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Abstract. In this paper, we present some geometric characterizations of the
Moufang quadrangles of mixed type, i.e., the Moufang quadrangles all the points
and lines of which are regular. Roughly, we classify generalized quadrangles with
enough (to be made precise) regular points and lines with the property that the dual
nets associated to the regular points satisfy the Axiom of Veblen-Young, or a very
weak version of the Axiom of Desargues. As an application we obtain a geometric
characterization and axiomatization of the generalized inversive planes arising from
the Suzuki-Tits ovoids related to a polarity in a mixed quadrangle. In the perfect case
this gives rise to a characterization with one axiom less than in a previous result by the
second author.

2000 Mathematics Subject Classification. 51E12.

1. Introduction. In 1974, Jacques Tits [8] introduced what he called groups of
mixed type, as a certain generalization of algebraic groups. This was motivated by
the fact that certain spherical buildings arise from such groups and Tits classified all
spherical buildings of rank at least three in [8].

Roughly, the groups of mixed type of rank 2 arise when the weight of the edge
of the rank 2 Coxeter diagram is equal to the characteristic of the underlying field.
Indeed, in the commutation relation of the root groups, the weight w of the edge turns
up as a coefficient, and as a power. If the corresponding term does not vanish (i.e., if
in the underlying field w is not equal to 0), then we are in the generic case where we are
able to distinguish long and short roots (by the commutation relations, but also by the
geometry of the corresponding building). However, if w = 0, i.e., if the characteristic
of the underlying field is equal to w (if the diagram is included in a rank 3 diagram,
then only the cases w ∈ {1, 2, 3} occur), then the commutation relations become much
more symmetric, allowing for diagram automorphisms. If the field is perfect, not
much extra happens since the symmetry is then up to the field Frobenius automorphism
x �→ xw, and we only obtain an extra group automorphism (diagram automorphism).
However, if the field is not perfect, then this “duality” is not surjective anymore, and
we obtain the peculiar situation in which the rank 2 geometry looks symmetric, but
isn’t. Technically, the duality maps the geometry into itself, but not onto. In other
words, the geometry (building) is isomorphic to the dual of a subgeometry. On the
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algebraic level, we obtain an infinite descending chain of algebraic structures, each one
containing the next one, and the first one parameterizing the chambers in a certain
panel. Since we have two different type of panels, we have two such chains (which are
mapped onto each other by the duality). The peculiar thing is now that “interlacing”
subchains define subgeometries and the corresponding automorphism groups are the
groups of mixed type. If the original chains consist of fields, then the interlacing chains
may consist of fields, too, but also of vector spaces. The latter only happens for w = 2.

In the present paper, we study the case w = 2 in a geometric way. This is the case
where the Coxeter diagram has a weight two edge, hence a double bond. Geometrically,
this is the case of the (Moufang) generalized quadrangles. In the (algebraically) split
case, we have a symplectic quadrangle over some field �. If � has characteristic 2 and
is perfect, then this generalized quadrangle, denoted by W(�), is self-dual. If � has
characteristic 2 and is not perfect, then we are in the mixed case. There are two types of
panels here, and hence two different parameterizations. Any point row is parameterized
by � ∪ {∞}, while any line pencil is parameterized by �2 ∪ {∞} (here, �2 is the field
of squares of �). We obtain two chains � ⊇ �2 ⊇ �4 ⊇ · · · and �2 ⊇ �4 ⊇ �8 ⊇ · · · .
An interlacing chain may look like �′ ⊇ �′2 ⊇ �′4 ⊇ · · · , with �′ a field satisfying
�2 ⊆ �′ ⊆ �. But we may also substitute in the first chain � by a vector space L over
�′ contained in �, and in the second chain �′ by a vector space L′ over �2 contained
in �′. This is the most general case that can occur. We denote the corresponding
(Moufang) quadrangle by W(�, �′; L, L′).

The quadrangle W(�, �′; L, L′) has an interesting geometric property. Indeed, all
its points and lines are regular (for precise definitions, see below). Moreover, the dual
nets associated to the regular elements also satisfy some regularity properties. In a
very weak form one can say that these dual nets satisfy a certain Little Desargues
Axiom. We will show that this axiom, together with the regularity of points and lines,
characterizes all quadrangles of mixed type. In order to answer the question of the
geometric difference between the cases where both/exactly one/none of L and L′ are
fields, we consider the Veblen & Young Axiom in these dual nets. We will show that,
if a generalized quadrangle has enough regular points and lines, and if the dual nets
related to the regular points satisfy the Axiom of Veblen & Young, then the quadrangle
is of mixed type and L′ is a field.

But also the above chains give rise to a beautiful geometric characterization of the
mixed quadrangles. The relevant property is here that a mixed quadrangle � contains
a subquadrangle �′ isomorphic to � with the property that every triad of points (a
triad being a set of three pairwise noncollinear points) in �′ has a center in �. It turns
out that this property, together with the regularity of all points, characterizes the class
of mixed and symplectic quadrangles.

Another feature of the mixed quadrangles is that some of them admit polarities, i.e.,
dualities of order 2. In this case, the centralizer of that polarity in the little projective
group of the quadrangle is a (generalized) Suzuki group. The set of elements fixed
under a polarity can be given the structure of a geometry which is called a generalized
inversive plane in [13]. The main result of [13] says that the automorphism groups of
these generalized inversive planes are essentially the (generalized ) Suzuki groups. In
the present paper, we use the above characterizations of the mixed quadrangles to
axiomatize the generalized inversive planes corresponding to the generalized Suzuki
groups. In the perfect case, this has already been done by the second author in [10].
So we relax the axioms of [10] to deal with the more general cases of imperfect fields
(this uses the Veblen & Young Axiom) and vector spaces (this uses the Little Desargues
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Axiom). As a corollary, these new results let us reduce the characterization in [10] by
one axiom (and the axiom that will be deleted was the only artificial one in the list
and by far the most involved one — hence the characterization of perfect Suzuki-Tits
ovoids looks a lot nicer now!)

We end this introduction by mentioning that all our results hold in both the infinite
and finite case. But in the finite case there are no proper mixed quadrangles since a
finite field is always perfect. All the results of the present paper that are also valid in this
improper mixed case are actually well known for finite quadrangles. But some of our
proofs give rise to alternative arguments. As an example we mention that Theorem 5.5
immediately implies that, if a finite generalized quadrangle of order q has an ovoid of
regular points, then all corresponding projective planes are classical.

2. Preliminaries and main results.

2.1. Abstract generalized quadrangles. We assume that the reader is familiar with
the basic notions of the theory of generalized quadrangles, and we refer to [3] and
[11] for the definitions not given here. Let us just mention that we will always assume
that a generalized quadrangle is thick, i.e., every point or line is incident with at least
three elements, and that we call two points (respectively lines) opposite if they are not
collinear (respectively concurrent). In symbols: if two points (or two lines) x, y are not
opposite, then we denote x ∼ y; if they are opposite, then we write x �∼ y (and note
that a point is collinear with itself, hence not opposite itself; similarly for any line).

