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Background. The role of disulfidptosis-related IncRNAs remains unclear in lung adenocarcinoma. Methods. Analysis in R software
was conducted using different R packages, which are based on the public data from The Cancer Genome Atlas (TCGA) database.
The transwell assay was used to evaluate the invasion and migration abilities of lung cancer cells. Results. In our study, we
identified 1401 IncRNAs significantly correlated with disulfidptosis-related genes (|Cor| > 0.3 and P < 0.05). Then, we constructed
a prognosis model consisting of 11 disulfidptosis-related IncRNAs, including AL133445.2, AL442125.1, AC091132.2, AC090948.1,
AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and GASALL. This prognosis model has satisfactory pre-
diction performance. Also, the risk score and clinical information were combined to develop a nomogram. Analyses of biological
enrichment and immune-related data were used to identify underlying differences between patients at high-risk and low-risk
groups. Moreover, we noticed that the immunotherapy nonresponders have higher risk scores. Meanwhile, patients at a high risk
responded more strongly to docetaxel, paclitaxel, and vinblastine. Furthermore, further analysis of the model IncRNA OGFRP1
was conducted, including clinical, immune infiltration, biological enrichment analysis, and a transwell assay. We discovered that
by inhibiting OGFRP1, the invasion and migration abilities of lung cancer cells could be remarkably hindered. Conclusion. The
results of our study can provide directions for future research in the relevant areas. Moreover, the prognosis signature we
identified has the potential for clinical application.

1. Introduction

Worldwide, lung cancer is one of the most common cancers,
and its incidence is still increasing [1]. Known as a multi-
factorial disease, lung cancer involves both environmental
and genetic factors [2]. Among all subtypes, lung adeno-
carcinoma (LUAD) is the most predominant type. Despite
significant medical advances, the prognosis of some patients
with LUAD remains unsatisfactory [3]. Moreover, the
pathogenesis of LUAD is largely unknown, and early di-
agnosis is still insufficient, which to some extent leads to
treatment challenges for LUAD [4]. Consequently,

identifying the genes linked to LUAD may improve the
prognosis, diagnosis, and treatment of the disease.
Noncoding RNA with a length of over 200 bases is
known as long noncoding RNA (IncRNA), which is famous
for its widespread regulatory effects [5]. LncRNAs have
multiple effect patterns including competitive endogenous
RNA (ceRNA) mechanisms, protein-binding, transcrip-
tional regulation, and so on [6]. In addition, many studies
have indicated that IncRNAs may contribute to cancer
development. For instance, Kong et al. discovered that
IncRNA CDC6 could promote breast cancer progression
through the ceRNA mechanism (miR-215/CDC6) [7]. Yuan
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et al. found that the IncRNA TLNCI1 could accelerate liver
cancer progression by hampering the p53 signaling pathway
[8]. In lung cancer, Pan et al. found that the IncRNA JPX can
promote lung cancer development through the miR-33a-5p/
Twist1 axis [9]. Gao et al. noticed that IncRNA PCAT1 could
inhibit radioimmune responses by regulating cGAS/STING
signaling [10]. Hua et al. discovered that the IncRNA
LINCO01123 promotes proliferation and aerobic glycolysis by
ceRNA mechanisms (miR-199a-5p/c-Myc axis) [11]. Re-
cently, Liu et al. noticed a novel cell death form named
“disulfidptosis” cell death, which is due to the aberrant
accumulation of intracellular disulfides dependent on
SLC7A11 [12]. Disulfidptosis is different from apoptosis and
ferroptosis, which were previously uncharacterized. There-
fore, prospective exploration of the IncRNA that regulates
disulfidptosis can provide direction for future research in
this field and reveal possible targets.

In our study, we identified 1401 IncRNAs significantly
correlated with disulfidptosis-related genes (|Cor| > 0.3 and
P <0.05). Then, we constructed a prognosis model con-
sisting of 11 disulfidptosis-related IncRNAs, including
AL133445.2, AL442125.1, AC091132.2, AC090948.1,
AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1,
U91328.1, and GASALL. Also, the risk score and clinical
information were combined to develop a nomogram. An-
alyses of biological enrichment and immune-related data
were used to identify underlying differences between pa-
tients in high-risk and low-risk groups. Moreover, we no-
ticed that the immunotherapy nonresponders have higher
risk scores. Meanwhile, patients at high risk responded more
strongly to docetaxel, paclitaxel, and vinblastine. Further-
more, further analysis of the model IncRNA OGFRP1 was
conducted, including clinical, immune infiltration, bi-
ological enrichment analysis, and a transwell assay. We
discovered that by inhibiting OGFRP1, the invasion and
migration abilities of lung cancer cells could be remarkably
hindered.

