A COUNTEREXAMPLE IN THE THEORY OF DERIVATIONS by FENG WENYING and JI GUOXING

(Received 18 November, 1987)

Let B(H) be the algebra of all bounded linear operators on a separable, infinite dimensional complex Hilbert space H. Let C_2 and C_1 denote respectively, the Hilbert-Schmidt class and the trace class operators in B(H). It is known that C_2 and C_1 are two-sided*-ideals in B(H) and C_2 is a Hilbert space with respect to the inner product

$$(X, Y) = tr(Y^*X)$$
 $(X, Y \in C_2),$

(where tr denotes the trace). For any Hilbert-Schmidt operator X let $||X||_2 = (X, X)^{1/2}$ be the Hilbert-Schmidt norm of X.

For fixed $A \in B(H)$ let δ_A be the operator on B(H) defined by

$$\delta_A(X) = AX - XA \qquad (X \in B(H)). \tag{1}$$

Operators of the form (1) are called *inner derivations* and they (as well as their restrictions $\delta_A|_{C_2}$) have been extensively studied (for example [1-3]). In [1], Fuad Kittaneh proved the following result.

THEOREM K. If A is a cyclic subnormal operator and $S \in C_2$ is an operator such that AS = SA, then for all $X \in B(H)$ we have

$$||AX - XA + S||_2^2 = ||AX - XA||_2^2 + ||S||_2^2$$

Hence the range of $\delta_A|_{C_2}$ is orthogonal to the null space of $\delta_A|_{C_2}$ in the usual Hilbert space sense.

In this paper, we give an example which provides an affirmative answer to the following question in [1].

QUESTION 1. Is it necessary to assume A cyclic in Theorem K?

First we prove a lemma.

LEMMA. If A is an operator in B(H) and $S \in C_2$ with AS = SA, and for all $X \in B(H)$.

$$||AX - XA + S||_2^2 = ||AX - XA||_2^2 + ||S||_2^2$$

then $AS^* = S^*A$.

Proof. $\delta_A|_{C_2}$ is a bounded linear operator acting on the Hilbert space C_2 and $(\delta_A|_{C_2})^* = \delta_{A^*}|_{C_2}$. Noting that $R(\delta_A|_{C_2})^{\perp} = N(\delta_{A^*}|_{C_2})$, we have $N(\delta_A|_{C_2}) \subset N(\delta_{A^*}|_{C_2})$; therefore $AS^* = S^*A$. (Here $R(\delta_A|_{C_2})$ and $N(\delta_A|_{C_2})$ denote respectively the range of $\delta_A|_{C_2}$ and the null space of $\delta_A|_{C_2}$).

We give an example showing that A is necessarily cyclic in Theorem K.

Glasgow Math. J. 31 (1989) 161-163.

EXAMPLE. Let $\{e_n\}_{n=-\infty}^{+\infty}$ be an orthonormal basis for a Hilbert space H and let $\{c_n\}_{n=-\infty}^{+\infty}$ and $\{d_n\}_{n=-\infty}^{+\infty}$ be bounded sequences of positive numbers as follows:

$$c_{n} = \begin{cases} \frac{n+1}{n+2} & (n \ge 0), \\ \frac{1}{2-n} & (n < 0); \end{cases}$$

$$d_{n} = \begin{cases} c_{n-1} + \frac{1}{2(n+2)(n+1)} = \frac{2n^{2}+4n+1}{2(n+2)(n+1)} & (n \ge 1), \\ c_{n-1} + \frac{1}{2(3-n)(2-n)} = \frac{5-2n}{2(3-n)(2-n)} & (n \le 0); \end{cases}$$

then for each integer *n*, $c_{n+1} < d_n < c_n$. Let P_1 and P_2 be operators in B(H) defined by $P_1e_n = c_ne_n$ and $P_2e_n = d_ne_n$, for each integer *n*. Let $\hat{H} = \sum_{n=1}^{+\infty} \bigoplus H_n$, $\hat{P}_1 = \sum_{n=1}^{+\infty} \bigoplus P_n$ and $\hat{P}_2 = \sum_{n=1}^{+\infty} \bigoplus P'_n$, where for each *n*, $H_n = H$, $P_n = P_1$ and $P'_n = P_2$. Let V_H denote the unilateral shift on \hat{H} , i.e., $V_H(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$ for each (x_1, x_2, \ldots) in \hat{H} . Let $T_1 = V_H \hat{P}_1$ and $T_2 = V_H \hat{P}_2$ on \hat{H} . The operators T_1 and T_2 are pure quasinormal operators by [4], and so they are pure subnormal operators.

