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THE TWO-SIDED FACTORIZATION OF 
ORDINARY DIFFERENTIAL OPERATORS 

PATRICK J. BROWNE AND RODNEY NIELSEN 

1. I n t r o d u c t i o n . Throughout this paper we shall use / to denote a 
given interval, not necessarily bounded, of real numbers and (," to 
denote the real valued n times continuously differentiable functions on 
/ and C° will be abbreviated to C. By a differential operator of order n we 
shall mean a linear function L\Cn —» C of the form 

(1.1) Ly = pnyw + pn-rf"-» + . . . + piy' + p0y, y t C\ 

where pn(x) j* 0 for x (z I and p} f C\ 0 ^ j g n. The function p„ is 
called the leading coefficient of L. 

I t is well known (see, for example, [2, pp. 73-74]) thai a differential 
operator L of order n uniquely determines both a differential operator L* 
of order n (the adjoint of L) and a bilinear form [',-}L (the Lagrange 
bracket) so tha t if D denotes differentiation, we have for u, v t Cn, 

(1.2) vLu - uL*v = D([u, v]L). 

If L is given by (1.1) then L* and [- ,-]L are given explicitly by 

L*V = è ( - i ) ' (M°\ vf r , 
3=0 

and 

[«. H, = è 2 (-i) v*)<')«rt-i-,,
1 «,,. f c». 

If w, z; £ C* and La = L*v = 0 on / , it follows from ( E2) that |//. v\L 

is constant on / . When this constant is zero, we say that // and v are 
conjugate solutions respectively of Ly = 0 and L*y — 0; see [11, p. 343]. 

If L is a differential operator of order w and 3; Ç C\ we say tha t 3/ 
satisfies the homogeneous equation of L or tha t y is a solution of this equa­
tion if L3/ = 0 on / . A set of solutions j ^ i , . . . , yn\ of Lv = 0 is said to be 
a fundamental set if it is a basis for the linear space of all possible solutions. 
This linear space is an n dimensional subspace of Cn. 

For yly . . . , yn Ç Cn~\ the Wronskian of 3/1, . . . , >'n is defined by 

W(ylt...,yn) = d e t ( y / ' - l , ) i ^ f . ^ » -
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In [8] (see also [9]) Pôlya proved tha t if, for a differential operator ot 
order n% the equation Ly = 0 has solutions yi, . . . , yfl so that 
W(yu • • • 1 yk)(x) 7* 0 for x t_ I and 1 ^ H «, then L can be fac-
torized into a product of first order operators. T h e converse s ta tement is 
also true, [2, p. 91]. In [10], Zettl established t ha t there are differential 
operators R, Q so tha t L = RQ if, and only if, there are solutions y\, . . . , yu 

of Ly — 0, where q is the order of Q, so tha t IF(>'i, . . . , yQ)(x) ^ 0 for 
v / . For the self-adjoint case, tha t is when L = L*, Heinz [4, Satz 3 | , 
gave conditions involving conjugate solutions of Ly = 0 which are 
necessary and sufficient for the factorization L = R*Q = Q*R. Hill and 
Nillsen in [5] have given a different proof of Heinz's result in the case 
Q — R using a method which also characterizes the case in which L can 
be writ ten in the form L = Q*DQ. Fur ther for L = Q*Q or L = Q*DQ, 
Theorems 4.1 and 4.3 of [5] clarify the relation between the solutions of 
Ly = 0 and those of Qy = 0. 

The main concern of the present paper is to investigate when tin­
different ial operator L may be written as L = R*\rS and in construct ing 
solutions of the equations Sy = 0, Vy = 0, V*y = 0 and Ry = 0 from 
known solutions of Ly = 0 and L*y = 0. Moreover if these known solu­
tions are conjugate then the solutions constructed for Vy = 0 and 
r*v = 0 will be conjugate with respect to V. I terat ion of the result will 
lead to factorizations of the form L = Ri* . . . Rr*\'Sr . . . Si. Our main 
results then, can be regarded as generalizations of the work of Heinz [4] 
mentioned above and are also closely related to those of Zettl , [10j. 
Theorem 4.3 may also be regarded as an extension of the classical tech­
nique of the reduction of the order of a differential operator (see |6 , 
p. 121] and |5 , Section 5]). The methods of proof depend heavily on the 
fundamental results on factorization of differential operators developed 
in [11]. For basic, facts about ordinary differential operators we refer the 
reader to [1] and [6]. 

