it is enough to show that the polynomial R is non-zero.
To do this, endow K with a non-trivial norm | · |, let λ0 in K be such that |λ0| > 1, and let P0(z)
be the polynomial in K[z] defined in the same way as P (z), but with λ replaced by λ0. We show
below, in several cases, that every periodic point of P0 is repelling. This implies that P0 has no
parabolic periodic point, and therefore that R(λ0) is different from zero. In turn this implies
that R is non-zero, that R(λ) is different from 0, and that P has no periodic point of period m
and multiplier 1. Since m > 1 is an arbitrary integer, this completes the proof of the lemma.

Case 2.1: P0(z) = λ0z(1 + zq). To prove that every periodic point of P0(z) := λ0z(1 + zq) is
repelling, it is enough to show that for every periodic point w of P0 we have |P ′0(w)| > 1. Note
first that if w in K satisfies |w| > 1, then

|P0(w)| = |λ0| · |w|q+1 > |w| > 1.

Repeating this argument, we obtain that for every integer ` > 1 we have |P `0(w)| > |w| > 1, so w
cannot be periodic. On the other hand, if w is in OK and

|w| = |1 + wq| = 1,

then |P0(w)| = |λ0| > 1, so by the previous consideration w cannot be periodic either. This proves
that every periodic point w of P0 is such that either

|w| < 1 or |1 + wq| < 1.

If |w| < 1, then
|P ′0(w)| = |λ0| · |1 + (q + 1)wq| = |λ0| > 1.

Otherwise |1 + wq| < 1, so |wq| = 1,

|P ′0(w)− λ0qw
q| = |λ0| · |1 + wq| < |λ0|,

and therefore |P ′0(w)| = |λ0| > 1. This completes the proof that every periodic point of P0 is
repelling.

Case 2.2: P0(z) = λ0z(1 + zq + z2q) and p 6= 3. As in Case 2.1, to prove that every periodic point
of P0 is repelling, we prove that for every periodic point w of P0 we have |P ′0(w)| > 1. Note first
that if w is in K and |w| > 1, then

|P0(w)| = |λ0| · |w|2q+1 > |w| > 1,

so w cannot be periodic. On the other hand, if w is in OK and

|w| = |1 + wq + w2q| = 1,

then |P0(w)| = |λ0| > 1, so by the previous consideration w cannot be periodic either. This proves
that each periodic point w of P0 satisfies either

|w| < 1 or |1 + wq + w2q| < 1.
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If |w| < 1, then

|P ′0(w)| = |λ0| · |1 + (q + 1)wq + (2q + 1)w2q| = |λ0| > 1.

Suppose that |1 + wq + w2q| < 1, and note that, together with our assumption p 6= 3, this
implies |1 + 2wq| = 1. On the other hand,

|P ′0(w)− λ0qw
q(1 + 2wq)| = |λ0| · |1 + wq + w2q| < |λ0|,

so |P ′0(w)| = |λ0| > 1. This completes the proof that every periodic point of P0 is repelling.

Case 2.3: P0(z) = λ0z(1 + zq + z2q) and p = 3. Note that

P0(z) = λ0z(1− zq)2,

and that the fixed point z = 0 of P0 is repelling.
To prove that every periodic point of P0 is repelling, consider the function % : K → (0,+∞]

defined by

%(z) :=
1

|z|2/3 · |1− zq|1/3
,

viewed as a singular metric % on K. Below we show that for every periodic point w0 of P0 different
from zero, the derivative

|P ′0|%(w0) := |P ′0(w0)|%(P0(w0))

%(w0)

is finite and satisfies |P ′0|%(w0) > 1. Denoting the orbit of w0 by O, this implies that the
multiplier

∏
w∈O P

′
0(w) of w0 satisfies∣∣∣∣∏
w∈O

P ′0(w)

∣∣∣∣ =
∏
w∈O

(
|P ′0(w)|%(P0(w))

%(w)

)
=
∏
w∈O
|P ′0|%(w) > 1,

so w0 is repelling. Since z = 0 is a repelling fixed point of P0, it follows that every periodic point
of P0 is repelling.

Let w0 be a periodic point of P0 different from zero, and let O be its orbit. Note that every
element w of O is different from zero. On the other hand, no element of O can be a zero of 1−zq,
because every zero of 1− zq is mapped to zero by P0. Thus, % is finite on O, and therefore |P ′0|%
is also finite on O; in particular, |P ′0|%(w0) is finite. It remains to prove that |P ′0|%(w0) > 1. To
do this, we prove first that for each w in O we have either |w| < 1 or |1− wq| < 1. Suppose by
contradiction that for some w in O we have |w| > 1. This implies that

|P0(w)| = |λ| · |w|2q+1 > |w| > 1.