Note that, if � = (P,L,I) is a generalized quadrangle, then also (L,P,I) is a
generalized quadrangle. We will denote the latter by �D and call it the dual of �. The
duality principle states that in every definition and statement, one may interchange the
words ‘point’ and ‘line’ to obtain a new definition or statement.

Before presenting the relevant examples, we give some further definitions for
abstract generalized quadrangles. Since we will also deal with infinite quadrangles,
most definitions below differ from the respective ones in [3], but are equivalent in the
finite case.

Let � = (P,L,I) be a generalized quadrangle and let x be an arbitrary point. The
set of points of � collinear with x will be denoted by x⊥. For a set X ⊆ P , we denote by
X⊥ the set of points collinear to all points of X , and we abbreviate (X⊥)⊥ by X⊥⊥. If y is
a point opposite x, then {x, y}⊥ is called the perp of the pair x, y. The span of the pair x, y
is the set {x, y}⊥⊥. If every span containing x is also a perp (of a different pair of points,
needless to say), then the point x is called regular. Dually one defines regular lines. If
x is a regular point, then the geometry �∗

x = (x⊥ \ {x}, {{x, y}⊥ : y �∼ x},∈ or �) is a
dual net (associated to x), i.e., it has the property that for every point z ∈ x⊥ \ {x} and
every block B = {x, y}⊥, with y opposite x, there is a unique point z′ ∈ B not collinear
with z (collinearity in �∗

x). If �∗
x is a dual affine plane, then we call x a projective

point. The motivation for this terminology is that the geometry �x = (x⊥, {{x, y}⊥ :
y ∈ P},∈ or �) is then a projective plane, called the perp-plane in x. Projective points
have nice properties. For instance, one can easily check that x is a projective point if
and only if the geometry (P \ x⊥,L ∪ {{x, y}⊥⊥ : y �∼ x},I or ∈ or �) is a generalized
quadrangle if and only if every pair of distinct perps contained in x⊥ meet in a unique
point.

Projective points can also be approached with triads. A triad is a triplet of pairwise
opposite points. A center of a triad {x, y, z} is an element of {x, y, z}⊥. A triad is called
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(uni)centric if it has a (unique) center. Now, a regular point x is projective if and only
if every triad containing x is centric.

In the present paper we shall mainly work with dual nets satisfying one of the two
additional assumptions. We introduce these now.

Let � = (P,L,I) be a dual net. Noncollinear points shall be called parallel. It
is easy to see that parallelism is an equivalence relation in P . Call the dual parallel
classes of points vertical lines and introduce a new point ∞ incident with all vertical
lines. This way we created a linear space � = (P,L,I) (a linear space is a point-line
geometry in which every pair of distinct points is incident with a unique common line).
Let V be the set of all vertical lines. A triangle is a set of three distinct elements of
L, pairwise intersecting in three different points, which are also viewed as belonging
to the triangle. Two triangles are said to be in perspective from a point x if there are
three different lines through x of � each incident with a unique point of each triangle.
Consider the following two conditions:

(LD) For every pair of triangles which are in perspective from the point ∞, and
for which two pairs of corresponding sides meet on a vertical line V , the third pair of
corresponding sides also meets on V .

(VY) If a line L meets two sides of a proper triangle in two distinct points, then L
intersects the third side, too.

If we want to fix and include the line V of LD in our assumptions, we more specifically
say that the dual net satisfies (LD) with respect to the vertical line V .

The letters (LD) and (VY) stand for Little Desargues and Veblen & Young,
respectively.

Finally we introduce some notions concerning symmetry in generalized
quadrangles. In general, a collineation of a generalized quadrangle is a permutation of
the points and of the lines preserving the incidence relation. A point x of a generalized
quadrangle is called a center of symmetry if it is regular and if the group of collineations
fixing x⊥ pointwise acts transitively on the set {x, y}⊥⊥ \ {x}, for some, and hence for
every, point y opposite x. The dual notion is called an axis of symmetry.

A duality of a generalized quadrangle is a bijection of the point set onto the line
set, together with a bijection of the line set onto the point set, preserving the incidence
relation. A generalized quadrangle is self-dual if and only if it admits some duality. A
polarity of a generalized quadrangle is a duality of order 2.

Let ρ be a polarity of the generalized quadrangle �. A point (line) x of � is called
absolute (with respect to ρ) if xIxρ . A flag is absolute if it is fixed under ρ. An ovoid of
� is a set of points with the property that every line is incident with exactly one element
of the ovoid. It is well known that the set of absolute points with respect to a polarity
is an ovoid of the generalized quadrangle.

2.2. The symplectic quadrangles. The prototype class of examples of generalized
quadrangles is the class of symplectic quadrangles, which are defined as follows. Let
ρ be a symplectic polarity in a 3-dimensional projective space PG(3, �) over a field
�. If P is the point set of PG(3, �), if L is the set of lines of PG(3, �) fixed under
ρ, and if I denotes the incidence relation in PG(3, �), then W(�) = (P,L,I) is a
generalized quadrangle, called the symplectic quadrangle (over �). All the points of
W(�) are regular, even projective. Conversely, Schroth [4] proved that any generalized
quadrangle all points of which are projective is isomorphic to a symplectic quadrangle.
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In fact, Theorem 6.2.1 of [11] asserts that, if all points of a generalized quadrangle �

are regular and at least one point is projective, then all points are projective and � is a
symplectic quadrangle. The first step in the proof is to show that, if a point x of � is
projective, then every opposite (regular) point is also projective. We record this step as
a separate lemma for later reference.

LEMMA 2.1 ([11]). Let x, y be two opposite points of a generalized quadrangle �. If
x is projective and y is regular, then y is projective, too.

The symplectic quadrangle has a lot of symmetry. All points of W(�) are centers
of symmetry. Dually, all lines of W(�) are axes of symmetry if and only if � has
characteristic 2. Also, W(�) is self-dual if and only if � is a perfect field with
characteristic 2. Moreover, W(�) admits a polarity if and only if there exists a Tits
automorphism θ : � −→ � : x �→ xθ , i.e., (xθ )θ = x2, for all x ∈ �. In this case, the set
of absolute points of a polarity is the so-called Suzuki-Tits ovoid. Viewed as a subset
of points of PG(3, �), it is also an ovoid in the sense of Tits [7]. With each ovoid of
PG(3, �) there corresponds an inversive plane, i.e. an incidence structure consisting of
a set of points and a set of circles, which are certain subsets of the point set, satisfying
the following axioms.

[MP1] Each 3 different points are contained in exactly one circle.
[MP2] For each circle C and each pair of points x, y with x ∈ C and y /∈ C, there

exists a unique circle C′ which contains y and touches C in x.

(“Touching” circles are circles that meet in a unique point.) The inversive planes arising
from the Suzuki-Tits ovoids have been characterized by a set of axioms by the second
author in [10]. We will generalize this result below.