2. P r e l i m i n a r y r e s u l t s . The purpose of this section is to mention 
some results to be used in the sequel. T h e first lemma can be proved 
easily from (1.2) and the uniqueness of L* and | ' , - ] L . 

LEMMA 2.1. Let il/, iV be differential operators. Then 

(MN)* = N*M*. 

T h e proof of the next result follows tha t in [11, p. 344]. 

LEMMA 2.2. Let L, R, Q be differential operators, so that L = RQ. Then 
Q is uniquely determined by L and R and R is uniquely determined by 
L and Q. 

T H E O R E M 2.3. Let L be given by (1.1) where pn(x) ^ 0 for x (- / and 

https://doi.org/10.4153/CJM-1980-080-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-080-5


TWO-SIDED FACTORIZATION 1047 

pj ' CJ for 0 ^ j fi n. Let yl} . . . , yn be a fundamental set of solutions 

of Ly = 0. Then W(yu • • . , yf)(x) 9e 0 for x i: I and the functions 

(2.1) yt* = ( - 1)'M TErvi, . . . , v.--i, yi+u . . . , vj: 'p„W(yu . . . . v j , 

1 ^ / g », 

/ww (/ fundamental set of solutions of L*y = 0. Moreover if L*y = 0 //w /̂ 
>)'M ) ; L = 0/'or 1 ^ i ^ & //zew j is a linear combination of yk+]* y„*. 

Proof, The claim can be readily deduced from \7, pp. 88--8S; and 
i l l , p. 8481. 

The linal result of this section is due to Zettl, i l l , Theorem 1 and 
Lemma 6]. The more general form in which it is stated can be proved in 
the manner indicated in 15, Theorem 2.5]. 

T H E O R E M 2.4. Let L be given by (1.1) where p„{x) > 0 for x c / . Let 

a, $ be real numbers with a + (3 = 1. Then there are differential operators 
R, Q which have respectively leading coefficients pn

a and pr/\ and orders 
n — k and k so that L = RQ if, and only if, there are solutions yj, . . . , yk of 
Ly = 0 so that W(y{ , . . . , yk)(x) ^ () for x C L When this is the case 

Qy = p/W(yu . . . , yk, y)/W(yu . . . , yk)Jor y (» Cn. 

Also if y*, 1 ^ / è h, are given by (2.1) with h and pn
a in place of n and 

pn respectively, we have 

li*y = E C - i y b ^ v k v , * , tory <: C". 

In this case R*y = 0 if, and only if, [yn y]L = 0 for 1 5* /' ^ k. 

3. A W r o n s k i a n of W r o n s k i a n s . The purpose of this section is to 
prove an identity involving a Wronskian of Wronskians (see Lemma 8.5 
below) which will be used later. 

R/? will denote real ^-dimensional Euclidean space whose elements we 
shall think of as n X 1 column matrices. If xu . . . , xk t R", (xi . . . xk) 
will denote the n X k matrix whose columns are X\, . . . , xk in that order. 
For 1 ^ B w the projection map 7r/;:R

w —» RA is given by saying that 
for x * R'w, TTk(x) is that element of RA obtained by taking the first k 
coordinates of x. 

LEMMA 8.1. Let xu • • • , x„ i R and let 1 g k < n. If 

(8.1) (\e[(wk+i(xi) . . . Tk+1{xk)Tk+i(Xj)) = 0 for k + 1 è j è w, 

then either 

(8.2j det (Aj . . . xn) = 0, 

or 

i^M) d e l (TT/ ( X Ï ) . . . Tk(xk)) =- 0. 
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Proof. Since (3.1) holds, we can find for each j = & + 1, . . 
numbers afj, fij, 1 S i S k so tha t 

k 

(3.4) X«^-7r f c +i(xz) + pjTk+iixj) = 0, 

and 

(3.5) ( a i i , . . . , a * „ 0 , ) ^ (0, . . . , 0 , 0 ) . 

