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Background. Te role of disulfdptosis-related lncRNAs remains unclear in lung adenocarcinoma.Methods. Analysis in R software
was conducted using diferent R packages, which are based on the public data fromTe Cancer Genome Atlas (TCGA) database.
Te transwell assay was used to evaluate the invasion and migration abilities of lung cancer cells. Results. In our study, we
identifed 1401 lncRNAs signifcantly correlated with disulfdptosis-related genes (|Cor|> 0.3 and P< 0.05). Ten, we constructed
a prognosis model consisting of 11 disulfdptosis-related lncRNAs, including AL133445.2, AL442125.1, AC091132.2, AC090948.1,
AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and GASAL1. Tis prognosis model has satisfactory pre-
diction performance. Also, the risk score and clinical information were combined to develop a nomogram. Analyses of biological
enrichment and immune-related data were used to identify underlying diferences between patients at high-risk and low-risk
groups. Moreover, we noticed that the immunotherapy nonresponders have higher risk scores. Meanwhile, patients at a high risk
responded more strongly to docetaxel, paclitaxel, and vinblastine. Furthermore, further analysis of the model lncRNA OGFRP1
was conducted, including clinical, immune infltration, biological enrichment analysis, and a transwell assay. We discovered that
by inhibiting OGFRP1, the invasion and migration abilities of lung cancer cells could be remarkably hindered. Conclusion. Te
results of our study can provide directions for future research in the relevant areas. Moreover, the prognosis signature we
identifed has the potential for clinical application.

1. Introduction

Worldwide, lung cancer is one of the most common cancers,
and its incidence is still increasing [1]. Known as a multi-
factorial disease, lung cancer involves both environmental
and genetic factors [2]. Among all subtypes, lung adeno-
carcinoma (LUAD) is the most predominant type. Despite
signifcant medical advances, the prognosis of some patients
with LUAD remains unsatisfactory [3]. Moreover, the
pathogenesis of LUAD is largely unknown, and early di-
agnosis is still insufcient, which to some extent leads to
treatment challenges for LUAD [4]. Consequently,

identifying the genes linked to LUAD may improve the
prognosis, diagnosis, and treatment of the disease.

Noncoding RNA with a length of over 200 bases is
known as long noncoding RNA (lncRNA), which is famous
for its widespread regulatory efects [5]. LncRNAs have
multiple efect patterns including competitive endogenous
RNA (ceRNA) mechanisms, protein-binding, transcrip-
tional regulation, and so on [6]. In addition, many studies
have indicated that lncRNAs may contribute to cancer
development. For instance, Kong et al. discovered that
lncRNA CDC6 could promote breast cancer progression
through the ceRNA mechanism (miR-215/CDC6) [7]. Yuan
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et al. found that the lncRNA TLNC1 could accelerate liver
cancer progression by hampering the p53 signaling pathway
[8]. In lung cancer, Pan et al. found that the lncRNA JPX can
promote lung cancer development through the miR-33a-5p/
Twist1 axis [9]. Gao et al. noticed that lncRNA PCAT1 could
inhibit radioimmune responses by regulating cGAS/STING
signaling [10]. Hua et al. discovered that the lncRNA
LINC01123 promotes proliferation and aerobic glycolysis by
ceRNA mechanisms (miR-199a-5p/c-Myc axis) [11]. Re-
cently, Liu et al. noticed a novel cell death form named
“disulfdptosis” cell death, which is due to the aberrant
accumulation of intracellular disulfdes dependent on
SLC7A11 [12]. Disulfdptosis is diferent from apoptosis and
ferroptosis, which were previously uncharacterized. Tere-
fore, prospective exploration of the lncRNA that regulates
disulfdptosis can provide direction for future research in
this feld and reveal possible targets.