We end this subsection with a description of W(�) using coordinates (see [11]). Let
W(�) = (P,L,I) be the symplectic quadrangle over the field �. Then we may take for
P the following set:

P = {(∞)} ∪ {(a) : a ∈ �} ∪ {(k, b) : k, b ∈ �} ∪ {(a, l, a′) : a, l, a′ ∈ �},

and for L the set

L = {[∞]} ∪ {[k] : k ∈ �} ∪ {[a, l] : a, l ∈ �} ∪ {[k, b, k′] : k, b, k′ ∈ �},

where ∞ is a symbol not contained in �, and where incidence is given by

(a, l, a′)I[a, l]I(a)I[∞]I(∞)I[k]I(k, b)I[k, b, k′],

for all a, a′, b, k, k′, l ∈ �, and

(a, l, a′)I[k, b, k′] ⇐⇒
{

a′ = ak + b,

k′ = a2k + l − 2aa′.

We clearly see the asymmetry if the characteristic of � is unequal to 2. If, on the other
hand, the characteristic of � is equal to 2, then the two above formulas are “equivalent”
if squaring is an automorphism, i.e., the Frobenius is surjective, implying the field is
perfect. With “equivalent” we mean that each formula can be turned into the other by
interchanging a2, l, a′2 with k, b2, k′, respectively.
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2.3. Mixed quadrangles and first main results. Mixed quadrangles are
subquadrangles of the symplectic quadrangle W(�), for � an imperfect field with
characteristic 2 (in the other case the only (thick) subquadrangles are symplectic
quadrangles over subfields). Neither the point set nor the line set of these
subquadrangles can be given with a nice set of equations in PG(3, �), because the
corresponding collineation groups are not algebraic groups. The quickest and most
elementary way to define the mixed quadrangles is using the coordinates introduced
above.

So suppose � is imperfect with characteristic 2, and let �2 be the subfield consisting
of all squares. Let �′ be a subfield with �2 ⊆ �′ ⊆ � and let L, L′ be subspaces of
�, �′ viewed as vector spaces over �′, �2, respectively, with �2 ⊆ L′ and �′ ⊆ L. We
consider the description of W(�) with coordinates as above, and we now restrict the
a, a′, b to L and the k, k′, l to L′. Then we obtain a subquadrangle that we denote by
W(�, �; L, L′) and call a mixed quadrangle (the terminology in [9] mentions indifferent
quadrangle, but we prefer to name the geometries after the groups, like the symplectic
quadrangle). In order to have unique notation, we also assume that L and L′ generate
� and �′ as a ring. Note that W(�) = W(�, �; �, �) and that W(�, �2; �, �2) is the
dual of W(�) (and this dual is isomorphic to the generalized quadrangle arising from a
nonsingular quadratic form of maximal Witt index in a five-dimensional vector space
over �).

It is convenient to also call W(�), with � perfect with characteristic 2, a mixed
quadrangle. In this case, we also write W(�) = W(�, �; �, �).

In general, the dual of W(�, �′; L, L′) is isomorphic to W(�′, �2; L′, L2); hence
the class of mixed quadrangles is a self-dual one. Moreover, since all points of W(�)
are regular, so are all points of every mixed quadrangle, and hence so are all lines of it.
A famous conjecture says that every generalized quadrangle all elements of which are
regular is isomorphic to a mixed quadrangle (in the form of a problem, this is Problem
8 in Appendix E of [11]). In the finite case, generalized quadrangles all of whose
points are regular are not classified, unless one requires an additional condition on the
corresponding dual nets. In [6] the condition that these dual nets satisfy the Axiom
of Veblen & Young does the job. In the present paper we will classify all generalized
quadrangles with many regular points and lines, and for which the dual nets associated
to the regular points satisfy the Axiom of Veblen & Young. Postponing a discussion of
what “many” precisely means to Section 6 (see Theorem 6.2), we here state the weakest
form.

MAIN RESULT 1. A generalized quadrangle � is isomorphic to some mixed quadrangle
W(�, �′; L, �′) if and only if all points and lines of � are regular and the dual net
associated to each regular point satisfies Condition (VY).

In order to include all mixed quadrangles, we have to appeal to Condition (LD).

MAIN RESULT 2. A generalized quadrangle � is isomorphic to some mixed quadrangle
W(�, �′; L, L′) if and only if all points and lines of � are regular and the dual net
associated to each regular point satisfies Condition (LD).

Notice that, applying duality twice, the subquadrangle W(�2, �′2; L2, L′2) of
W(�, �′; L, L′) is isomorphic to W(�, �′; L, L′) itself. This observation leads to the
following common characterization of symplectic and mixed quadrangles.
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MAIN RESULT 3. A generalized quadrangle � is a symplectic or mixed quadrangle
if and only if all its points are regular and � is isomorphic with a subquadrangle �′ of �

such that each triad of �′ is centric in �.

The case �′ = � in the above theorem boils down exactly to Schroth’s result
[4] mentioned above, which we shall use in our proof (alternatively, one could use
Main Result 1, which is also a generalization of Schroth’s result, but whose proof is
independent of that result).

Let us finally mention that all points of a mixed quadrangle are centers of
symmetry, and all lines are axes of symmetry. Moreover, from [5] and Theorem 21.10
in [9], the following lemma is proved.

LEMMA 2.2. If all lines of a generalized quadrangle � are axes of symmetry, and at
least one point is regular, then � is a mixed quadrangle.

2.4. Suzuki quadrangles and more main results. It is well known, see [11,
Theorem 7.3.2] that a mixed quadrangle W(�, �′; L, L′) admits a polarity if and only
if � admits a Tits endomorphism θ : � −→ � (i.e., (xθ )θ = x2) and we can choose
�′, L, L′ such that �′ = �θ and Lθ = L′. Hence every polarity in W(�, �′; , L, L′)
is the restriction of a polarity in W(�, �′; �, �′). So the case of L = � is a kind of
principal case. Every self-polar mixed quadrangle shall be called a Suzuki quadrangle.

Let ρ be a polarity in a Suzuki quadrangle and let O be the set of absolute points.
We define a set of circles as follows. A circle is the set of points of O collinear to some
point not contained in O. If we denote the family of circles by C, then we obtain a
geometry (O, C,∈ or �). If � is perfect, then this is an inversive plane (a Möbius
plane). In general, it has the following properties.

[MP1] Each 3 different points are contained in at most one circle.
[MP2] For each circle C and for every pair of points x, y ∈ P with x ∈ C and

y /∈ C, there exists an unique circle C′ which contains y and touches C in x.
[CH1] There exist no 3 circles which are pairwise touching in different points.
[CH2] For each circle C and every pair of points x, y /∈ C, we have only the

following three possibilities : no circle containing x, y touches C, one circle does or all
circles do.

There are many geometries that satisfy the above axioms, e.g. every inversive plane
obtained from an ovoid of projective 3-space over a field with characteristic 2. In
order to further distinguish the geometries corresponding to the polarities in mixed
quadrangles, we use the observation that each circle C has a very special point, which
we denote by ∂C and call the gnarl of the circle. Indeed, if C is the set of points of
O collinear with the point x /∈ O, then there is a unique absolute line incident with x
and hence a unique point ∂C of C such that the line joining ∂C with x is absolute.
Alternatively, ∂C is the unique point of C incident with xθ .

The function ∂ has the following properties.