If jSj = 0 for some j , we deduce from (3.4) that 

k 

so tha t (3.3) holds. 
Suppose then that fij ^ 0 for k + 1 ^ j ^ w. Let 

. , ?/, 

w7 = Z5.? * X aaxi + A:i-

Then 

det (x i . . . x„) = (let(.Vi . . . ;vA.7t»AM-i • • • ™«), 

and, if Y^- denotes the (i, j ) - t h en t ry in (xi . . . xkwk+i . . . wn), we see 
from (3.4) tha t ytj = 0 for l ^ i ^ k + l ^ j ^ n . Also A = 
(7rk+i(xi) . . . irk+i(xk)) is a (£ + 1) X k matrix so we may select 
Xi, . . . , X^+i d R, not all zero, with the proper ty that if ru . . . , r / : f l are 
the rows of A, then 

fc+i 

E ^ = 0. 
i = i 

Hence, from our above remark, it follows that the first k + 1 rows of 
(xi . . . xkwk+i . . . wn) are linearly dependent and so (3.2) follows. 

LEMMA 3.2. Let Ti v„ • Cn~x and let 1 :§ k < n. Then if x < 1 

and 

TT(vi , ;vA-, \>j)(x) = 0, for k + I ^ ./ <\ ;/, 

then either W(yu • • • , 3'fr)U) = 0 or ILfVi, . . . , :vj(':v) = 0. 

Proof. T h e result is immediate on applying Lemma 3.1 to .Vi, . . . . .v„ 
where 

yt(x) 

Xi = 

:y/(*0 

R , 

7 / n - n C r ) 

A proof of the next lemma may be found in |2 , pp. Si- SS|. 
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LEMMA 3.3. Let vi, . . . , yn, y G C"~]. Then the following hold on I: 

(3.6) W(yyu . . . , yy,,) = ynW(yu . . . , y„). 

/ / I t ' l r i , . . . , yw...j)(.v) ^ 0 «///</ i r (y i , • • • , yw)Cr) ^ 0 for x 6 / f/w/ 
3'i, . . . , y,M 3' C" then 

(3.7) 
IFO'i, . . ._,j tL-uy) 
tl'C.Vi, • • • , 3V-i,3 ' j 

' W(yu.-.,yn~~i)W(yij...,ynyy) 

I " f w 7 ( y i , . . . , y J ? ' 
The following result can be readily established using the definition of 

the Wmnskiaii , the expansion <>i a determinant ;dong a column and the 
pmpert ies of the sign of a permutat ion. 

LEMMA 3.4. The following hold on I. If yu . . . , y,_ t , y , f ] , . . . , yn t 
(/*-', then 

(3.8) W(yx ,y,__i, 1, y r H , • • • , v j 

= < - l ) ' , l r W , . . . ,yr-i',yr+i, . . . , v / ) . 

/ / ;vi, . . . , y„ ;. (v' ' </W cr /.v (/ permutation of j 1, 2, . . . , nj m//z M#W 
denoted by sign a, ///^/ 

(3.9) IF(^(D, • • • , 3Wo) = (sign a)W(yh . . . , y j . 

LEMMA 3..">. Ar/ yj, . . . , y„ (: CW~J <mri /^/ 1 S k < n. Then 

(3.10) i r o n y , , • • • ,;VA-, 3 'AU), 

ILtVi, . . . , 3'A, V/,f>), . . . , I L ( T I , • • . , VA-, yn)) 

= I L ( y , , . . . , y * y - A ' - W ^ i , • • • , ?„ ) . 

Ttoof. We lirst introduce some simplifying notation. Let 

If, - H'CVi. • • • ,.VA) 
and 

W*.* = W W ? , , . . . , y*, ^ + i ) , • • • , W(:vi, • • • , y*, y»)). 

Lor & + 1 ~ .// ^ «» * rr 1, . . . . /' where r ^ n — k we set 

!1'A(JI, • • • Jr) ~z Il'O'i» • • > .V*-, .v.,, . . • , 3'vJ. 