2. Methods

2.1. Data Collection. The public data of LUAD patients were
downloaded from the Cancer Genome Atlas database
(TCGA)-KIRC project. The original transcriptome data
form is “STAR-Counts.” The original clinical data form is
“ber-xml.” For the transcriptome data, the R code of the
authors was used for data normalization. Clinical data were
arranged using the Perl code. The distinction between
coding genes and IncRNA is based on a reference genome
file (GRCh38.gtf). Tumor stemness data were obtained from
the previous study [13].

2.2. Collection of the Disulfidptosis-Related Genes and
IncRNAs. The list of disulfidptosis-related genes was col-
lected from the previous study conducted by Liu and their
colleagues [12]. Correlation analysis was used to identify the
disulfidptosis-related IncRNAs. For specific disulfidptosis-
related genes, the IncRNAs with |cor|>0.3 and P < 0.05
were regarded as disulfidptosis-related IncRNAs. Cytoscape
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software was used to visualize the coexpression network of
disulfidptosis-related genes-IncRNAs [14].

2.3. Construction of the Prognosis Model. As a first step, the
patients were randomly assigned to training and validation
cohorts. Genes associated with prognosis were identified
using univariate Cox regression analysis (P < 0.05). The
final variables were optimized through the use of LASSO
regression. Finally, multivariate Cox regression analyses
were used to construct a prognosis model with the formula
of “risk score=IncRNA A * Coef A +IncRNA B * CoefB +
...+ IncRNA N % Coef N.”

2.4. Nomogram Plot. The nomogram was created by com-
bining the risk score and clinical information to enhance its
clinical applicability. A calibration plot was used to evaluate
whether the nomogram predicted survival accurately.

2.5. Biological Enrichment Analysis. Gene set enrichment
analysis (GSEA) was utilized to perform biological enrich-
ment analysis based on multiple gene sets [15].

2.6. Immune-Related and Drug-Sensitivity —Analysis.
Multiple algorithms were used to quantify the immune
infiltration status of the LUAD tissue microenvironment,
including XCELL, CIBERSORT, EPIC, MCPCOUNTER,
QUANTISEQ, and TIMER [16-20]. The single-sample
GSEA (ssGSEA) was used to quantify the immune func-
tions [21]. Using the tumor immune dysfunction and ex-
clusion (TIDE) algorithm, the immunotherapy response was
examined [22]. Data from the Genomics of Drug Sensitivity
in Cancer (GDSC) database were used to analyze drug
sensitivity [23].

2.7. Cell Culture and Quantitative Real-Time PCR (qPCR).
The lung cancer cell lines A549 and PC-9 used in this study
were stored in our laboratory and cultured under conven-
tional conditions (5% CO, and 37°C). To produce cDNA,
total RNA was extracted and reverse transcribed using
a Universal RNA Extraction Kit (TaKaRa, Shanghai, China).
The primers used for qPCR are shown in Supplementary
file 1.

2.8. Cell Transfection. Cell transfection was performed using
lipofectmine 2000 according to standard procedures. The
shRNAs of OGFRP1 were designed and purchased from
Guangzhou RiboBio (Guangzhou, China), and the target
sequences were as follows: shRNA1, 5'-GGTGTTCACATG
GCAGTAA-3'; shRNA2, 5'-GGATACTGAGAGTGCACA
A-3'; and shRNA3, 5'-GCATTGACATGTTTGGCAT-3'.

2.9. Transwell Assay. According to standard procedures,
transwell assays were performed on A549 and PC-9 cell
lines [24].
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2.10. Statistical Analysis. All statistical analyses were per-
formed using R version 4.0.4 and GraphPad Prism 8 soft-
ware. The threshold of statistical value is 0.05. Different
statistical analysis methods were applied according to the
data distribution form.

3. Results

The flowchart of our study is shown in Figure 1.