[ST1] For each pair of points x, y there exists a unique circle C which contains x
and such that ∂C = y.

[ST2] For each circle C and point x /∈ C, there is at most one circle C′ which
contains both of x and ∂C, and such that ∂C′ ∈ C.

[TR] Let C be an arbitrary circle, and let x, y ∈ C (∂C �= x �= y �= ∂C). Let D be
a circle through ∂C �= ∂D. For each circle E different from C, containing both x and
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∂C, and intersecting D in two distinct points ∂C, z, we consider the circle E∗ through
z and touching C in ∂C. We also consider the circle E∗∗ containing y, touching E in
∂C. Then E∗ ∩ E∗∗ is contained in a circle D′ through ∂C independent of E.

The properties mentioned so far characterize the generalized inversive planes arising
from polarities in mixed quadrangles.

MAIN RESULT 4. Let P be a set and let C be a set of distinguished subsets of P
all containing at least 3 elements. Also suppose there is a map ∂ : C → P such that
∀C ∈ C : ∂C ∈ C. We call the elements of C circles and if two of them have only one point
in common, we say they touch at that point. Then (P, C, ∂) satisfies the conditions [MP1],
[MP2], [CH1], [CH2], [ST1], [ST2] and [TR], if and only if P can be embedded in a
self-polar mixed quadrangle W(�, �′; L, L′) as the set of absolute points of a polarity ρ,
the set C corresponds to the family of sets of absolute points collinear with a nonabsolute
point, and the map ∂ maps a circle onto its gnarl, i.e. ∂C, with C = x⊥ ∩ P , is the unique
point of P incident with xρ .

If we want to restrict to self polar mixed quadrangles of type W(�, �′; �, �′),
then we may introduce the following alternative axiom (where we call a set of points
cocircular if they belong to a common circle).

[F] Let x be an arbitrary point, and let x1, x2, x3 be three points pairwise cocircular
with x, but not all cocircular with x. If a point y is cocircular with x and x1, and also
with x and x2, but if y, x, x1, x2 are not cocircular, then y, x, x3 are cocircular.

And we will show:

MAIN RESULT 5. Let P be a set and let C be a set of distinguished subsets of P
all containing at least 3 elements. Also suppose there is a map ∂ : C → P such that
∀C ∈ C : ∂C ∈ C. We call the elements of C circles and if two of them have only one
point in common, we say they touch at that point. Then (P, C, ∂) satisfies the conditions
[MP1], [MP2], [CH1], [CH2], [ST1], [ST2] and [F], if and only if P can be embedded in a
self-polar mixed quadrangle W(�, �′; �, �′) as the set of absolute points of a polarity ρ,
the set C corresponds to the family of sets of absolute points collinear with a nonabsolute
point, and the map ∂ maps a circle onto its gnarl, i.e. ∂C, with C = x⊥ ∩ P , is the unique
point of P incident with xρ .

As mentioned before, if � is perfect, then this is an inversive plane which allows
us to impose a stronger version of [MP1].

[MP1′] Each 3 different points are contained in exactly one circle.

Using this axiom instead of [MP1] allows us to improve upon the characterization
given in [10], by deleting one axiom.

MAIN RESULT 6. Let P be a set and let C be a set of distinguished subsets of P
all containing at least 3 elements. Also suppose there is a map ∂ : C → P such that
∀C ∈ C : ∂C ∈ C. We call the elements of C circles and if two of them have only one
point in common, we say they touch at that point. Then (P, C, ∂) satisfies the conditions
[MP1′], [MP2], [CH1], [CH2], [ST1] and [ST2], if and only if P can be embedded in
a projective space PG(3, �), for some perfect field � of characteristic 2 admitting a
Tits automorphism θ , such that P is the set of absolute points of a polarity of a certain
symplectic quadrangle W(�) in PG(3, �) and the set of circles of P is equal to the set of
plane sections of P in PG(3, �).
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3. Subquadrangles with centric triads. In this section we prove Main Result 3.
If � is a symplectic quadrangle, then taking �′ = � proves that � satisfies the

given condition. Now suppose � is a mixed quadrangle, say � = W(�, �′; L, L′), for
appropriate �, �, L and L′. Then we have

W(�, �′; L, L′) ∼= W(�2, �′2; L2, L′2) ⊆ W(�2, �2; �2, �2)

= W(�2) ⊆ W(�, �′; L, L′),

implying that every triad in �′ := W(�2, �′2; L2, L′2) is centric in �, since it is already
centric in W(�2).

Let us now turn to the converse. So let � = (P,L,I) be a generalized quadrangle
all of whose points are regular, and let θ be an isomorphism from � to a subquadrangle
�′. If we consider θ as a monomorphism from � to �, then we can consider the direct
limit � of the system

�
θ−→ �

θ−→ · · · θ−→ �
θ−→ · · · .

It is easy to see that � is a generalized quadrangle. Also, since � is regular, � is also
regular. Indeed, we must show, for six arbitrary points x1, x2, x3, y1, y2, y3, that x1, x2 ∈
{y1, y2, y3}⊥ and y1, y2 ∈ {x1, x2, x3}⊥ implies x3 ∼ y3 in �. But by the definition of
direct limit, all these points have a representative in some term of the system, hence
they can be considered to be points of �, all points of which are regular, and hence in
which the representatives of x3 and y3 are collinear. But then x3 and y3 are collinear
in �. A similar argument, using the fact that all triads in �θ are centric in �, shows
that every triad in � is centric, and hence that � is a symplectic quadrangle by [4].
Clearly � can be viewed as a subquadrangle of �, and since all thick subquadrangles
of a symplectic quadrangle are either mixed or symplectic quadrangles (noting that all
elements of every subquadrangle are regular, and then using 5.2.2 and 5.5.8 of [11]) ,
the assertion follows.

This completes the proof of Main Result 3.
In order to get rid of the symplectic quadrangles, or of the symplectic quadrangles

in characteristic different from 2, one can add assumptions as follows.

COROLLARY 3.1. (i) A generalized quadrangle � is a mixed quadrangle or a symplectic
quadrangle in characteristic 2 if and only if all its points are regular, at least one line is
regular, and � is isomorphic with a subquadrangle �′ of � such that each triad of �′ is
centric in �.

(ii) A generalized quadrangle � is a mixed quadrangle but not a symplectic one if and
only if all its points are regular but at least one point is not projective, and � is isomorphic
with a subquadrangle �′ of � such that each triad of �′ is centric in �.

4. Dual nets satisfying the axiom of Veblen and Young. Let � = (P,L,I) be a dual
net. As before, we call the dual parallel classes of points vertical lines and introduce
a new point ∞ incident with all vertical lines. This way we created a linear space
� = (P,L,I). If two lines L, M intersect in this linear space, we write L ∼ M. Let V
be the set of all vertical lines. Our aim is to prove that the Condition (LD) follows from
Condition (VY), if there exists at least one pair of non-intersecting lines.
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So henceforth we assume that � satisfies (VY), and that there are at least two
non-intersecting lines in �. Clearly, the latter condition is equivalent to � being not a
dual affine plane.