It A1 ^ // - 1 both sides of (3.10) equal ILlVi, • . . , yn)
 s o tha t the 

result holds. Assume 1 ^ k < n -- 1 and let .v t / be given. We seek to 
construct permutat ions ru, n , . . . , r„_A-_i of J& 4~ 1, . . . , wj so tha t the 
following hold: 

(3.11) TT(k + i) = rp(k 4- 0 , for 1 ^ i ^ r g p g w - fe - 1, 

(3.12) r„(* 4- P + 1) < r^(* + p 4- 2) < • . . < rp(n), 

for 0 g / > < w - f e - l , 

(3.13) ir , (T / ,U' + 1 ) , . . . ,r,,(k + p))(x) j£ 0, 

for 1. <; /; g « - fe - 1, 
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and 

(3.14) Wk,t(x)[Wk(rp(k + 1), . . . , rp(k + p))](x)"-k-"-] 

= (sign Tv)Wk(xY-k^W\Wk(rP(k + 1), . . . , rp(k + />), 

rp(k + p + D j . 

Wk(Tp(k + 1) , Tp(k + p), Tp(n))](x), 

for 1 g p g w - £ - 1. 

Condition (8.12) forces us to take r0 equal to the identi ty pe rmuta t ion ; 
(3.11), (3.13) and (3.14) are vacuous for p = 0. Suppose tha t such 
permutat ions r0, . . . , rq} q < n• — & — 1, have been found. We shall show 
that either (3.10) holds at x with both sides equal to zero or tha t there 
is a permutat ion r t f+i so that (3.1.1)-(3.14) now hold for r(), . . . , r,/4.i. 

Consider the numbers 

(3.15) Wk(rq(k + 1) rq(k + q),Tq(k + i))(x), 

i = r/ + 1, . . . , n — k. 

If all these are zero we may apply Lemma 3.2 to assert that either 

Wk(rQ(k + 1), . . . ,r(l(k + q))(x) = 0 

or that 

Wk(rg(k + 1 ) , . . • , r , ( n ) ) ( * ) = 0. 

For q = 0, with the first a l ternat ive interpreted as TFfr(x) = 0, we see 
tha t both sides of (3.10) are zero. For q > 0, condition (3.13) forces the 
second al ternat ive to hold and then W(yu . . . ,yn)(x) = 0, so that 
again both sides of (3.10) are zero, where we have used (3.13) and (3.14) 
with (/ in place of p. 

Consider, then, the case when not all the numbers in (3.15) are zero. 
We select z'o, q + 1 :g z0 ^ n ~ k so tha t 

Wi(rq{k + 1), . . . , Tq(k + <z), rq(k + H))(X) * 0. 

(For r/ = 0 this is to be interpreted as Wk(k + i^)(x) ^ 0.) The permti-
tation TV+I of j& + 1, . . . , wj is then given by 

TQ+i(k + 0 = T(i(k + z), for 1 ^ i g </, 

Tff+i(^ + q + 1) = Tfl(& + i 0 ) , and 

T,+1(& + ? + 2) < rQ+l(k + ç + 3) < . . . < r,+1(w). 

It is easy to check that (3.11), (3.12) and (3.13) hold for r0, . . . , r, /M 

and further tha t 

(3.16) s i g n r , + , = ( - l ) f « + 1 ( s i g n r f f ) , 

(3.17) rq(k + i) = Tç+dk + i + 1), for g + 1 ^ i è lu ~ 1, 
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and 

(3.18) rq(k + i) = rQ+1(k + i), for i0 + 1 ^ i S n - k. 