In our study, we identifed 1401 lncRNAs signifcantly
correlated with disulfdptosis-related genes (|Cor|> 0.3 and
P< 0.05). Ten, we constructed a prognosis model con-
sisting of 11 disulfdptosis-related lncRNAs, including
AL133445.2, AL442125.1, AC091132.2, AC090948.1,
AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1,
U91328.1, and GASAL1. Also, the risk score and clinical
information were combined to develop a nomogram. An-
alyses of biological enrichment and immune-related data
were used to identify underlying diferences between pa-
tients in high-risk and low-risk groups. Moreover, we no-
ticed that the immunotherapy nonresponders have higher
risk scores. Meanwhile, patients at high risk responded more
strongly to docetaxel, paclitaxel, and vinblastine. Further-
more, further analysis of the model lncRNA OGFRP1 was
conducted, including clinical, immune infltration, bi-
ological enrichment analysis, and a transwell assay. We
discovered that by inhibiting OGFRP1, the invasion and
migration abilities of lung cancer cells could be remarkably
hindered.

2. Methods

2.1. Data Collection. Te public data of LUAD patients were
downloaded from the Cancer Genome Atlas database
(TCGA)-KIRC project. Te original transcriptome data
form is “STAR-Counts.” Te original clinical data form is
“bcr-xml.” For the transcriptome data, the R code of the
authors was used for data normalization. Clinical data were
arranged using the Perl code. Te distinction between
coding genes and lncRNA is based on a reference genome
fle (GRCh38.gtf ). Tumor stemness data were obtained from
the previous study [13].

2.2. Collection of the Disulfdptosis-Related Genes and
lncRNAs. Te list of disulfdptosis-related genes was col-
lected from the previous study conducted by Liu and their
colleagues [12]. Correlation analysis was used to identify the
disulfdptosis-related lncRNAs. For specifc disulfdptosis-
related genes, the lncRNAs with |cor|> 0.3 and P < 0.05
were regarded as disulfdptosis-related lncRNAs. Cytoscape

software was used to visualize the coexpression network of
disulfdptosis-related genes-lncRNAs [14].

2.3. Construction of the Prognosis Model. As a frst step, the
patients were randomly assigned to training and validation
cohorts. Genes associated with prognosis were identifed
using univariate Cox regression analysis (P < 0.05). Te
fnal variables were optimized through the use of LASSO
regression. Finally, multivariate Cox regression analyses
were used to construct a prognosis model with the formula
of “risk score� lncRNAA ∗ Coef A+ lncRNA B ∗ Coef B +
. . . + lncRNA N ∗ Coef N.”

2.4. Nomogram Plot. Te nomogram was created by com-
bining the risk score and clinical information to enhance its
clinical applicability. A calibration plot was used to evaluate
whether the nomogram predicted survival accurately.

2.5. Biological Enrichment Analysis. Gene set enrichment
analysis (GSEA) was utilized to perform biological enrich-
ment analysis based on multiple gene sets [15].

2.6. Immune-Related and Drug-Sensitivity Analysis.
Multiple algorithms were used to quantify the immune
infltration status of the LUAD tissue microenvironment,
including XCELL, CIBERSORT, EPIC, MCPCOUNTER,
QUANTISEQ, and TIMER [16–20]. Te single-sample
GSEA (ssGSEA) was used to quantify the immune func-
tions [21]. Using the tumor immune dysfunction and ex-
clusion (TIDE) algorithm, the immunotherapy response was
examined [22]. Data from the Genomics of Drug Sensitivity
in Cancer (GDSC) database were used to analyze drug
sensitivity [23].

2.7. Cell Culture and Quantitative Real-Time PCR (qPCR).
Te lung cancer cell lines A549 and PC-9 used in this study
were stored in our laboratory and cultured under conven-
tional conditions (5% CO2 and 37°C). To produce cDNA,
total RNA was extracted and reverse transcribed using
a Universal RNA Extraction Kit (TaKaRa, Shanghai, China).
Te primers used for qPCR are shown in Supplementary
fle 1.

2.8. Cell Transfection. Cell transfection was performed using
lipofectmine 2000 according to standard procedures. Te
shRNAs of OGFRP1 were designed and purchased from
Guangzhou RiboBio (Guangzhou, China), and the target
sequences were as follows: shRNA1, 5′-GGTGTTCACATG
GCAGTAA-3′; shRNA2, 5′-GGATACTGAGAGTGCACA
A-3′; and shRNA3, 5′-GCATTGACATGTTTGGCAT-3′.