3.1. Identification of Disulfidptosis-Related IncRNAs in LUAD.
Based on the previous abovementioned studies, the genes
SLC7A11, SLC3A2, RPN1, NCKAP1, NUBPL, NDUFA11,
LRPPRC, OXSM, NDUFS1, and GYS1 were identified as the
disulfidptosis-related genes. We found that all these
disulfidptosis-related genes were upregulated in the tumor
tissue, indicating their underlying effect on cancers
(Figure 2(a)). A correlation analysis identified 1401 IncRNAs
significantly correlated with disulfidptosis-related genes as
disulfidptosis-related IncRNAs (Figure 2(b)).

3.2. Prognosis Model. Our first step was to divide the LUAD
patients into 1:1 training and validation cohorts based on
the TCGA data. First, we identified prognosis-related
IncRNAs using univariate Cox regression analysis in the
training cohort. Then, the LASSO regression analysis was
applied to reduce data dimensions (Figures 3(a) and 3(b)).
Ultimately, 11 disulfidptosis-related IncRNAs were identi-
fied for a prognosis model, including AL133445.2,
Al442125.1, ACO091132.2, AC090948.1, AC020765.2,
CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and
GASALLI (Figure 3(c)). The risk score of each patient was
calculated with the formula of “risk score = AL133445.2 =
—0.6694 + AL442125.1 % 0.5915+ AC091132.2 % —0.4289 +
AC090948.1 = —0.4188 + AC020765.2 * —0.2100+ CASC8
* 0.1571 + AL606834.1 * 0.2287 + LINC00707 # 0.2059 +
OGFRP1 * 0.2934+U91328.1 * —0.4533+ GASAL1 =
0.3135.” The overview of the training cohort is shown in
Figure 3(d). As shown in the KM survival curve, high-risk
patients have a poorer prognosis than low-risk patients
(Figure 3(e)). The satisfactory prediction performance of our
model was shown by ROC curves (Figures 3(f)-3(h); 1-year
AUC=0.771, 3-year AUC=0.741, 5-year AUC=0.753).
There were also more deaths in the high-risk group
(Figure 3(i)). Compared to low-risk patients, high-risk pa-
tients had a worse survival rate (Figure 3(j)). ROC curves also
indicated good prediction performance of our model in the
validation group (Figures 3(k)-3(m); 1-year AUC =0.678, 3-
year AUC = 0.746, 5-year AUC = 0.766). The prognosis effect
of these model IncRNAs is shown in Figures S1-S3. In
univariate and multivariate analyses, the risk score was an
independent predictor of patient survival (Figure S4).

3.3.  Clinical Correlation Analysis and Nomogram.
Furthermore, clinical differences between high-risk and low-
risk patients were explored (Figures 4(a)-4(f)). We found
that AL133445.2 was upregulated, while AC091132.2 and

risk score were downregulated in female patients
(Figure 4(a)); the T3-4 patients have a higher risk score
(Figure 4(b)); AC020765.2 was upregulated, while
LINC00707 and OGFRP1 were downregulated in relatively
young patients (Figure 4(c)); AL442125.1, U91328.1, and risk
score were upregulated in M1 patients (Figure 4(d));
AC091132.2 and AC090948.1 were downregulated in stage
III-1V patients (Figure 4(e)); AC091132.2 and AC090948.1
were downregulated, while OGFRP1 and risk score were
upregulated in N1-3 patients (Figure 4(f)). The clinical
information and risk score were combined to create a no-
mogram plot (Figure 4(g)). There was a satisfactory fit be-
tween the actual survival and the nomogram-predicted
survival based on calibration curves (Figure 4(h)).

3.4. Biological Enrichment. Next, biological differences be-
tween high- and low-risk groups were investigated. GSEA
showed that the pathways of hypoxia, mitotic spindle,
glycolysis, epithelial-mesenchymal transition (EMT), G2M
checkpoint, MYC target, mTORCI signaling and MYC
target a were activated in high-risk patients (Figure 5(a)). For
GO reference terms, the terms of sister chromatid segre-
gation, mitotic nuclear division, chromosome centromeric
region, nuclear chromosome segregation, chromosome
segregation, and mitotic sister chromatid segregation were
upregulated in the high-risk patients (Figures 5(b)-5(g)).