We must also check that (3.14) holds for p = q + 1. Using (3.6) and 
(3.8) we obtain 

W[Wk(rq(k + 1), . . . , rq(k + q), rq(k + q + 1)), . . . , 

Wk(Tq(k + l),...,TQ(k + q),Tq(n))Kx) 

= [Wk(rq(k + 1), . . . , rq(k + q), rq(k + *<>))(*)P*"* 

y i r [ ^ ( ^ ( f e + !)>•••> rq(k + g), rg(£ + q + 1)) 
L W*(r,(* + 1), . . . , rq(k + q), rq(k + i0)) " ' " 

i Wk(Tq(k + l),...,Tq(k + q),Tq(n)) 1 

' " " ' T^(r f f(* + 1), . . . , rq{k + q), rq(k + i0)) V } 

= (-l)i0+1[Wk(rq(k + 1), . . . ,Tg(k + q))(x)]n-k~Q~1 

X [Wk(rq(k + 1), . . . , rq(k + q), rq(k + i0)) ( x ) ] ~ ^ + ^ 2 

X W W ( r , ( i + 1), . . . , r , ( * + q), rq(k + z0), r , ( * + g + 1)) 

, . . . , Wk{rq{k + 1), . . . , rq(k + q), rq(k + z0), rq(n))](x). 

We use properties (3.16), (3.17) and (3.18) and rewrite (3.14) (with 
p = q) using the above calculations. After some tedious manipulations 
we arrive a t (3.14) with p = q + 1. 

This inductive step may be carried out n — k — 1 times unless for 
some q < n — k — 1 all the numbers in (3.15) are zero. In this lat ter 
case we have seen tha t (3.10) holds a t x. In the former we let p — 
n — k — 1 in (3.14) to obtain 

Wk,n(x) = (sign T^^iW^Y-^W^T^^k + 1), . . . , 

rw_ t_i(«))(x) 

= (sign rn.k^y(Wk(x))n-^Wk(yk+u . . . , yn)(x) 

by (3.9). This establishes the result a t x which was an arbi t rary point of 
/ , and so the lemma is proved. 

This identi ty was originally proved by Frobenius [3, p. 247] by a 
method requiring the additional hypothesis tha t for each x £ I none of 
W(yi)(x), W(yi, J2)(x), . . . , W(yi, . . . , yk)(x) is zero. Our proof avoids 
this assumption and this feature will be important for subsequent 
applications. 

4. Factorization of differential operators. The first result of this 
section is a generalization of Satz 3 in [4] and Theorem 3.1 in [5]. 
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T H E O R E M 4.1. Let L be a differential operator of order n è 2 where L 
is given by (1.1) and pn(x) > 0 for x £ I. The following conditions on L 
(ire equivalent. 

( 4 . 1 ) There are differential operators, R, S and V of orders r, .v and 
n — r — s respectively so that L ~ R*VS. 

(4.2) litere are solutions yu . . . , y, of Ly = 0 on 1 and zh . . . , zr of 
L*y = 0 on I so that for x - / , W(yu • • • , ?*)(*) ^ 0, W(zu . . . , zr)(x) 
^ 0 and \\'i, Zj]L --= 0for ! g / g .s, .1 g j S r. 

\\ hen these conditions hold r + .s ^ n and R, S may be taken to be given 
by 

(A.W) Ry = = \V{zu . . . , -;,, v) / IF(ci , . . . , zr)% for y i Cn, 

and 

(4.4) Sy =-- II''( v,, . . . , v„ y) \V(yu . . . , }>,), for y e G\ 

Assume further that ,v, fi, . • • , yq are also solutions of Ly — 0 and that 
s r f i , . . . , zp are solutions of L*y = 0 $0 ///«/ \yu Zj\L = 0 w/^n 1 S i S </, 
1 ^ j ^ r or when 1 ^ / ^ .v, 1 ^ j ^ p. Then the following hold. 

(4.Ô) The functions 

JTGvi, 3 ' - v , ) / 4 r ( vi , 3',), * + 1 ^ 7 ^ </, 

are solutions of l'y = 0 aw/ arc linearly independent provided, that 
IV(yu • • • i .vv) i* riot identically zero on I. If this is the case then r + q ^ n 
and if n. = r + q these functions form a fundamental set of solutions of 
I 'y = 0 < / nd t h e fi t net io n s 

Wiju . . . , v<, V . M , . . . , v/-i t A^H ] , . . . , yg)/pnW(yu • • • , ?*), 

* + 1 è i è (J, 

form a /undamental sc! of solutions of I "* v = 0. 