Repeating this argument, we conclude that for every integer ` > 1 we have |P `0(w)| > |w| > 1,
so w cannot be periodic. This contradiction proves that O is contained in OK . Suppose by
contradiction that for some w in O we have |w| = |1− wq| = 1. Then |P0(w)| = |λ0| > 1, so by
the previous consideration w cannot be periodic. This contradiction proves that for every w in O
we have either |w| < 1 or |1− wq| < 1. To prove that |P ′0|%(w0) > 1, suppose first that |w0| < 1.
Note that P0(w0) is in O, and therefore in OK . On the other hand, we have

|P0(w0)| = |λ0| · |w0| and |P ′0(w0)| = |λ0|,
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so

|P ′0|%(w0) = |λ0| ·
(
|w0|
|P0(w0)|

)2/3

· 1

|1− P0(w0)q|1/3

= |λ0|1/3 ·
1

|1− P0(w0)q|1/3
> |λ0|1/3 > 1.

It remains to consider the case where |1 − wq0| < 1. Then there is a zero ζq of 1 − zq, such
that ε := w0 − ζq satisfies |ε| < 1. Note that

|1− wq0| = |ε|, |P0(w0)| = |λ0| · |ε|2 and |P ′0(w0)| = |λ0| · |ε|.
So

|P ′0|%(w0) = |λ0| · |ε| ·
1

|P0(w0)|2/3
·
(
|1− wq0|

|1− P0(w0)q|

)1/3

= |λ0|1/3 ·
1

|1− P0(w0)q|1/3
> |λ0|1/3 > 1.

This completes the proof of the lemma. 2

Proof of Proposition 5.3. Suppose that p is odd. Theorem E implies that P̃ is minimally ramified.
Thus, wideg(P q(z)− z) = q + 1, and for every integer n > 1 we have

wideg

(
P qp

n
(z)− z

P qpn−1(z)− z

)
= qpn.

Then the desired assertions are a direct consequence of Proposition 5.1 and Lemma 5.9.
It remains to prove part (1) when p = 2. Note that our hypotheses imply that q is odd,

and that P (z) = λ(1 + zq + z2q). By Lemma 4.2 with p = 2 and ` = q, we have i0(P̃ q) = q.
Then wideg(P q(z)− z) = q+ 1, and the desired assertion is given by part (1) of Proposition 5.1.
This completes the proof of the proposition. 2

Proof of Proposition 5.6. By Lemma 4.2 with p = 2 and ` = q, we have i0(P̃ ) = 2q. So by part (2)
of Proposition 3.7, P̃ is almost minimally ramified. It follows that, for every integer n > 1,

wideg

(
P 2nq(z)− z
P 2n−1q(z)− z

)
= 2nq.

Thus, in view of part (2) of Proposition 5.1, it is enough to prove that P has no parabolic periodic
point. If the characteristic of K is zero, this is given by Lemma 5.9 with p = 2 and q replaced
by 2q. Suppose that the characteristic of K is 2. Let m > 1 be an integer, and let R(λ, µ) be the
resultant of the polynomials

Qm(z)− z and (Qm)′(z)− 1,

viewed as a polynomial in λ and µ with coefficients in the prime field F of K. Note that Q has
a periodic point of period m and multiplier 1 if and only if R(λ, µ) = 0. Since µ is algebraically
independent with respect to λ over F , to prove that R(λ, µ) is different from zero it is enough to
show that the polynomial R is non-zero. To do this, let P (z) be the polynomial in K[z] defined
by

P (z) = λ(1 + zq + z2q).

By Lemma 5.9 this polynomial has no parabolic periodic point. This implies that R(λ, 1) is
different from zero, and therefore that R is non-zero. Since m > 1 is arbitrary, this completes
the proof of the proposition. 2
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Proof of Theorem C. Part (2) is given by Corollary 3.11. To prove part (1), note that the

hypotheses imply that, for every n > 1,

wideg

(
P qp

n

λ (z)− z
P qp

n−1

λ (z)− z

)
= qpn.

So, in this case, the assertions of the theorem are a direct consequence of Lemma 5.9 with q = 1

and part (2) of Proposition 5.1. 2
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Appendix. Normalized polynomials without periodic points of high minimal period

In this appendix we give examples of normalized polynomials having no periodic point of high

minimal period (Proposition A.1). A consequence is that a polynomial of the form f(z) = λz(1+

z2q) cannot be used to show that inequality (1.4) is sharp when p = 2 and K is of characteristic 2;

see Remark A.2 below.