2.9. Transwell Assay. According to standard procedures,
transwell assays were performed on A549 and PC-9 cell
lines [24].
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2.10. Statistical Analysis. All statistical analyses were per-
formed using R version 4.0.4 and GraphPad Prism 8 soft-
ware. Te threshold of statistical value is 0.05. Diferent
statistical analysis methods were applied according to the
data distribution form.

3. Results

Te fowchart of our study is shown in Figure 1.

3.1. Identifcation ofDisulfdptosis-Related lncRNAs in LUAD.
Based on the previous abovementioned studies, the genes
SLC7A11, SLC3A2, RPN1, NCKAP1, NUBPL, NDUFA11,
LRPPRC, OXSM, NDUFS1, and GYS1 were identifed as the
disulfdptosis-related genes. We found that all these
disulfdptosis-related genes were upregulated in the tumor
tissue, indicating their underlying efect on cancers
(Figure 2(a)). A correlation analysis identifed 1401 lncRNAs
signifcantly correlated with disulfdptosis-related genes as
disulfdptosis-related lncRNAs (Figure 2(b)).

3.2. Prognosis Model. Our frst step was to divide the LUAD
patients into 1 :1 training and validation cohorts based on
the TCGA data. First, we identifed prognosis-related
lncRNAs using univariate Cox regression analysis in the
training cohort. Ten, the LASSO regression analysis was
applied to reduce data dimensions (Figures 3(a) and 3(b)).
Ultimately, 11 disulfdptosis-related lncRNAs were identi-
fed for a prognosis model, including AL133445.2,
AL442125.1, AC091132.2, AC090948.1, AC020765.2,
CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and
GASAL1 (Figure 3(c)). Te risk score of each patient was
calculated with the formula of “risk score�AL133445.2 ∗
−0.6694 +AL442125.1 ∗ 0.5915 +AC091132.2 ∗ −0.4289 +
AC090948.1 ∗ −0.4188 +AC020765.2 ∗ −0.2100 +CASC8
∗ 0.1571 +AL606834.1 ∗ 0.2287 + LINC00707 ∗ 0.2059 +
OGFRP1 ∗ 0.2934 +U91328.1 ∗ −0.4533 +GASAL1 ∗
0.3135.” Te overview of the training cohort is shown in
Figure 3(d). As shown in the KM survival curve, high-risk
patients have a poorer prognosis than low-risk patients
(Figure 3(e)). Te satisfactory prediction performance of our
model was shown by ROC curves (Figures 3(f)–3(h); 1-year
AUC� 0.771, 3-year AUC� 0.741, 5-year AUC� 0.753).
Tere were also more deaths in the high-risk group
(Figure 3(i)). Compared to low-risk patients, high-risk pa-
tients had a worse survival rate (Figure 3(j)). ROC curves also
indicated good prediction performance of our model in the
validation group (Figures 3(k)–3(m); 1-year AUC� 0.678, 3-
year AUC� 0.746, 5-year AUC� 0.766). Te prognosis efect
of these model lncRNAs is shown in Figures S1–S3. In
univariate and multivariate analyses, the risk score was an
independent predictor of patient survival (Figure S4).

3.3. Clinical Correlation Analysis and Nomogram.
Furthermore, clinical diferences between high-risk and low-
risk patients were explored (Figures 4(a)–4(f)). We found
that AL133445.2 was upregulated, while AC091132.2 and

risk score were downregulated in female patients
(Figure 4(a)); the T3-4 patients have a higher risk score
(Figure 4(b)); AC020765.2 was upregulated, while
LINC00707 and OGFRP1 were downregulated in relatively
young patients (Figure 4(c)); AL442125.1, U91328.1, and risk
score were upregulated in M1 patients (Figure 4(d));
AC091132.2 and AC090948.1 were downregulated in stage
III-IV patients (Figure 4(e)); AC091132.2 and AC090948.1
were downregulated, while OGFRP1 and risk score were
upregulated in N1-3 patients (Figure 4(f)). Te clinical
information and risk score were combined to create a no-
mogram plot (Figure 4(g)). Tere was a satisfactory ft be-
tween the actual survival and the nomogram-predicted
survival based on calibration curves (Figure 4(h)).