For each positive integer m define X_m and Y_m in B(H) by

$$X_m e_n = \frac{1}{2^{|n|}} \left(\frac{d_n}{c_n}\right)^m e_n$$

and

$$Y_m e_n = \frac{1}{2^{|n|}} \left(\frac{c_{n-1}}{d_n}\right)^m e_{n-1},$$

for $n = \ldots -2$, -1, 0, 1, 2, \ldots Observe that X_m and Y_m are compact $(m = 1, 2, \ldots)$, that $||X_m|| \to 0$ and $||Y_m|| \to 0$. Also $X_m P_1 = P_2 X_{m-1}$, $Y_m P_2 = P_1 Y_{m-1}$, $(m = 2, 3, \ldots)$.

Let $X = \sum_{m=1}^{+\infty} \bigoplus X_m$ and $Y = \sum_{m=1}^{+\infty} \bigoplus Y_m$ on \hat{H} . Thus X and Y are compact, $XT_1 = T_2X$, $T_1Y = YT_2$; hence $(YX)T_1 = YT_2X = T_1(YX)$.

Next, we shall prove that X is a Hilbert-Schmidt operator.

Let v_{ij} have e_i in the *j*th position, zeros elsewhere for j = 1, 2, ... and i = ..., -2, -1, 0, 1, 2, ...; thus $\{v_{ij}\}$ is an orthonormal basis for the Hilbert space \hat{H} . From the definition of X, we have

$$X\mathbf{v}_{ij} = \left(\ldots, 0, \ldots, 0, \frac{1}{2^{|i|}} \left(\frac{d_j}{c_i}\right)^j e_i, 0, \ldots\right).$$

$$||Xv_{ij}|| = \frac{1}{2^{|i|}} \left(\frac{d_i}{c_i}\right)^j,$$

$$\sum_{i,j} ||Xv_{ij}|| = \sum_{i=-\infty}^{+\infty} \sum_{j=1}^{+\infty} \frac{1}{2^{|i|}} \left(\frac{d_i}{c_i}\right)^j$$

$$= \sum_{i=-\infty}^{+\infty} \frac{1}{2^{|i|}} \frac{d_i}{c_i - d_i}$$

$$= \sum_{i=-\infty}^{0} \frac{1}{2^{|i|}} \frac{d_{-i}}{c_i - d_i} + \sum_{i=1}^{+\infty} \frac{1}{2^i} \frac{d_i}{c_i - d_i}$$

$$= \sum_{i=0}^{+\infty} \frac{1}{2^i} \frac{d_{-i}}{c_{-i} - d_{-i}} + \sum_{i=1}^{+\infty} \frac{1}{2^i} \frac{d_i}{c_i - d_i}$$

$$= \sum_{i=0}^{+\infty} \frac{2i + 5}{2^i} + \sum_{i=1}^{+\infty} \frac{2i^2 + 4i + 1}{2^i} < +\infty.$$

Thus X is a Hilbert-Schmidt operator, and so is YX. Note that the operator YX is compact and $(YX)T_1 = T_1(YX)$, but T_1 is a pure subnormal operator; therefore $(YX)^*T_1 \neq T_1(YX)^*$. From the lemma, we know that Theorem K does not hold for T_1 ; thus if Theorem K holds, then A must by cyclic.

The example above gives an affirmative answer to Question 1.

REFERENCES

1. Fuad Kittaneh, On normal derivations of Hilbert-Schmidt type, Glasgow Math. J. 29 (1987), 245-248.

2. J. H. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135-140.

3. L. A. Fialkow, A note on norm ideals and the operator $X \rightarrow AX - XB$, Israel J. Math. 32, (1979), 331-348.

4. L. R. Williams, Quasisimilarity and hyponormal operators, J. Operator Theory **5** (1981), 127–139.

DEPARTMENT OF MATHEMATICS SHAANXI NORMAL UNIVERSITY XI'AN PEOPLE'S REPUBLIC OF CHINA

https://doi.org/10.1017/S0017089500007679 Published online by Cambridge University Press