(4.C)) /7/c Innctions 

H'u- i , • • • .':,•, : , ) n ' ( : - i - J , /' + 1 â j ^ />, 

arc solutions of \T*y = 0 awo7 arc linearly independent provided that 
W(zi, . . . , sp) ù wo/ identically zero on I. If this is the case then s + p :§ w 
(/no7 (f w = .v + /? /Acs'c functions form a fundamental set of solutions of 
\'*y = 0 and the functions 

W(zu . . . , : M i r + 1 , . . ,z^uzi+h. . . ,zp)/pnW(zlt. . . , z r ) , 

r + 1 ^ i ^ p, 
/orw a fundamental set of solutions of Vy = 0. 

À7(9ÏI! assume further that for x l<-__ 7, IF(;yi, . . . , yq){x) T± 0, 
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W(zlt . . . , zp)(x) ?± 0 and that [yit zf\L = 0 for 1 g i ^ q, 1 ^ j ^ />. 
77&ew /Ae following hold. 

(4.7) p ~Y q S n and the functions 

W(yu . . . , ;y,, y ^ ) / ^ ( y i , . . . , 3 0 , .v + 1 ^ i ^ g, 
and 

W( Z l , . . . , zr, z^/Wizu . . . , z r ) , r + 1 g j g />, 

are mutually conjugate solutions with respect to Y of \ry = 0 awrf F*_v = 0 
respectively. 

(4.8) r a m be factorized as Y — G*WH where G and H have leading 
coefficients 1 and are of orders p — r and q — s respectively. The functions 
in (4.7) form fundamental sets of solutions for Hy = 0 and Gy = 0 
respectively. 

Proof. Let (4.1) hold. By Lemma 2.1 there is no loss of generality in 
assuming tha t 7̂  and 5 both have leading coefficient 1. Further , L* = 
S* y*R and by Theorem 2.4 applied to L and L* we deduce tha t there are 
solutions yi, . . . , ys of L;y = 0 and sx, . . . , zr of L*y = 0 so that , for 
x £ 7, W ^ , . . . , ;y,) (x) ^ 0, I T ^ , . . . , zr) (x) 5* 0, R is given by (4.3) 
and 5 by (4.4). Theorem 2.4 also yields 

(4.9) V*Ry = (R*V)*y = £ ( - l n ^ y k v . * , for y e C", 

where ;y** is given by (2.1) with 5 in place of n and pn = 1. Since 7 ^ ; = 0 
for 1 S j è y and since Ti*, . . . , y,* are linearly independent by 
Theorem 2.3 we deduce tha t [yu zf\L = 0 for 1 ^ i S s, 1 ^ j ^ r. 

Conversely, let (4.2) hold. By Theorem 2.4 we may write L — WS 
where S is given by (4.4) and 

W*y = é (-l)n\yity]Lyt*t îory 6 C", 
2 = 1 

where y* is obtained from (2.1) mutatis mutandis. As [yu zf\L = 0, we 
deduce tha t W % = 0 for 1 g j ^ r so tha t by Theorem 2.4, W* = V*R 
where R is given by (4.3). Since W = 7^* V wre now have L = i ^ F S and 
(4.1) holds. 

The fact tha t , in this case, r -\- s ^ n follows immediately from the last 
s ta tement in Theorem 2.3. The claims tha t r + q rg n, s + p ^ n and 
p + q S n in (4.5), (4.6) and (4.7) respectively follow^ in the same way. 

To prove (4.6), observe from (4.9) t ha t Rzjy r + H j ^ p, are solu­
tions of V*y = 0. This proves the first par t of (4.6). Also if Lemmas 3.3 
and 3.5 are invoked we see tha t 

W(Rzr+1, . . . , Rzp) = W(zu . . • , zP)/W(zu . . . , zr), 

which proves the s ta tement about linear independence. If n = s -\- p, 
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then p — r = n — r — s so tha t Rzr+i, . . . , Rzv form a fundamental set 
of solutions of V*y = 0 as Tr* has order n — r — 5. If Lemmas 3.3 and 
3.5 are used to calculate 

W(Rzr+l, . . . , Rzt-u Rsi+l, . . . , Rzp)/W(Rzr+l, . . . , Rzp), 

for r + 1 g i <; />, 

the remainder of (4.6) follows from Theorem 2.3. 
Now (4.5) can be proved analogously by applying Theorem 2.4 to 

L* = s*V*R. 

