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THE TWO-SIDED FACTORIZATION OF
ORDINARY DIFFERENTIAL OPERATORS

PATRICK J. BROWNE AND RODNEY NILLSEN

1. Introduction. Throughout this paper we shall use / to denote a
given interval, not necessarily bounded, of real numbers and " to
denote the real valued n times continuously differentiable functions on
I and C° will be abbreviated to C. By a differential operator of order n we
shall mean a linear function L: (" — C of the form

(11) I‘y = pny(n) + pn‘ly("_l) + e + ply/ + pva v & (»‘"7

where p,(x) # 0 for x € [ and p; € (7, 0 = 7 £ n. The function p, is
called the leading coefficient of L.

It is well known (see, for example, |2, pp. 73-74]) that a differential
operator L of order » uniquely determines both a differential operator L*
of order n (the adjoint of L) and a bilinear form [-,-], (the Lagrange
bracket) so that if D denotes differentiation, we have for u«,v € C*,

(1.2)  olu — ul*s = D([u,v],).
If L is given by (1.1) then L* and |-, ], are given explicitly by

L= (=) pn? ve
=0

and

n

k—1
[u, v], = (=D p) Pu T w e O

k=1 i=0

If u,v € Cmand Lu = L*¥v = 0 on [, it follows from (1.2) that |u. v|,
is constant on . When this constant is zero, we sav that « and v are
conjugate solutions respectively of Ly = 0 and L*y = 0, see |11, p. 343].

If L is a differential operator of order » and y € (", we say that vy
satisfies the homogeneous equation of L or that y is a solution of this equa-
tion if Ly = Qon [. A set of solutions |y, . . ., ¥} of Ly = 0 issaid to be
a fundamental set if it is a basis for the linear space of all possible solutions.
This linear space is an # dimensional subspace of C”.

For vy, ..., 5, € C"', the Wronskian of y,, . . ., v, is defined by

Wy, ooy ye) = det(y, )iz =0
Received February 6, 1979. This rescarch was supported in part by NSERC Grant
No. A9073.

1045

https://doi.org/10.4153/CJM-1980-080-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-080-5

1046 P. J. BROWNE AND R. NILLSEN

In [8] (see also |9]) Pélya proved that if, for a differential operator of
order #n, the equation Ly = 0 has solutions vy, ...,vy, so that
Wy, ooy v (@) # 0 for x ¢ [ and 1 £k < n, then L can be fac-
torized into a product of first order operators. The converse statement is
also true, [2, p. 91]. In [10], Zettl established that there are differential
operators R, () so that L. = RQif, and only if, there are solutions vy, ..., v,
of Ly = 0, where ¢ is the order of Q, so that W(yy, ..., y,) ) # 0 for
x ~ [. For the self-adjoint case, that is when L = L*, Heinz {4, Satz 3],
gave conditions involving conjugate solutions of Ly = 0 which are
necessary and sufficient for the factorization L = R*Q = Q*R. Hill and
Nillsen in [5] have given a different proof of Heinz's result in the case
(Q = R using a method which also characterizes the case in which L can
be written in the form L = Q*DQ. Further for L = Q*Q or L = Q*DQ,
Theorems 4.1 and 4.3 of [5] clarify the relation between the solutions of
Ly = 0 and those of Qv = 0.

The main concern of the present paper is to investigate when the
differential operator L. may be written as L = R*]’S and in constructing
solutions of the equations Sy =0, I’y =0, 1™y = 0 and Ry = 0 from
known solutions of Ly = 0 and L*y = 0. Moreover if these known solu-
tions arc conjugate then the solutions constructed for 1y = 0 and
Iy = 0 will be conjugate with respect to 1. Iteration of the result will
lead to factorizations of the form L = R* ... R*1°S,...S5:. Our main
results then, can be regarded as generalizations of the work of Heinz (4]
mentioned above and are also closely related to those of Zettl, [10].
Theorem 4.3 may also be regarded as an extension of the classical tech-
nique of the reduction of the order of a differential operator (see |6,
p. 121] and {5, Section 5]). The methods of proof depend heavily on the
fundamental results on factorization of differential operators developed
in [11]. For basic facts about ordinary differential operators we refer the
reader to [1] and [6].