We begin with defining a projective plane for every pair of intersecting lines L, M.
Indeed, let L, M be two intersecting lines in �, and let x be their intersection point.
Then we consider the set of lines intersecting both L and M in two distinct points,
together with the set of lines incident with x and meeting some line K that intersects
L and M in two distinct points. We denote that set by B∗. The point set A is the
set of points incident with at least one element of B∗, together with ∞. Now add
all vertical lines to B∗ by defining B = B∗ ∪ V . If we denote the restriction of I still
by I (slightly abusing notation), then we claim that �L,M = (A,B,I) is a projective
plane.

Indeed, this is in fact a routine check. Let us first show that two distinct lines X, Y
always meet. If at least one of X, Y belongs to V , or if both X, Y are incident with x,
then this is trivial. If none of X, Y is incident with x, then this follows directly from
(VY), as by definition both X and Y meet both of L and M. If X is incident with x,
then it intersects some line K which also intersects both of L and M in distinct points.
Since we may assume K �= Y , we may also assume that Y, K, L form a proper triangle
(as otherwise Y, K, M form one). Now (VY) implies that X meets Y .

Now we show that two distinct points y, z ∈ A are joined by exactly one line in
B. Indeed, we clearly may assume that neither of y, z coincides with ∞, and that they
are not incident with the same vertical line. Hence they are incident with a unique
member X ∈ L. We must show that X ∈ B∗. By definition, yIY ∈ B∗ and zIZ ∈ B∗.
Suppose that YIx. Let K ∈ B∗ be such that K intersects L, M, Y in three different
points, and suppose that y is not incident with K . Choose an arbitrary point y′ incident
with K and not parallel to y. The line Y ′ joining y and y′ meets both of L and M by
(VY). We have shown that we may assume that Y , and hence also Z, is not incident
with x. Moreover, using (VY), we can arrange that Y, Z do not meet on L or M (if
they do then we may re-choose Y not incident with the intersections of Z with L and
M). Then X meets two sides of both of the triangles Y, Z, L and Y, Z, M in distinct
points, and hence (VY) implies that X meets both of L and M. If X is not incident
with x, then X ∈ B∗ by definition; if xIX , then with K ∈ {Y, Z}, we see that again
X ∈ B∗.

Clearly �L,M = �L′,M′ for L′, M′ distinct non-vertical lines of �L,M . Hence if two
projective planes like that share two non-vertical lines, then they coincide.

If we now remove from �L,M the point ∞ and the vertical lines, then we obtain
a dual affine plane. Our assumptions and the existence and uniqueness of the above
constructed projective plane now imply that the dual of � is a subplane covered net
in the sense of Johnson [2]. It follows from the latter paper that we can identify P
with the points of a projective space P minus a subspace W of codimension 2, and L
can be identified with the lines of P that do not intersect W . Our hypothesis that � is
not a dual affine plane implies that the dimension of P is at least 3, and hence it is a
Desarguesian projective space.

Now if a pair of triangles is in perspective from ∞, and if two pairs of corresponding
sides meet, then in P, this means that the two triangles are also in perspective from
a point (because two corresponding pairs of sides must lie in the same plane), and
so by Desargues’ theorem, also the third pair of corresponding sides meets, and this
intersection point is collinear with the two others. This shows (LD).

Hence we have proved the following theorem.
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THEOREM 4.1. A dual net which is not a dual affine plane satisfies (VY) only if it
satisfies (LD).

One of our crucial tools to characterize the mixed quadrangles is Property (LD)
for the nets associated to the regular points of some generalized quadrangle �, which
we now know to hold if (VY) is satisfied for these dual nets, with the condition that
these nets are not dual affine planes. In dual affine planes (VY) holds trivially, but
(LD) is not necessarily true. A sufficient condition for (LD) is that the corresponding
projective plane is a Moufang plane. And that is exactly what we are going to prove
when the generalized quadrangle contains “enough” projective points.

5. Generalized quadrangles with many projective points. In this section we
concentrate on generalized quadrangles with a number of projective points. In fact,
we only need one projective point and a set of regular points. More precisely, let �

be a generalized quadrangle and let O be a set of regular points of �. We assume the
following two conditions on O.

(PP) At least one member of O is a projective point.
(TP) If x, y are opposite points of �, then |{x, y}⊥ ∩ O| �= 1.

Our aim is to prove that, under these assumptions, all points of O are projective
and every corresponding perp-plane is a Moufang projective plane. We will need the
following characterization of Moufang projective planes proved by the second author
in [12]. In a projective plane, a line L is called an axis of transitivity if the pointwise
stabilizer of L acts transitively on the points not incident with L.

THEOREM 5.1 ([12]). A projective plane is a Moufang plane if and only if each line
L is an axis of transitivity.

Henceforth � is a generalized quadrangle with O a set of regular points of �

satisfying (PP) and (TP).
We start with proving that all elements of O are projective.

LEMMA 5.2. Every element of O is a projective point of �.

Proof. We know that there is at least one point p ∈ O which is projective. Let q be
any other element of O. If q is opposite p, then Lemma 2.1 implies that q is projective.
Now suppose q ∼ p. Let x, y be opposite points collinear to p such that x is incident
with the line pq, but x �= q. Then p ∈ {x, y}⊥, implying by (TP) that some other element
p′ ∈ O \ {p} also belongs to {x, y}⊥. Clearly, p′ is opposite p and therefore is a projective
point. But p′ is also opposite q and hence Lemma 2.1 implies that q is projective. The
lemma is proved. �

We now prove a lemma that will generate collineations of the perp-planes �p, for
p ∈ O.

LEMMA 5.3. Let p, q ∈ O, with p opposite q. Then the following function θp,q defines
an isomorphism between �p and �D

q :
(i) A point x of �p is mapped to the block xθp,q of �q consisting of all the points collinear

with both x and q.
(ii) A block α of �p is mapped to the point αθp,q of �q collinear with q and with all points

of α.
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Proof. First we show that θp,q is well defined by proving that for each block α of
�p, there is indeed a unique point a ∼ q collinear with all points of α. Indeed, we may
assume that α �= {p, q}⊥, as otherwise a = q is easily seen to be that unique point. Since
�p is projective, there is a unique point r ∈ {p, q}⊥ ∩ α. No a is necessarily the unique
point on the line aq which is collinear with any point of α \ {r}.

The definition of θp,q now easily implies that, if x ∈ α, with x ∼ p and α a block of
�p, then αθp,q ∈ xθp,q . Also, the inverse mapping is apparently given by θq,p, hence θp,q is
bijective and so defines an isomorphism from �p to the dual of �q. �

Note that we can write xθp,q = {q, x}⊥ and αθp,q = α⊥⊥ ∩ q⊥, with x ∼ p and α a
block of �p.