3.4. Biological Enrichment. Next, biological diferences be-
tween high- and low-risk groups were investigated. GSEA
showed that the pathways of hypoxia, mitotic spindle,
glycolysis, epithelial-mesenchymal transition (EMT), G2M
checkpoint, MYC target, mTORC1 signaling and MYC
target a were activated in high-risk patients (Figure 5(a)). For
GO reference terms, the terms of sister chromatid segre-
gation, mitotic nuclear division, chromosome centromeric
region, nuclear chromosome segregation, chromosome
segregation, and mitotic sister chromatid segregation were
upregulated in the high-risk patients (Figures 5(b)–5(g)).

3.5. Immune-Related Analysis. Ten, we quantifed the
immune infltration of LUAD tissue based on multiple al-
gorithms, including XCELL, CIBERSORT, EPIC,
MCPCOUNTER, QUANTISEQ, and TIMER. A positive
correlation was found between risk score and monocyte,
macrophage/monocyte, T_cell_CD4+_T2, but a negative
correlation with CD8+ Tcells, CD4+ Tcells, B cells, and NK
cells (Figure 6(a)). Immune function analysis showed that in
high-risk patients, the immune terms of type_-
II_IFN_response, check point, T_cell_costimulation, and HLA
were downregulated, indicating that high-risk patients may
have a lower immune function level (Figure 6(b)). For patients
with LUAD, immunotherapy is an important treatment option.
Terefore, we frst explored the diferences in key immune
checkpoints (CTLA4, PD-1, PD-L1, PD-L2) in high- and low-
risk patients. We noticed that CTLA4 has a higher expression
level in low-risk patients (Figure 6(c)). Meanwhile, for other
immune checkpoint genes, we noticed a higher expression level
of CD276, TNFSF9, and HMGB1, while a lower level of
BTN3A1, CD40LG, ENTPD1, HLA-DPA1, HLA-DPB1, HLA-
DQA1, HLA-DQB2, HLA-DRA, ICAM1, ITGB2, SELP,
SLAMF7, TIGIT, TNFRSF14, TNFRSF4, TNFSF15,
TNFRSF25, CD48, andNRO1 in high-risk patients (Figure S5).
According to the TIDE algorithm, immunotherapy responders
may have a lower risk score (Figure 6(d)).

3.6. Genomic Instability and Drug Sensitivity Analysis.
Genomic instability is another important factor afecting
tumor progression. Terefore, we explored the genomic
features in high- and low-risk patients. Results showed that
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risk score was positively correlated with TMB, mRNAsi, and
EREG-mRNAsi, indicating that the patients with high-risk
scores might have a worse genomic instability (Figures 7(a)–
7(d)). In a drug sensitivity analysis, vinblastine, docetaxel,
and paclitaxel seemed to be more sensitive to patients with
high-risk cancers (Figure 7(e)).

3.7. Further Exploration of OGFRP1. Ten, we selected
OGFRP1 for further analysis. We found the OGFRP1 was
upregulated in LUAD tumor tissue (Figure 8(a)). KM sur-
vival curves showed that OGFR1 was associated with worse
overall survival (OS), disease-free survival (DSS), and
progression-free survival (PFI) (Figures 8(b)–8(d)). Results

(b)