To prove (4.8) first observe t ha t since (4.1) and (4.2) are equivalent 
we may write L = P*WQ where 1 is the leading coefficient of both P and 
Q and yu 1 ^ i ^ q, zu 1 ^ ?" g p are respectively fundamental sets of 
solutions of Qy = 0 and P;y = 0. Since (4.2) holds, Theorem 2.4 can be 
applied to find operators G, H of leading coefficient 1 so t ha t Q — HS 
and P = GR. T h u s 

L = R*WS = P*WQ = ^* (G*fT O )5 , 

so t ha t T = G*JT77 by Lemma 2.2. Also HiSyf) = 0 for .? + 1 ^ j S q 
and G(Rzj) = 0 for r + 1 ^ 7 ^ p. H has order g — 5 and the Sy h 

s + 1 S j ^ q are linearly independent by (4.4) and (4.5), so we see tha t 
Sys+i, . . . , Syq form a fundamental set of solutions of Hy = 0. T h e 
corresponding s ta tement for G is proved in like manner and so (4.8) is 
established. 

Finally we use Theorem 2.4 again to obtain for y f Cn~r~\ 

W*Gy = (G*W)*y = Z (-l)n~r-s[Syi, y]v(Syi)* 

where (S3/7)* is obtained from (2.1) mutatis mutandis. Since G(Rzi) = 0 
for r + 1 g z ^ /? and since the (5^0*» s + 1 — ?' = a, are independent , 

we deduce tha t [Syu R".î\v = 0 for ^ + 1 g i ^ , r + 1 â j â />• By 
(4.3) and (4.4), this proves (4.7). 

We should remark tha t the requirements t ha t W(yi, . . . ,3' ( /), 
W(z\, . . . , zp) be not identically zero in (4.5) and (4.6) could be replaced 
equivalently by demanding tha t Vi, . . . , yq and z1} . . . , zp be linearly 
independent respectively, for in each case the functions in question are 
solutions of a common differential equation (see [6, p. 118]). 

COROLLARY 4.2. Consider the case where L = Q*DQ where Q is a dif­
ferential operator of order r. Then there is a fundamental set yu . . . , yr of 
solutions of Qy = 0 so that W(yu . . . ,yr)(x) ^ 0 for x £ / and 
[y-h yjJL = 0 for i, j ~ 1, . . . , n. Also there is a one dimensional vector 
spaced of functions so that iff f "f, 

Rf = 0,[yuf]L = 0, fori S 1 è n 
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and W(yi, . . . ,yr,f)/W{y\, . . . ,yr) is constant on I. i^ cannot be chosen 
to have dimension greater than one. 

Proof. From [5, Theorem 4.1] it follows tha t if 'V is the set of functions 
so tha t Lf = 0 and [y i} f ]L = 0 for 1 ^ i ^ r, then V is one dimensional. 
The result we have just proved shows tha t f o r / Ç "V 

ZWCVi, • • • ,yr,f)/W(yu. . . ,3',)] = 0, 

and so the result is proved. 

T H E O R E M 4.3. Let L be a differential operator of order n ^ 4 and let L 
be given by (1.1) where pn(x) > 0 for x CT~ / . Let integers s0 = 0 < s\ < 
s2 < . . . < sp and r(} = 0 < rx < r2 < . . . < ^ frtf given. Then the 
following conditions are equivalent. 

(4.10) There are differential operators Si, . . . , Sp, } \ , . . . , Yp and 
Ru . . . , Rp so that Sj has order Sj — Sj-i, V -, has order n — r:j — s -, and 
Rj has order r ; — r H\, and 

L = /?!* . . . 2*,* r , 6 ' , . . . Su for l è j è p. 