We now consider three different points p1, p2, p3 ∈ O, with p3 opposite both p1

and p2. By the previous lemma, we can combine θp1,p3 and θp3,p2 to an isomorphism
φ := θp1,p3θp3,p2 between �p1 and �p2 . Let us calculate the image of a point x of �p1

under φ.

xφ = xθp1 ,p3 θp3 ,p2 = ({x, p3}⊥)θp3 ,p2 = {x, p3}⊥⊥ ∩ p⊥
2 . (1)

If we apply this to a point a in {p1, p2}⊥, then, since a ∈ {a, p3}⊥⊥ ∩ p⊥
2 , we see that

aφ = a (note the independence of p3). We also have pφ

1 = {p1, p3}⊥⊥ ∩ p⊥
2 .

Now let p′
3 be another point of O\{p1, p2} opposite both p1, p2. We obtain a

different isomorphism φ′ := θp1,p′
3
θp′

3,p2 between the two perp-planes �p1 and �p2 .
This allows us to construct a collineation τ := φ−1φ′ of �p2 . Using the independence
mentioned in the above paragraph we see that {p1, p2}⊥ is fixed pointwise under the
action of τ . Choose 2 points x, y in �p2 different from p2 and not an element of {p1, p2}⊥.
We can choose p3 ∈ O in such a way that pφ

1 = x (this is possible since the span {p1, x}⊥⊥

contains at least two points ofO, and we can choose p3 as one of them different from p1;
then pφ

1 = {p1, p3}⊥⊥ ∩ p⊥
2 = {p1, x}⊥⊥ ∩ p⊥

2 = x). Analogously, we can choose p′
3 ∈ O

in such a way that pφ′
1 = y. Combining this we obtain xτ = xφ−1φ′ = p1

φ′ = y.
Consequently, the pointwise stabilizer of {p1, p2}⊥ in the collineation group of �p2

acts transitively on all the other points of the plane possibly except p2. But if p2 was
fixed by this stabilizer, then the orbits of the other points would completely lie on lines
through p2, which is impossible by the transitivity already shown. So the pointwise
stabilizer of {p1, p2}⊥ is transitive on all points of the perp-plane �p2 except for the
points of {p1, p2}⊥ itself. Hence {p1, p2}⊥ is an axis of transitivity in the projective plane
�p2 .

We can even do better.

LEMMA 5.4. Each block α of �p2 is an axis of transitivity.

Proof. If α is a perp {x, y}⊥, then the span {x, y}⊥⊥ is a perp and contains p2, hence
it contains a second point p4 ∈ O. This implies α = {p2, p4}⊥ and the assertion follows
from our previous discussion.

Now the blocks through p2 are also axes of transitivity because they can be mapped
to blocks not through p2 by the pointwise stabilizers of the blocks not containing p2, for
which the condition is already true and hence which have rich enough point stabilizers
to do so. �

Now Theorem 5.1 implies that �p2 , and hence all perp-planes of points in O, are
Moufang projective planes, and in particular satisfy Condition (LD).

Hence, in this section, we have shown the following theorem.
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THEOREM 5.5. Let � be a generalized quadrangle and let O be a subset of regular
points of � satisfying (PP) and (TP). Then all points of O are projective and all
corresponding perp-planes are Moufang projective planes and satisfy in particular (LD).

6. Quadrangles with regular points satisfying (LD). In this section, we will prove
Main Result 1 and Main Result 2. These will follow from Theorem 4.1 and Theorem 5.5
and the following lemma.

LEMMA 6.1. Let � = (P,L,I) be a generalized quadrangle containing a flag {p, L}
consisting of a regular line L and a regular point p. Then the dual net associated to p
satisfies (LD) with respect to the vertical line defined by L if and only if L is an axis of
symmetry for �.

Proof. We begin by noticing that, if there are only three lines through each point in
�, then � has order 2 and is isomorphic to W(2), in which the assertion clearly holds.
So we may assume that there are at least four lines through each point.

First we assume that the dual net associated to p satisfies (LD) with respect to the
vertical line defined by L

Let M be a line through p different from L. Let a, a′ be two points incident with
M but different from p. We will gradually construct a collineation θ mapping a to a′

fixing L pointwise, and fixing all lines meeting L.

Lines intersecting L. For these lines N we set Nθ = N.

Points collinear to p not on L. Let N be a line through p different from both L
and M, and let q be a point on N different from p, then we define the image of p under
θ as follows. The perp α in �∗

p through a and q intersects L in a point b. Then qθ is
the intersection point of N with the perp through a′ = aθ and b. This way the image
of a defines the image of a point q collinear with p, but not with a. We denote this as:
a → q. The image of a point c on M is defined by q → c, for some point q ∼ p not
collinear to c.

To show that θ is well defined we have to show that combining a → b with b → c
(we will abbreviate this as a → b → c) with b not collinear with either a or c, is
independent of the choice of b. So suppose a, b, c and d are four points in p⊥ not on L
such that both b and d are not collinear with either a or c.

(i) If a is not collinear with c then a → b → c is equivalent with a → c. Indeed, this
follows directly from the condition (LD) applied to the triangles a, b, c and aθ , bθ , cθ

(where θ is defined using a → b → c). Similarly, a → d → c is equivalent with a → c
and the result follows.

(ii) Suppose that a is collinear with c. If b is not collinear with d then a → b → c
is equivalent with a → b → d → c which in its turn is equivalent with a → d → c. If b
and d are collinear then we can choose a point e collinear with p but not with a or b and
not on L (because there are at least four lines through a point in �). Then a → b → c
is equivalent with a → b → e → c, a → e → c and a → d → c by using the previous
arguments.

It is important to note that θ preserves the perps in �∗
p .
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Lines and points opposite L or p. Let N be a line opposite L, and let pIAIqIN.
Then we define Nθ to be the unique line in the (line) span containing L and N incident
with qθ . The image of a point t incident with N is defined as the intersection point of
Nθ with the unique line K through t intersecting L (these indeed intersect because of
the regularity of L). The only thing left to show is that tθ is well defined. If t is collinear
with p then this is clear, so suppose t �∼ p. The lines through t define a perp in �∗

p , which
will be mapped to another perp by θ while fixing the intersection point r of K and L
of the perp. The images of all the lines through t must meet K . Since they also must
contain a point of the perp {p, tθ }⊥, we see that they are all incident with tθ . Hence tθ

is well defined. It is now also clear that θ and its inverse preserve incidence, and hence
it is a symmetry. Since a and a′ were basically arbitrary, it follows that L is an axis of
symmetry.

Now we assume that L is an axis of symmetry for �, and that two triangles T, T ′ in
the dual net associated to p are in perspective from p, with two pairs (A, A′) ∈ T × T ′

and (B, B′) ∈ T × T ′ of corresponding sides meeting on L. It follows easily that the
unique symmetry θ which maps A ∩ B to A′ ∩ B′ maps A to A′ and maps B to B′. If
(C, C′) is the third pair of corresponding sides, then, since θ preserves all vertical lines,
we see that θ maps A ∩ C and B ∩ C to A′ ∩ C′ and B′ ∩ C′, respectively. Consequently
θ maps C to C′ and so, since the points of C and C′ on L are fixed, the assertion
follows.

We are now ready to prove slightly more general results than Main Results 1 and 2.

THEOREM 6.2. A generalized quadrangle � = (P,L,I) is a mixed quadrangle if and
only if there is a nonempty subset O ⊆ P of points and a subset S ⊆ L of lines satisfying
the following conditions.