Figure 2: Identifcation of disulfdptosis-related genes and lncRNAs. (a) Te disulfdptosis-related molecules from a previous study;
(b) correlation analysis identifed 1401 lncRNAs signifcantly correlated with disulfdptosis-related genes as disulfdptosis-related lncRNAs.
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of ssGSEA showed that OGFRP1 was positively correlated
with T2 cells but negatively correlated with B cells, TFH,
CD8+ T cells, cytotoxic cells, T cells, and T1 cells
(Figure 8(e)). Biological enrichment analysis showed that
OGFRP1 was positively correlated with MYC targets, the
mitotic spindle, E2F targets, G2M checkpoint, and glycolysis
(Figure 8(f )). Clinical analysis showed a negative correlation
between OGFRP1 and N stage. Te knockdown efciency of
OGFRP1 is shown in Figure S6, and the sh#2 was selected for
further experiments. Ten, we performed a transwell assay.
A signifcant reduction in lung cancer invasion and mi-
gration was observed when OGFRP1 was inhibited
(Figure 8(g)).

4. Discussion

Globally, lung cancer remains a major public health concern.
Lung cancer is a multifactorial disease whose pathogenesis
remains unclear. With the development of molecular bi-
ology, people have gradually explored the mechanisms of

cancer occurrence and development and developed prom-
ising targeted therapies for specifc targets. Consequently,
exploring possible targets at the molecular level is of great
signifcance.

To the best of our knowledge, this is the frst study to
examine the role of disulfdptosis-related lncRNAs in
LUAD. In our study, we identifed 1401 lncRNAs signif-
cantly correlated with disulfdptosis-related genes (|Cor|
> 0.3 and P < 0.05).Ten, we constructed a prognosis model
consisting of 11 disulfdptosis-related lncRNAs, including
AL133445.2, AL442125.1, AC091132.2, AC090948.1,
AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1,
U91328.1, and GASAL1. Also, the risk score and clinical
information were combined to develop a nomogram. An-
alyses of biological enrichment and immune-related data
were used to identify underlying diferences between pa-
tients at high-risk and low-risk. Moreover, we noticed that
the immunotherapy nonresponders have higher risk scores.
Meanwhile, patients at high risk responded more strongly to
docetaxel, paclitaxel, and vinblastine. Furthermore, further
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Figure 3: Construction of a prognosis model. (a, b) LASSO regression analysis; (c) multivariate cox regression analysis; (d) overview of our
model in the training cohort; (e) KM survival curves of OS between high- and low-risk groups (training cohort); (f–h): ROC curves of our
model in 1-, 3- , and 5-year survival (training cohort); (i) overview of our model in the validation cohort; (j) KM survival curves of OS
between high- and low-risk groups (validation cohort); (k–m) ROC curves of our model in 1-, 3- , and 5-year survival (validation cohort).
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Figure 4: Clinical correlation analysis and nomogram. (a) Expression of model lncRNAs and risk score in patients with diferent gender;
(b) expression of model lncRNAs and risk score in patients with diferent Tstage; (c) expression of model lncRNAs and risk score in patients
with diferent age groups; (d) expression of model lncRNAs and risk score in patients with diferent M stage; (e) expression of model
lncRNAs and risk score in patients with diferent clinical stage; (f ) expression of model lncRNAs and risk score in patients with diferent N
stage; (g) a nomogram plot was constructed by combining clinical information and risk score; (h) calibration curves of 1-, 3- and 5-years.
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Figure 5: Continued.
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Figure 5: Biological enrichment analysis. (a) GSEA based on hallmark gene set; (b–g): GSEA based on GO gene set.

RiskType
RiskScore
B_cell_naive_CIBERSORT
B_cell_memory_CIBERSORT
B_cell_plasma_CIBERSORT
T_cell_CD8+_CIBERSORT
T_cell_CD4+_naive_CIBERSORT
T_cell_CD4+_memory_resting_CIBERSORT
T_cell_CD4+_memory_activated_CIBERSORT
T_cell_follicular_helper_CIBERSORT
T_cell_regulatory_(Tregs)_CIBERSORT
T_cell_gamma_delta_CIBERSORT
NK_cell_resting_CIBERSORT
NK_cell_activated_CIBERSORT
Monocyte_CIBERSORT
Macrophage_M0_CIBERSORT
Macrophage_M1_CIBERSORT
Macrophage_M2_CIBERSORT
Myeloid_dendritic_cell_resting_CIBERSORT
Myeloid_dendritic_cell_activated_CIBERSORT
Mast_cell_activated_CIBERSORT
Mast_cell_resting_CIBERSORT
Eosinophil_CIBERSORT
Neutrophil_CIBERSORT