2. Preliminary results. The purpose of this section is to mention
some results to be used in the sequel. The first lemma can be proved
casily from (1.2) and the uniqueness of L* and |-, ];.

LemMma 2.1, Let M, N be diff erential operators. 1hen
(MN)* = N*J*,
The proof of the next result follows that in (11, p. 344].

LeMMa 2.2. Let L, R, Q be differential operators, so that 1. = RQ. Then
Q s uniquely determined by L and R and R is uniquely determined by
L and Q.

THEOREM 2.3, Let 1. be given by (1.1) where p,(x) = 0 for x ¢ I and
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pyo Vfor O 27 = m Let vy, ...y, be « fundumental set of solutions
of Lv = 0. Then W(yy, ..., v,)(x) # 0 forx « [ and the functions

(2.1) ,\','* = (—1)" W (v, ... d Vel Vgt ooy W) P Wy, o ),
1 =72 a,

tormt « fundamentad set of solutions of L*v = 0. Morcover if L¥v = O und
Yoyl =001 S0 = kthen visalinear combination of v ¥, .. v.x

Proof. The claim can be readily deduced from (7. pp. 33-35 and
(11, p. 34K

The final result of this section is due to Zettl, |11, Theorem 1 and
Lemma 6]. The more general form in which it is stated can he proved in
the manner indicated in [5, Theorem 2.5].

TuroreM 2.4, Let L be given by (1.1) where p,(x) > 0 for x ¢ [. Let
a, 3 be read numbers with o + 3 = 1. Then there are differential operators
R, Q which have respectively leading coefficionts p,& and p,?, and orders
n — kand ksothat I = RQif, and only if, there wre solutions vy, ..., v, of
Ly = Osothat W(yi, ...,y (x) # 0forx < 1. When this is the case

Qv = p W, o v, V) Wy, oo ve) fory & (7

Alsof v L S0 Sk, oare civen by (2.1) with k and p,7 tn place of n and
D, respectively, we have

B
R¥y = 2 (= D)'lys vy * fory e ("
=1

In this case R¥y = 0 if, and only if, {y;, v, = O0for 1 £ 1 = k.

3. A Wronskian of Wronskians. The purpose of this section is to
prove an identity involving a Wronskian of Wronskians (see Lemma 3.5
below) which will be used later.

R will denote real n-dimensional Fuclidean space whose elements we
shall think of as #» X 1 column matrices. If xi, ..., x, = R* (x1...xp)
will denote the # X k& matrix whose columns are xi, . . ., x, in that order.
For 1 = & £ n the projection map 7:R" — R¥ is given by saying that
for x + R”, 7, (x) is that element of R* obtained by taking the first &
coordinates of w.

Laovsia 300, Let ey, ..., x, ¢ Riand let 1 £k < n. 1f
(3.1)  det(ma(xy) .o ()T () =0 fork +1=j =< n,
then either

(3.2 detixy...x,) =0,
or
(3-{) (l(‘l(ﬂ'/ (.\'1) e 7U~(.\'/;)) == ().
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Proof. Since (3.1) holds, we can find for each j=4k+1,...,n,
numbers ay;, B;, 1 = 7 = k so that

(3.4) gaffwk+x(xi) + Bmi(x;) =0,
and
(3:5) (g, -y B) # (0,...,0,0).
If 3, = 0 for some j, we deduce from (3.4) that
k
;aiﬂk(xt) =0,

so that (3.3) holds.