(4.11) There are solutions yif . . . , yS/t of Ly = 0 and solutions zu . . . , sr/, 
of L*y = 0 50 that for x (z I and I ^ i, j ^ p, 

W(yu . . . , ?„•)(*) ^ 0, W ^ , . . . , s r y)(x) ^ 0 and 

buZjlL = 0;forl è i S sp, 1 Sj é rp. 

When these conditions are satisfied the operators in (4.10) may be chosen 
so that the following hold. 

(4.12) Vj = Rj+1*Vj+iSj+1,for 0 ^ j ^ p - 1 w/^re T0 = £ . 

(4.13) 3/1, . . . , ysj is a fundamental set of solutions of (Sj . . . Si)y = 0 

and zi, . . . ,zr. is a fundamental set of solutions of (Rj . . . R\)y = 0 for 

1 è j S p. 

(4.14) 7 lie sp — s j functions 

W(yu . . . , ySj, yk)/W(yu . . . , ysj), Sj + 1 S k S sp, 

are linearly independent solutions of V{y = 0, 1 S j' ^ p — 1 and the 
corresponding sj+i — s j functions obtained as above by restricting k to the 
range Sj + 1 è k ^ sj+iform a fundamental set of solutions of Sj+iy — 0 
for 1 g j ^ p - 1. 

(4.15) The rv — r j functions 

W(z1} . . . , zrj, zk)/W(zu . . . , 2 r i) , r j + l ^ k S rp, 

are rv — rj linearly independent solutions of V *y = 0, 1 S j è p ~~ 1 and 
the corresponding rJ+i — rj functions obtained as above by restricting k to 
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the range r j + 1 S k g r j + i form a fundamental set of solutions of 

Rj+iy = QM 1 ^ j S P - 1. 

(4.1G) The functions in (4.14) for s-, + 1 ^ k S sp and the functions in 
(4.15) for rj + 1 fg & g r7, are mutually conjugate solutions with respect 
to Vj of Vjj = 0 and V*y = 0 respectively for 1 ^ j ^ /? — 1. 

Proof. Let (4.11) hold. By Theorem 4.1 there are operators Mjy Nh 

Vj for 1 ^ j g £ so tha t L = , 1 / / I VV;-, M} is given by (4.3) with r, in 
place of r, iVj is given by (4.4) with s} in place of x and I',- has order 
n — r, — Sj. Theorem 2.4 shows tha t if 1 ̂  j ^ p — 1, we may write 
Mj+i = Rj+iMj and AT

/fi = Sj+\Nj where R j+\ has order r / 4 i — r} and 
•S^+i has order sj+\ — s:j. T h u s 

L = M / i y V , = _M,+ 1 * i ; / f l iV , + 1 = MfQij+fV^Sj+JNj 

for 1 è j è p - 1, 

so by Lemma 2.2 we deduce that h , = R j+\* r / f l l S H i. if we define 
i?i = Mi and Si = iV\ then (4.12) is proved. 

Also from the above we have M j = Rj . . . R2R1 and Ar
; = Sj . . . S2S] 

and now (4.13) is immediate, as also is (4.10). Since L = J Z / r ^ V , , 
(4.14) follows from (4.5) and (4.15) from (4.6). Finally (4.10) is an 
easy consequence of (4.7). 

This shows t ha t (4.11) implies all other conditions in the theorem. T h a t 
(4.10) implies (4.11) comes from the equivalence of the two conditions 
(4.1) and (4.2) and is straightforward. This completes the proof. 

In Section 5 of [5] results have been obtained concerning the successive 
reduction of the order of L by 2. This corresponds to the si tuation in 
Theorem 4.3 of having r} — Sj — j and L* = zt.L. T h u s the factorization 
in (4.10) of L can be regarded as a process which successively reduces the 
order of L by rx + s\, r2 + s*, . . . , rp + sp. However whereas the 
argument used in [5] depends upon properties of the Lagrange bracket , 
the procedure here is based more directly on Theorem 2.4. I t is possible 
tha t the Lagrange bracket plays a significant rôle in these more general 
factorization results. 

Remark. This work was done while the second author was visiting The 
Universi ty of Calgary. 
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