B_cell_EPIC
T_cell_CD4+_EPIC
T_cell_CD8+_EPIC
Endothelial_cell_EPIC
Macrophage_EPIC
NK_cell_EPIC
uncharacterized_cell_EPIC

T_cell_MCPCOUNTER
T_cell_CD8+_MCPCOUNTER
cytotoxicity_score_MCPCOUNTER
NK_cell_MCPCOUNTER
B_cell_MCPCOUNTER
Monocyte_MCPCOUNTER
Macrophage/Monocyte_MCPCOUNTER
Myeloid_dendritic_cell_MCPCOUNTER
Neutrophil_MCPCOUNTER
Endothelial_cell_MCPCOUNTER

B_cell_QUANTISEQ
Macrophage_M1_QUANTISEQ
Macrophage_M2_QUANTISEQ
Monocyte_QUANTISEQ
Neutrophil_QUANTISEQ
NK_cell_QUANTISEQ
T_cell_CD4+_(non-regulatory)_QUANTISEQ
T_cell_CD8+_QUANTISEQ
T_cell_regulatory_(Tregs)_QUANTISEQ
Myeloid_dendritic_cell_QUANTISEQ
uncharacterized_cell_QUANTISEQ

RiskType
RiskScore
B_cell_TIMER
T_cell_CD4+_TIMER
T_cell_CD8+_TIMER
Neutrophil_TIMER
Macrophage_TIMER

Myeloid_dendritic_cell_activated_XCELL
Myeloid_dendritic_cell_TIMER

B_cell_XCELL
T_cell_CD4+_memory_XCELL
T_cell_CD4+_naive_XCELL
T_cell_CD4+_(non–regulatory)_XCELL

T_cell_CD4+_effector_memory_XCELL
T_cell_CD4+_central_memory_XCELL

T_cell_CD8+_naive_XCELL
T_cell_CD8+_XCELL

T_cell_CD8+_effector_memory_XCELL
T_cell_CD8+_central_memory_XCELL

Class–switched_memory_B_cell_XCELL
Common_lymphoid_progenitor_XCELL
Common_myeloid_progenitor_XCELL
Myeloid_dendritic_cell_XCELL
Endothelial_cell_XCELL
Eosinophil_XCELL
Granulocyte–monocyte_progenitor_XCELL
Hematopoietic_stem_cell_XCELL
Macrophage_XCELL
Macrophage_M1_XCELL
Macrophage_M2_XCELL
Mast_cell_XCELL
B_cell_memory_XCELL
Monocyte_XCELL
B_cell_naive_XCELL
Neutrophil_XCELL
NK_cell_XCELL
T_cell_NK_XCELL
Plasmacytoid_dendritic_cell_XCELL
B_cell_plasma_XCELL
T_cell_gamma_delta_XCELL
T_cell_CD4+_Th1_XCELL
T_cell_CD4+_Th2_XCELL
T_cell_regulatory_(Tregs)_XCELL
immune_score_XCELL
stroma_score_XCELL
microenvironment_score_XCELL