3.5. Immune-Related Analysis. Then, we quantified the
immune infiltration of LUAD tissue based on multiple al-
gorithms, including XCELL, CIBERSORT, EPIC,
MCPCOUNTER, QUANTISEQ, and TIMER. A positive
correlation was found between risk score and monocyte,
macrophage/monocyte, T_cell_CD4+_Th2, but a negative
correlation with CD8+ T cells, CD4+ T cells, B cells, and NK
cells (Figure 6(a)). Immune function analysis showed that in
high-risk  patients, the immune terms of type_-
II_IFN_response, check point, T_cell_costimulation, and HLA
were downregulated, indicating that high-risk patients may
have a lower immune function level (Figure 6(b)). For patients
with LUAD, immunotherapy is an important treatment option.
Therefore, we first explored the differences in key immune
checkpoints (CTLA4, PD-1, PD-L1, PD-L2) in high- and low-
risk patients. We noticed that CTLA4 has a higher expression
level in low-risk patients (Figure 6(c)). Meanwhile, for other
immune checkpoint genes, we noticed a higher expression level
of CD276, TNFSF9, and HMGBI1, while a lower level of
BTN3A1, CD40LG, ENTPD1, HLA-DPAI, HLA-DPB1, HLA-
DQA1, HLA-DQB2, HLA-DRA, ICAM1, ITGB2, SELP,
SLAMF7, TIGIT, TNFRSF14, TNFRSF4, TNEFSFI15,
TNFRSF25, CD48, and NROL in high-risk patients (Figure S5).
According to the TIDE algorithm, immunotherapy responders
may have a lower risk score (Figure 6(d)).

3.6. Genomic Instability and Drug Sensitivity Analysis.
Genomic instability is another important factor affecting
tumor progression. Therefore, we explored the genomic
features in high- and low-risk patients. Results showed that
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FIGURE 2: Identification of disulfidptosis-related genes and IncRNAs. (a) The disulfidptosis-related molecules from a previous study;
(b) correlation analysis identified 1401 IncRNAs significantly correlated with disulfidptosis-related genes as disulfidptosis-related IncRNAs.

risk score was positively correlated with TMB, mRNAsi, and
EREG-mRNAsi, indicating that the patients with high-risk
scores might have a worse genomic instability (Figures 7(a)-
7(d)). In a drug sensitivity analysis, vinblastine, docetaxel,
and paclitaxel seemed to be more sensitive to patients with
high-risk cancers (Figure 7(e)).

3.7. Further Exploration of OGFRPI. Then, we selected
OGFRP1 for further analysis. We found the OGFRPI1 was
upregulated in LUAD tumor tissue (Figure 8(a)). KM sur-
vival curves showed that OGFR1 was associated with worse
overall survival (OS), disease-free survival (DSS), and
progression-free survival (PFI) (Figures 8(b)-8(d)). Results
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FiGure 3: Construction of a prognosis model. (a, b) LASSO regression analysis; (c) multivariate cox regression analysis; (d) overview of our
model in the training cohort; (e) KM survival curves of OS between high- and low-risk groups (training cohort); (f-h): ROC curves of our
model in 1-, 3- , and 5-year survival (training cohort); (i) overview of our model in the validation cohort; (j) KM survival curves of OS
between high- and low-risk groups (validation cohort); (k-m) ROC curves of our model in 1-, 3- , and 5-year survival (validation cohort).

of ssGSEA showed that OGFRP1 was positively correlated
with Th2 cells but negatively correlated with B cells, TFH,
CD8+ T cells, cytotoxic cells, T cells, and Thl cells
(Figure 8(e)). Biological enrichment analysis showed that
OGFRP1 was positively correlated with MYC targets, the
mitotic spindle, E2F targets, G2M checkpoint, and glycolysis
(Figure 8(f)). Clinical analysis showed a negative correlation
between OGFRP1 and N stage. The knockdown efficiency of
OGFRP1 is shown in Figure S6, and the sh#2 was selected for
further experiments. Then, we performed a transwell assay.
A significant reduction in lung cancer invasion and mi-
gration was observed when OGFRP1 was inhibited
(Figure 8(g)).

4. Discussion

Globally, lung cancer remains a major public health concern.
Lung cancer is a multifactorial disease whose pathogenesis
remains unclear. With the development of molecular bi-
ology, people have gradually explored the mechanisms of

cancer occurrence and development and developed prom-
ising targeted therapies for specific targets. Consequently,
exploring possible targets at the molecular level is of great
significance.