(i) All points of O and all lines of S are regular.
(ii) Every (line) span containing a line of S contains at least two lines of S.
(iii) Every element of S is incident with some element of O.
(iv) The dual net associated to each regular point x of O satisfies (LD) with respect

to a vertical line given by some element of S incident with x.

In particular, if all elements of � are regular and (iv) holds, then � is a mixed quadrangle.

Proof. If � is a mixed quadrangle, then we take for O the point set of � and for S
the line set. Since all points and lines are regular, (i) up to (iii) follow. Since every line
is an axis of symmetry, (iv) follows from Lemma 6.1.

Now suppose the quadrangle � satisfies the given properties. Fix a line L of S.
By (iii), there is a regular point p incident with L with the property that, by (iv), the
associated dual net satisfies (LD). Lemma 6.1 implies that L is an axis of symmetry.
Likewise, every element of S is an axis of symmetry. Let M be an arbitrary line opposite
L. The span {L, M}⊥⊥ contains some element K ∈ S \ {L}, by (ii). Since L is an axis of
symmetry, there is a collineation mapping K to M. Since K is an axis of symmetry, so is
M. Hence all lines opposite L, and likewise all lines opposite K , are axes of symmetry.
It is easy to see that for each element N of {L, K}⊥ there is a line opposite all of L, K, N.
We conclude that all lines of � are axes of symmetry. Since we have at least one regular
point, Lemma 2.2 implies that � is a mixed quadrangle. �

THEOREM 6.3. A generalized quadrangle � = (P,L,I) is isomorphic to a mixed
quadrangle W(�, �′; L, �′) if and only if there is a nonempty subset O ⊆ P of points and
a subset S ⊆ L of lines satisfying the following conditions.
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(i) All points of O and all lines of S are regular.
(ii) Every span containing a point of O contains at least two points of O.
(ii) Every (line) span containing a line of S contains at least two lines of S.

(iii) Every element of S is incident with some element of O.
(iv) The dual net associated to each regular point of O satisfies (VY).

In particular, if all elements of � are regular and (iv) holds, then � is isomorphic to a
mixed quadrangle W(�, �′; L, �′).

Proof. First suppose that the quadrangle � satisfies the given properties. If none
of the points of O are projective, then Theorem 4.1 implies that, together with (iv),
each dual net associated to a regular point of O satisfies (LD). From Theorem 6.2 we
infer that � is isomorphic to a mixed quadrangle W(�, �′; L, L′). We now show that
L′ = �′. Assume, by way of contradiction, that L′ �= �′. Then we can choose elements
k, k′ ∈ L′ such that kk′ /∈ L′. One easily calculates that, in the coordinate representation
of W(�, �′; L, L′) the perp Ta,a′ := {(∞), (a, l, a′)}⊥ consists of the point (a) together
with the points (x, ax + a′), x ∈ L′. Now we consider the perps T0,0 = {(0)} ∪ {(x, 0) :
x ∈ L′} and T0,1 = {(0)} ∪ {(x, 1) : x ∈ L′}, which both meet the perps T1,0 = {(1)} ∪
{(x, x) : x ∈ L′} and T(k−1+1)−1,k′(k−1+1)−1 = {((k−1 + 1)−1)} ∪ {(x, (k−1 + 1)−1x + (k−1 +
1)−1k′) : x ∈ L′}. By (VY), the latter two perps must intersect. Hence there must exist
x ∈ L′ such that

x = (k−1 + 1)−1x + (k−1 + 1)−1k′,

which is equivalent with kk′ = x ∈ L′, a contradiction.
If at least one point of O is projective, then by Theorem 5.5 and assumption (ii),

all points of O are projective, all corresponding perp-planes are Moufang and satisfy
(LD). Since they also satisfy (VY), the result now again follows from Theorem 6.2 and
the computation performed in the previous paragraph.

If � ∼= W(�, �′; L, �′), then an elementary calculation as above shows that the
dual net associated to an arbitrary point satisfies (VY). �

7. Generalized Suzuki-Tits inversive planes. In this section, we generalize the
main theorem of [10] to all self-polar mixed quadrangles. It will turn out that we need
exactly the more general form in the previous section of our Main Results 1 and 2 in
order to prove Main Results 4 and 5.

In this section, we let P be a set and C a distinguished set of subsets of P all
containing at least 3 elements. Also we have been given a map ∂ : C → P such that
∀C ∈ C : ∂C ∈ C. We call the elements of C circles and if two of them have only one
point in common, we say they touch at that point. The element ∂C of a circle C will be
called the gnarl of C. We assume that (P, C, ∂) satisfies the conditions [MP1], [MP2],
[CH1], [CH2], [ST1], [ST2] and [TR].

First, we will prove some further properties using these axioms. All these lemmas
are copies or reformulations of lemmas in [10], with similar proofs, although [MP1]
and [ST2] are in the present paper slightly weaker than the corresponding axioms in
[10]. We mention them without proof.

LEMMA 7.1. Suppose we have 3 different circles C, D and E. If C and E both touch
D at some point x, then C touches E at x.
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LEMMA 7.2. For every circle C and every point x not contained in C there exists a
unique circle D with ∂D ∈ C, ∂C �= ∂D and containing both of x and ∂C.

LEMMA 7.3. If a circle C touches D at ∂D, then ∂C = ∂D.

We now proceed with constructing a geometry � = (P∗,L∗,I) out of (P, C, ∂).
Again, this is similar to the perfect case in [10], but since it is crucial for the rest, we
repeat it here.

We identify both P∗ and L∗ with the union of P and C. To avoid confusing the
elements of P∗ with those of L∗, we put a subscript p or l to denote to which set it
belongs, i.e., for all x ∈ P and all C ∈ C, we have xp, Cp ∈ P and xl, Cl ∈ L. A point
xp, x ∈ P is incident with yl, y ∈ P if and only if x = y. A point xp, x ∈ P is incident
with the line Cl, C ∈ C if and only if Cp is incident with xl if and only if ∂C = x.
Finally, the point Cp, C ∈ C is incident with Dl, D ∈ C if and only if ∂C ∈ D, ∂D ∈ C
and ∂C �= ∂D. This new geometry � obviously admits a polarity ρ : P∗ ↔ L∗ : Cp �→
Cl, xp �→ xl, Cl �→ Cp, xl �→ xp. The absolute flags are of the form {xp, xl} with x ∈ P .

The following lemma tells us when two points are collinear in �.

LEMMA 7.4. For all x, y ∈ P and C, D ∈ C, the following holds.
(i) The point xp is collinear with the point yp if and only if x = y.

(ii) The point xp is collinear with the point Cp if and only if x ∈ C.
(iii) The point Cp is collinear with the point Dp if and only if C and D touch each other.

Also, two different elements of P∗ are incident with at most one element of L∗.

Proof. (i) Suppose xpIClIyp; then, by definition, x = ∂C = y.
(ii) If xp is collinear with Cp, then xpIxlICp or there is an E ∈ C such that xpIElICp.