XCELL
2
1
0
–1

TIMER
2
1
0
–1

QUANTISEQ
2
1
0
–1

MCPCOUNTER
2

EPIC
2

CIBERSORT
2

RiskScore
6

1
0
–1

1
0
–1

1
0
–1

4
2
0
–2 –2 –2 –2 –2 –2 –2

high
low

RiskType

(a)
Ty

pe
_I

I_
IF

N
_R

es
po

ns
e

2.0

1.5

1.0

0.5

0.0

Ex
pr

es
sio

n

0.55 0.29 0.51 0.05 0.36 9.8e-7 0.66 0.32 0.18 0.12 1.4e-3 0.78 1.4e-4

A
PC

_c
o_

in
hi

bi
tio

n

A
PC

_c
o_

sti
m

ul
at

io
n

CC
R

Ch
ec

k-
po

in
t

Cy
to

ly
tic

_a
ct

iv
ity

H
LA

In
fla

m
m

at
io

n-
pr

om
ot

in
g

M
H

C_
cla

ss
_I

Pa
ra

in
fla

m
m

at
io

n

T_
ce

ll_
co

-s
tim

ul
at

io
n

T_
ce

ll_
co

-I
nh

ib
iti

on

Ty
pe

_I
_I

FN
_R

es
po

ns
e

riskScore

high
low

(b)
Figure 6: Continued.

10 Genetics Research

https://doi.org/10.1155/2023/6670514
Downloaded from https://www.cambridge.org/core. IP address: 3.22.70.129, on 23 Apr 2024 at 17:58:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1155/2023/6670514
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


3.57
PD-1

CTLA4

PD-L2

PD-L1

high
low

(c)

10

8

6

4

2

0

Ex
pr

es
sio

n

riskScore

Responders
Non-Responders

TIDE

2.7e-5

(d)
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Figure 7: Genomic instability and drug sensitivity analysis. (a) Correlation between the risk score and TMB score; (b) correlation between
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Figure 8: Role of OGFRP1 in LUAD. (a) Expression level of OGFRP1 in paired LUAD and normal tissue; (b–d): prognosis efect of
OGFRP1 in LUAD; (e) immune infltration analysis of OGFRP1; (f ) GSEA of OGFRP1; (g) transwell assay of OGFRP1.
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analysis of the model lncRNA OGFRP1 was conducted,
including clinical, immune infltration, biological enrich-
ment analysis, and transwell assay. We discovered that by
inhibiting OGFRP1, the invasion and migration abilities of
lung cancer cells could be remarkably hindered.

Our results identifed the role of 11 model lncRNAs in
LUAD, which are associated with the disulfdptosis process.
LncRNAs have been implicated in cancer in some cases. For
example, the lncRNA AC090948.1 was found to be related to
lipid metabolism, cuproptosis, and immunity in cancers
[25–27]. Hu et al. noticed that AC020765.2 is related to
autophagy in lung cancer [28]. Jiang et al. discovered that the
inhibition of CASC8 could afect lung cancer progression
and osimertinib sensitivity in a FOXM1-dependent manner
[29]. Moreover, Zheng et al. found that AL606834.1 was
associated with ferroptosis in lung cancer [30]. Ma et al.
demonstrated that LINC00707 can promote lung cancer
development by regulating Cdc42 [31]. Our results indicated
that these model lncRNA are associated with the disul-
fdptosis process, which might provide a novel un-
derstanding of their role in lung cancer.

GSEA showed that the pathways of hypoxia, mitotic
spindle, glycolysis, EMT, G2M checkpoint, E2F target, MYC
target, mTORC1 signaling, and MYC target were activated
in high-risk patients. Local hypoxia is an important char-
acteristic of tumors. In lung cancer, Shi et al. found that
YTHDF1 is associated with hypoxia adaptation, as well as
lung cancer progression [32]. Zhang et al. noticed that in the
absence of oxygen, bone marrow-derived mesenchymal
stem cells can induce lung cancer metastasis through exo-
somal miRNAs and EMT pathways [33]. Yang et al. dis-
covered that the FOXP3 could activate the Wnt/β-catenin
signaling and EMT to promote lung cancer malignant
phenotypes [34]. Liu et al. noticed that EMTcan be activated
by IL-6 depending on the NF-κB/TIM-4 axis, therefore,
facilitating lung cancer metastasis [35]. Liu et al. found that
the interaction between TRIB2 and PKM2 can promote lung
cancer progression by regulating the aerobic glycolysis
process [36]. Hua et al. demonstrated that lncRNA-
AC020978 induced by hypoxia can enhance lung cancer
development through glycolytic metabolism regulated by the
PKM2/HIF-1α axis [37]. Tantai et al. discovered that
PHLPP2 ubiquitylation can be modifed by TRIM46,
therefore, enhancing lung cancer glycolysis and
chemoresistance [38].