To the best of our knowledge, this is the first study to
examine the role of disulfidptosis-related IncRNAs in
LUAD. In our study, we identified 1401 IncRNAs signifi-
cantly correlated with disulfidptosis-related genes (|Cor]|
>0.3and P < 0.05). Then, we constructed a prognosis model
consisting of 11 disulfidptosis-related IncRNAs, including
AL133445.2, AL442125.1, AC091132.2, AC090948.1,
AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1,
U91328.1, and GASALL. Also, the risk score and clinical
information were combined to develop a nomogram. An-
alyses of biological enrichment and immune-related data
were used to identify underlying differences between pa-
tients at high-risk and low-risk. Moreover, we noticed that
the immunotherapy nonresponders have higher risk scores.
Meanwhile, patients at high risk responded more strongly to
docetaxel, paclitaxel, and vinblastine. Furthermore, further
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FiGure 4: Clinical correlation analysis and nomogram. (a) Expression of model IncRNAs and risk score in patients with different gender;
(b) expression of model IncRNAs and risk score in patients with different T stage; (c) expression of model IncRNAs and risk score in patients
with different age groups; (d) expression of model IncRNAs and risk score in patients with different M stage; (e) expression of model
IncRNAs and risk score in patients with different clinical stage; (f) expression of model IncRNAs and risk score in patients with different N
stage; (g) a nomogram plot was constructed by combining clinical information and risk score; (h) calibration curves of 1-, 3- and 5-years.
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FIGURE 5: Biological enrichment analysis. (a) GSEA based on hallmark gene set; (b-g): GSEA based on GO gene set.
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FIGURE 6: Immune-related analysis. (a) The tumor microenvironment of LUAD was quantified using multiple algorithms; (b) the quantified
immune function by ssGSEA algorithm in high- and low-risk patients; (c) the key immune checkpoints in high- and low-risk patients;
(d) the risk score in immunotherapy responders and nonresponders.
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FIGURE 7: Genomic instability and drug sensitivity analysis. (a) Correlation between the risk score and TMB score; (b) correlation between
the risk score and MSI score; (c) correlation between the risk score and mRNAsi; (d) correlation between the risk score and EREG-mRNAsi;
(e) IC50 of specific drugs in high- and low-risk patients.
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FiGure 8: Role of OGFRPI in LUAD. (a) Expression level of OGFRP1 in paired LUAD and normal tissue; (b-d): prognosis effect of
OGFRP1 in LUAD; (e) immune infiltration analysis of OGFRP1; (f) GSEA of OGFRP1; (g) transwell assay of OGFRP1.
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analysis of the model IncRNA OGFRP1 was conducted,
including clinical, immune infiltration, biological enrich-
ment analysis, and transwell assay. We discovered that by
inhibiting OGFRP1, the invasion and migration abilities of
lung cancer cells could be remarkably hindered.

Our results identified the role of 11 model IncRNAs in
LUAD, which are associated with the disulfidptosis process.
LncRNAs have been implicated in cancer in some cases. For
example, the IncRNA AC090948.1 was found to be related to
lipid metabolism, cuproptosis, and immunity in cancers
[25-27]. Hu et al. noticed that AC020765.2 is related to
autophagy in lung cancer [28]. Jiang et al. discovered that the
inhibition of CASCS8 could affect lung cancer progression
and osimertinib sensitivity in a FOXM1-dependent manner
[29]. Moreover, Zheng et al. found that AL606834.1 was
associated with ferroptosis in lung cancer [30]. Ma et al.
demonstrated that LINC00707 can promote lung cancer
development by regulating Cdc42 [31]. Our results indicated
that these model IncRNA are associated with the disul-
fidptosis process, which might provide a novel un-
derstanding of their role in lung cancer.

GSEA showed that the pathways of hypoxia, mitotic
spindle, glycolysis, EMT, G2M checkpoint, E2F target, MYC
target, mTORCI signaling, and MYC target were activated
in high-risk patients. Local hypoxia is an important char-
acteristic of tumors. In lung cancer, Shi et al. found that
YTHDFI is associated with hypoxia adaptation, as well as
lung cancer progression [32]. Zhang et al. noticed that in the
absence of oxygen, bone marrow-derived mesenchymal
stem cells can induce lung cancer metastasis through exo-
somal miRNAs and EMT pathways [33]. Yang et al. dis-
covered that the FOXP3 could activate the Wnt/S-catenin
signaling and EMT to promote lung cancer malignant
phenotypes [34]. Liu et al. noticed that EMT can be activated
by IL-6 depending on the NF-«B/TIM-4 axis, therefore,
facilitating lung cancer metastasis [35]. Liu et al. found that
the interaction between TRIB2 and PKM2 can promote lung
cancer progression by regulating the aerobic glycolysis
process [36]. Hua et al. demonstrated that IncRNA-
ACO020978 induced by hypoxia can enhance lung cancer
development through glycolytic metabolism regulated by the
PKM2/HIF-1a axis [37]. Tantai et al. discovered that
PHLPP2 ubiquitylation can be modified by TRIM46,
therefore, enhancing lung cancer glycolysis and
chemoresistance [38].