Proposition A.1. Let p be a prime number and (K, | · |) an ultrametric field of characteristic p.

Moreover, let λ in K be such that |λ| = 1 and such that the order q of λ̃ in K̃∗ is finite, and

let S(z) be a polynomial in OK [z] such that S(0) = 1 and such that wideg(S(z)− 1) is finite. If

in addition λq 6= 1, then the minimal period of every periodic point of

Q(z) := λzS(z)p

in mK\{0} is equal to q. Furthermore, the set F of all such points is non-empty and finite, and

for each a in F the multiplicity ma of a as a fixed point of Qq is finite and divisible by p, and

for every integer n > 1 the multiplicity of a as a fixed point of Qqp
n

is equal to pnma.

Note that the hypotheses of this proposition imply that λ is not a root of unity. Thus z = 0 is

an irrationally indifferent fixed point of Q, and therefore for every integer k > 1 the multiplicity

of z = 0 as a fixed point of Qk is equal to 1.

Remark A.2. Letting p = 2 and S(z) = 1 + zq in Proposition A.1, we obtain that for every

integer n > 1 the polynomial Q(z) = λz(1 + z2q) has no periodic point of minimal period equal

to qpn. This shows that the conclusions of Proposition 5.6 are false if we let µ = 0.

Remark A.3. For Q as in Proposition A.1, the set mK is an indifferent component of the Fatou set

of Q.9 So Proposition A.1 shows that Q has an indifferent component of the Fatou set that only

9 This follows from the fact that Q has integer coefficients and that its reduction is of degree at least 2; see, for
example, [Riv03, Propositions 3.18 and 5.2].
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has finitely many periodic points.10 In contrast, in the p-adic case every indifferent component
of the Fatou set contains infinitely many periodic points; see [Riv03, Corollaire 5.13].

The rest of this appendix is devoted to the proof of Proposition A.1. The following lemma is
the main ingredient in the proof. Recall that for an ultrametric field K and a polynomial P (z)
in OK [z], we use 〈P (z)〉 to denote the ideal of OK [z] generated by this polynomial.

Lemma A.4. Let K be an ultrametric field characteristic p, let A(z) and T0(z) be polynomials
in OK [z], and put

Q†(z) := z(1 +A(z) · T0(z))p.

Then for each integer n > 1 there exists a polynomial Tn(z) in OK [z] such that

Qp
n

† (z) = z(1 +A(z)p
n · Tn(z))p. (A.1)

Moreover, T1(0) = T0(0)p, and for n > 2 we have in OK [z],

Tn(z) ≡ Tn−1(z)p mod 〈zA(z)p
n−1〉. (A.2)

Before proving this lemma, we state and prove the following result.

Lemma A.5. Let K be an ultrametric field of characteristic p, let U#(z) be a polynomial
in OK [z], and put Q#(z) := zU#(z)p. Then for each integer k > 1 there is a polynomial U(z)
in OK [z] such that Qk#(z) = zU(z)p.

Proof. We proceed by induction in k. The desired property is satisfied with k = 1 by definition
of Q#. Given an integer k > 1, suppose that there is a polynomial U(z) in OK [z] such
that Qk#(z) = zU(z)p. Then

Qk+1
# (z) = Qk#(z)U#(Qk#(z))p = z(U(z)U#(Qk#(z)))p.

This completes the proof of the induction step and of the lemma. 2

Proof of Lemma A.4. We prove the first assertion of the lemma by induction. Let n > 0 be an
integer for which there is a polynomial Tn(z) in OK [z] satisfying (A.1). We prove that there is
a polynomial Tn+1 in OK [z] satisfying (A.1) with n replaced by n + 1. To do this, we prove by
induction that, for every integer j > 1,

Qjp
n

† (z) ≡ z
j−1∏
k=0

[1 +A(z)p
n · Tn(Qkp

n

† (z))]p mod 〈zp+1A(z)p
2n+2〉. (A.3)

By the first induction hypothesis this holds for j = 1. Suppose that it holds for an integer j > 1.
Using the first induction hypothesis again, we have

Q
(j+1)pn

† (z) = Qjp
n

† (z)[1 +A(Qjp
n

† (z))p
n · Tn(Qjp

n

† (z))]p. (A.4)