Te infuence of risk score on immune infltrating cells
may be one of the reasons for the prognosis diferences in
diferent risk groups. Zhang et al. noticed that the macro-
phage polarization regulated by SPP1 can lead to immune
escape in LUAD [39]. Chen et al. discovered that exosomal-
circUSP7 derived from lung cancer cells can result in CD8+
T cell dysfunction, therefore, afecting the efciency of anti-
PD-L1 therapy [40]. Fang et al. found that IDO1 could
downregulate NKG2D to hamper NK cells function, further
inhibiting lung cancer development [41].

Although our analysis is based on high-quality data
and rigorous analysis, some limitations cannot be ignored.
First, the list of disulfdptosis-related genes was collected
from the previous study conducted by Liu and their

colleagues. However, with the deepening of relevant re-
search, there will be more and more potential genes that
regulate defective protein synthesis. Second, immune in-
fltration analysis is performed using a variety of bio-
informatics algorithms. However, bioinformatics algorithms
cannot fully quantify the actual situation inside tumors.
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Supplementary Materials

Figure S1. KM survival curves of model lncRNAs (OS) in
LUAD Notes: (A) KM survival curves of GYS1 in LUAD
(OS); (B) KM survival curves of LRPPRC in LUAD (OS); (C)
KM survival curves of NCKAP1 in LUAD (OS); (D) KM
survival curves of NDUFA11 in LUAD (OS); (E) KM sur-
vival curves of NDUFS1 in LUAD (OS); (F) KM survival
curves of NUBPL in LUAD (OS); (G) KM survival curves of
OXSM in LUAD (OS); (H) KM survival curves of RPN1 in
LUAD (OS); (I) KM survival curves of SLC3A2 in LUAD
(OS); (J) KM survival curves of SLC7A11 in LUAD (OS).
Figure S2. KM survival curves of model lncRNAs (DSS)
Notes: (A) KM survival curves of GYS1 in LUAD (DSS); (B)
KM survival curves of LRPPRC in LUAD (DSS); (C) KM
survival curves of NCKAP1 in LUAD (DSS); (D) KM sur-
vival curves of NDUFA11 in LUAD (DSS); (E) KM survival
curves of NDUFS1 in LUAD (DSS); (F) KM survival curves
of NUBPL in LUAD (DSS); (G) KM survival curves of
OXSM in LUAD (DSS); (H) KM survival curves of RPN1 in
LUAD (DSS); (I) KM survival curves of SLC3A2 in LUAD
(DSS); (J) KM survival curves of SLC7A11 in LUAD (DSS).
Figure S3. KM survival curves of model lncRNAs (PFI)
Notes: (A) KM survival curves of GYS1 in LUAD (PFI); (B)
KM survival curves of LRPPRC in LUAD (PFI); (C) KM
survival curves of NCKAP1 in LUAD (PFI); (D) KM survival
curves of NDUFA11 in LUAD (PFI); (E) KM survival curves
of NDUFS1 in LUAD (PFI); (F) KM survival curves of
NUBPL in LUAD (PFI); (G) KM survival curves of OXSM in
LUAD (PFI); (H) KM survival curves of RPN1 in LUAD
(PFI); (I) KM survival curves of SLC3A2 in LUAD (PFI); (J)
KM survival curves of SLC7A11 in LUAD (PFI). Figure S4.
Univariate and multivariate analysis of risk score Notes: (A)
Univariate analysis of risk score; (B) Multivariate analysis of
risk score. Figure S5. Te expression level of immune
checkpoint molecules in high- and low-risk patients. Figure
S6. Knockdown efciency of OGFRP1 in A549 and PC-9 cell
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lines Notes: (A) Knockdown efciency of OGFRP1 in A549
cell line; (B) Knockdown efciency of OGFRP1 in PC-9
cell line. (Supplementary Materials)
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