The influence of risk score on immune infiltrating cells
may be one of the reasons for the prognosis differences in
different risk groups. Zhang et al. noticed that the macro-
phage polarization regulated by SPP1 can lead to immune
escape in LUAD [39]. Chen et al. discovered that exosomal-
circUSP7 derived from lung cancer cells can result in CD8+
T cell dysfunction, therefore, affecting the efficiency of anti-
PD-L1 therapy [40]. Fang et al. found that IDO1 could
downregulate NKG2D to hamper NK cells function, further
inhibiting lung cancer development [41].

Although our analysis is based on high-quality data
and rigorous analysis, some limitations cannot be ignored.
First, the list of disulfidptosis-related genes was collected
from the previous study conducted by Liu and their
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colleagues. However, with the deepening of relevant re-
search, there will be more and more potential genes that
regulate defective protein synthesis. Second, immune in-
filtration analysis is performed using a variety of bio-
informatics algorithms. However, bioinformatics algorithms
cannot fully quantify the actual situation inside tumors.

Data Availability
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repository (https://portal.gdc.cancer.gov/) and are available
from the corresponding author on reasonable request.
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Supplementary Materials

Figure S1. KM survival curves of model IncRNAs (OS) in
LUAD Notes: (A) KM survival curves of GYS1 in LUAD
(0S); (B) KM survival curves of LRPPRC in LUAD (OS); (C)
KM survival curves of NCKAP1 in LUAD (OS); (D) KM
survival curves of NDUFAI11 in LUAD (OS); (E) KM sur-
vival curves of NDUFSI in LUAD (OS); (F) KM survival
curves of NUBPL in LUAD (OS); (G) KM survival curves of
OXSM in LUAD (OS); (H) KM survival curves of RPN1 in
LUAD (0OS); (I) KM survival curves of SLC3A2 in LUAD
(0S); (J) KM survival curves of SLC7A11 in LUAD (OS).
Figure S2. KM survival curves of model IncRNAs (DSS)
Notes: (A) KM survival curves of GYS1 in LUAD (DSS); (B)
KM survival curves of LRPPRC in LUAD (DSS); (C) KM
survival curves of NCKAP1 in LUAD (DSS); (D) KM sur-
vival curves of NDUFA11 in LUAD (DSS); (E) KM survival
curves of NDUFSI in LUAD (DSS); (F) KM survival curves
of NUBPL in LUAD (DSS); (G) KM survival curves of
OXSM in LUAD (DSS); (H) KM survival curves of RPN1 in
LUAD (DSS); (I) KM survival curves of SLC3A2 in LUAD
(DSS); (J) KM survival curves of SLC7A11 in LUAD (DSS).
Figure S3. KM survival curves of model IncRNAs (PFI)
Notes: (A) KM survival curves of GYS1 in LUAD (PFI); (B)
KM survival curves of LRPPRC in LUAD (PFI); (C) KM
survival curves of NCKAP1 in LUAD (PFI); (D) KM survival
curves of NDUFA11 in LUAD (PFI); (E) KM survival curves
of NDUFSI in LUAD (PFI); (F) KM survival curves of
NUBPL in LUAD (PFI); (G) KM survival curves of OXSM in
LUAD (PFI); (H) KM survival curves of RPN1 in LUAD
(PFI); (I) KM survival curves of SLC3A2 in LUAD (PFI); (])
KM survival curves of SLC7A11 in LUAD (PFI). Figure S4.
Univariate and multivariate analysis of risk score Notes: (A)
Univariate analysis of risk score; (B) Multivariate analysis of
risk score. Figure S5. The expression level of immune
checkpoint molecules in high- and low-risk patients. Figure
S6. Knockdown efficiency of OGFRP1 in A549 and PC-9 cell
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lines Notes: (A) Knockdown efficiency of OGFRP1 in A549
cell line; (B) Knockdown efficiency of OGFRPI in PC-9
cell line. (Supplementary Materials)
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