10 Other examples of such Fatou components (which, however, only contain parabolic periodic points) can be
obtained as follows. Consider a polynomial P (z) in K(z) of degree at least 2 whose coefficients are algebraic over
the prime field of K, and such that z = 0 is an indifferent fixed point of P . Then P has good reduction, and
therefore mK is a Fatou component of P ; see, for example, [Riv03, § 4.5]. Furthermore, z = 0 is the only periodic
point of P in mK . In fact, if we denote by q > 1 the order of P ′(0), then for every integer k > 1 the multiplicity
of z = 0 as a fixed point of P qk coincides with wideg(P qk(z)−z). Together with Lemma 2.1, this implies that z = 0
is the only periodic point of P in mK .
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On the other hand, by the second induction hypothesis we have

Qjp
n

† (z) ≡ z mod 〈zA(z)p
n+1〉. (A.5)

Consequently
A(Qjp

n

† (z)) ≡ A(z) mod 〈zA(z)p
n+1〉,

and therefore
A(Qjp

n

† (z))p
n ≡ A(z)p

n
mod 〈zA(z)p

2n+1〉.

Together with (A.3) and (A.4), we obtain (A.3) with j replaced by j+1. This proves the induction
step of the second induction, and shows that (A.3) holds for every integer j > 1. To complete
the proof of the induction step of the first induction, note that for each integer k > 1 we have
by (A.5), with j replaced by k,

Tn(Qkp
n

† (z)) ≡ Tn(z) mod 〈zA(z)p
n+1〉.

So if we put mn := min{p2n+2, pn+2 + pn+1}, then by (A.3) we have

Qjp
n

† (z) ≡ z(1 +A(z)p
n · Tn(z))jp mod 〈zp+1A(z)mn〉.

Taking j = p, we obtain

Qp
n+1

† (z) ≡ z(1 +A(z)p
n+1 · Tn(z)p)p mod 〈zp+1A(z)mn〉.

Since mn > pn+2, using Lemma A.5 with U#(z) = 1+A(z)T0(z) and k = pn+1, we conclude that
there is a polynomial Tn+1(z) in OK [z] for which (A.1) is satisfied with n replaced by n+ 1. We
have thus completed the proof of the first induction step and, as a consequence, shown that (A.1)
holds for every integer n > 1.

When n = 0 we have m0 = p2 and the last displayed equation implies that T1(0) = T0(0)p.
On the other hand, note that for n > 2 we have mn−1 = pn+1 +pn, so the last displayed equation
with n replaced by n− 1, combined with Lemma A.5 with U#(z) = 1 + A(z)T0(z) and k = pn,
shows (A.2) for n > 2. This completes the proof of the lemma. 2

Proof of Proposition A.1. Extending K if necessary, assume that K is algebraically closed and
complete with respect to | · |. Let η in K be such that ηp = λ, so that

Q(z) = z(ηS(z))p and
Q(z)− z

z
= (ηS(z)− 1)p.

In the case q > 2, it follows that the polynomial Q has no fixed point in mK\{0}. Thus, in
view of Lemma 2.1, to prove that the minimal period of every periodic point of Q in mK\{0}
is equal to q, we just need to show that for every integer n > 1, every fixed point of Qqp

n

in mK is also a fixed point of Qq. To do this, note that by Lemma A.5 with U#(z) = ηS(z)
and k = q there is a polynomial U(z) inOK [z] such that Qq(z) = zU(z)p. Our hypothesis S(0) = 1
implies that U(0) = 1. On the other hand, our hypothesis that wideg(S(z)− 1) is finite implies
that wideg(Q) and, hence, wideg(Qq) are both finite and greater than or equal to 2. In turn,
this implies that wideg(U(z) − 1) is finite and non-zero. Thus the set F of fixed points of Qq

in mK\{0} is non-empty and finite, and for each a in F the multiplicity ma of a as a fixed point
of Qq is finite and divisible by p. Put

A(z) :=
∏
a∈F

(z − a)ma/p,
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and note that, by applying Lemma 2.4 repeatedly, it follows that there is a polynomial T0(z)
in OK(z) such that

|T0(0)| = 1 and Qq(z) = z(1 +A(z) · T0(z))p.

So we can apply Lemma A.4 with Q† = Qq. We obtain that for each integer n > 1 there is a
polynomial Tn(z) in OK [z] such that

Qqp
n
(z) = z(1 +A(z)p

n · Tn(z))p. (A.6)

Moreover, by an induction argument we conclude that for every n > 1 we have Tn(0) = T0(0)p
n
.

In particular, for every integer n > 1 we have |Tn(0)| = 1. This implies that every fixed point Qqp
n

in mK\{0} is a zero of A and therefore a fixed point of Qq. Furthermore, for every zero a of A,
the multiplicity of z = a as a zero of Qqp

n
(z)− z is equal to pnma. This completes the proof of

the proposition. 2
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