In the first case we have x = ∂C ∈ C; in the second case x = ∂D ∈ C. Suppose now
that x ∈ C. If x = ∂C, then xpIxlICp and so xp is collinear with Cp. If x �= ∂C, then
there is an unique circle D with gnarl x through δC by [ST1], so xpIDlICp.

(iii) If CpIzlIDp, with z ∈ P , then the claim follows from [ST1]. Suppose that
CpIElIDp, with E ∈ C. Then ∂E ∈ C ∩ D, and since D �= C, we have ∂D �= ∂C. Clearly,
also ∂C �= ∂E �= ∂D. Since ∂C, ∂D ∈ E, the result follows from [ST2].

Conversely, suppose C and D touch. If they touch at ∂C then by Lemma 7.3,
∂C = ∂D and CpI(∂C)lIDp. So we can assume that they touch at a point x different
from ∂C and different from ∂D. Let E be the circle containing ∂D and so that ∂E = x,
and assume by way of contradiction that ∂C /∈ E. By Lemma 7.2 there exists a circle
F containing ∂C and x, and with ∂F ∈ E. Our assumption implies F �= E. We claim
that either D = F or F touches D at x. Indeed, if not, then D and F share some point
y �= x. Note that y /∈ E as otherwise F and D coincide with E, a contradiction. But
then both D and F have their gnarl on E, contain the gnarl of E and contain a further
point y /∈ E. Lemma 7.2 implies that D = F . Our claim follows. Now by lemma 7.1, F
touches C at x, contradicting ∂C ∈ F ∩ C. So we have that CpIElIDp. �

Our goal now is to show that � is a Suzuki quadrangle. First we prove that � is a
generalized quadrangle.

LEMMA 7.5. There are no three different, pairwise collinear points in P∗ unless they
are all incident with the same line.

Proof. First suppose one of the points is of the form xp with x ∈ P , then the other
points must be of the form Cp and Dp (C, D ∈ C) with x = C ∩ D. If x = ∂C, then
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x = ∂D and all the points are incident with the line xl. If x �= ∂C, then CpIElIDp, with
E ∈ C and hence ∂E = x. But then also xpIEl.

Now suppose we have three points of the form Cp, Dp and Ep with C, D, E ∈ C. By
collinearity, the circles C, D and E all have to touch each other. Axiom [CH1] implies
that they touch in one common point x. So Cp, Dp and Ep are all collinear with xp. By
the first part of the proof we obtain that Cp, Dp, xp lie on one line Fl and Cp, Ep, xp lie
one line Gl (F, G ∈ C). Both Fl and Gl contain Cp and xp, so, by the last assertion of
Lemma 7.4, Cp, Dp and Ep all are incident with Fl = Gl. �

LEMMA 7.6. A point in P∗ and a line in L∗ lie at distance at most 3 from each other.

Proof. We prove that for any point X and any line M not incident with X , there is
a point on M collinear with X .

Case 1. First suppose X = xp and M = yl, with x, y ∈ P, x �= y. Condition [ST1]
tells us that there is a circle C with gnarl x trough y. Now Cp is collinear with yp (by
Lemma 7.4) and incident with xp (since ∂C = x).

Case 2. Secondly suppose X = xp and M = Cl, with x ∈ P , C ∈ L, and ∂C �= x.
If x ∈ C then the point Dp with D the circle with gnarl x through ∂C is incident with
Cl and collinear with xp.

If x is not on C then by Lemma 7.2 there exists a circle D through x sharing two
distinct points (namely, ∂C and ∂D) with C. The point Dp is now on Cl and collinear
with xp.

Case 3. Taking duality in account, there is one case left to consider, where X = Cp

and M = Dl, with C, D ∈ L and Cp not incident with Dl in �. The first possibility is
that ∂C = ∂D. Then Cp is collinear with (∂C)p which is incident with Dl.

Now suppose that ∂C �= ∂D ∈ C. Then the point (∂D)p is collinear with Cp and
lies on Dl. The case where ∂C ∈ D is the dual of the case just handled.

So we may assume that ∂C /∈ D, ∂D /∈ C. By Axiom [MP2] and the fact that a
circle contains 3 or more points, there are at least two circles circle C1 and C2 with
gnarl ∂D and touching C. By Axiom [CH1] these 2 circles have a second point x �= ∂D
in common. Due to [CH2] all circles through x and ∂D touch C. So we can consider
the circle E, guaranteed to exist by Lemma 7.2, which contains the two points ∂D, x,
and has its gnarl on D. This circle E touches C; hence Ep is collinear with Cp and is
incident with Dl. �

Now we want to apply Theorem 6.3. Hence we have to find a suitable set of regular
points and regular lines. We will consider the set of absolute points and absolute lines
of � with respect to the polarity ρ mentioned above.

LEMMA 7.7. The absolute points and lines of � are regular.

Proof. Because of the polarity ρ, we only need to prove that when three
different points {U, V, W} are collinear with two non-collinear points X, Y , with
X = xp for some x ∈ P , then each point collinear with U and V is also collinear
with W .

Since U and V are two non-collinear points collinear with xp, we may write,
by Lemma 7.4, U = Cp, V = Dp, with C, D ∈ C, x ∈ C ∩ D, and with C and D not
touching each other. The latter condition implies that C and D share an additional
point y �= x. Then yp is collinear with both Cp and Dp. We set W = Ep, with E ∈ C and
x ∈ E. If Y = yp, then y ∈ E. The points collinear with Cp and Dp are, besides xp and
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yp, all points Fp, with F a circle touching both C and D. But, by Condition [CH2], the
circle E also touches F , so Ep is collinear with Fp.

If Y �= yp, then it is one of the Fp above, and the assertion follows anyway. �

Note that the previous proof immediately implies the following lemma.

LEMMA 7.8. Every span of � containing an absolute point of ρ contains exactly two
absolute points. Also the dual holds.

In view of the two previous lemmas, there only remains to check Condition (iv)
of Theorem 6.3 in order to prove that � is a mixed quadrangle. Therefore we have to
look at the dual net corresponding to a regular point xp, x ∈ P . In view of the previous
results, one can easily give the following description of the dual net �∗

xp
. The points are

the circles containing x and the blocks are the points different from x, with incidence
given by containment. The circles with gnarl x correspond with a class of parallel
points given by the line xl = xρ

p of the quadrangle �. Then the following observations
are immediate.

LEMMA 7.9. (i) With the above notation, (P, C, ∂) satisfies Condition [TR] if and
only for each point x ∈ P , the dual net �∗

xp
satisfies Axiom (LD) with respect to the

parallel class of points given by the line xl of �.
(ii) With the above notation, (P, C, ∂) satisfies Condition [F] if and only if for each

point x ∈ P , the dual net �∗
xp

satisfies Axiom (VY).

Putting together the last four lemmas, Main Results 4 and 5 follow from
Theorem 6.2 and 6.3, respectively.

If we substitute Condition [MP1] with Condition [MP1′], then the dual net �∗
xp

is clearly a dual affine plane, so Axiom (VY), or the equivalent Condition [F], is true
trivially. Thus Main Result 6 holds (the other direction of that theorem being contained
in [10]).
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