Suppose then that 8, # 0 fork + 1 < j < n. Let
1 k

wj = ﬁ]’_ Zl (X”xi + «\7]'.
Then

det(xy...x,) = det(xy ... x40 ... w,),
and, if v;; denotes the (7,7)-th entry in (X;...XWe1 ... W,), We sec
from (3.4) that v,; =0 for 12i=k+1=j=n Also 4 =
(mroa(er) . omepa(x)) is a (B 4+ 1) X B matrix so we may select
N, - ., Mg € Ry not all zero, with the property that if ry, ..., 7. are

the rows of 4, then

k41

S Ay =0.
i=1

Hence, from our above remark, it follows that the first £ 4+ 1 rows of

(X1. .. XWey1 . . . wy,) are linearly dependent and so (3.2) follows.
LemMa 3.2, Let vy, oo oov, o (" Vand let 1 <k < n. Then if v |
and

W(yi .o Ve v) ) =0, fork 41

A

JZom,

then either W(yy, ..., v)(x) = 0oy Hvy, ..., v,) () = 0.

Proof. The result is immediate on applving Lemma 3.1 1o &y, ... v,
where
yi(x)
’
yi (x)
X; = ) € R".

yi(n—l) (\)
-

—

A proof of the next lemma may he found in |2, pp. 87- S8
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LeMma 3.3, Let yi, ..o, Yo, ¥y € C"=1 Then the following hold on I:
(3.6) Wy, ... vy) =y Wi ..., v).

If W oo v ) #Z= 0 and Wy, oo v)(x) #0 for x € 1 and
Vi ooy M then

(3.7) 'IV('X‘,! oo ) | W ) W, 2 Yy )
o ”'(_Vl, R LT S _\’,,‘), ”’V('_Vl, e ,y,,)]h '

The following result can be readily established using the definition of
the Wronskian, the expansion of a determinant along a column and the

properties of the sign of @ permutation.
Lisan 3.4, The following hold on 1. 1f vy, ..., Yi—ty Vepry e ooy V' F
("1 then
(3.8) Wive, ooy Ve Lveen, ooy W)
= (=D oy Y, e W)
If vy, oo v, o C"Vand o is « permutation of 11,2, ..., n} with sign
denoted by sign o, then
3.9)  Wethys s Vo) = (sign o)W (yy, ..., v,).
LEMMA 3.5, Let vy, oo, v, ¢ " Vand let 1 = k < n. Then
(3.10) T (H v, oo v Vera)s
W, oo v Yeso)s o ooy W, oo Yy W)
= Wy, oo, y) IV (v, e, V).

Proot. We lirst imtroduce some simplifving notation. Let

B P N T US|
and
Wiw =Wy, oo v V), oo WO Y6 Ya)).

tork 4+ 1<, < u,0 =1,....rwvherer £ n — k we set

”.h(jl» EEEIE vjr’ = ”V(,_\‘Iy e y_\'Ar_lev CER v_vjr)'
k= u--1 both sides of (3.10) cqual W (y,, ..., y,) so that the
result holds. Assume 1 £ kb < n — 1 and let & - [ be given. We seek to

construct permutations 7y, 7y, ..., 7,-4—1 of tk 4+ 1,..., n} so that the
following hold:

(3.11) 7.k + 1) = 7,k + 1), for1 <

liA

v

IIA

p=n—k—1,

(3.12) b+ p+ 1D <1 k4 p4+2)<. .. <10,
forO0 < p<n—Fk—1,

303 W, (b + 1), ..., 7.k + p))x) =0,
forl =ps=n—Fk—1,
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and

(3.14) W (W (B + 1), .ty 7,k 4+ p)) ] (x) k==t
= (sign 7,) Wi ()"~ "W (rpk + 1), ..., 7k + p),

.k + p+ 1)),

Wtk 1), o Tk p), ()] (),
fortl =p=s=n—»F—1
Condition (3.12) forces us to take ry equal to the identity permutation;
(3.11), (3.13) and (3.14) are vacuous for p = 0. Suppose that such
permutations 7y, . . ., 7, ¢ < n — k — 1, have been found. We shall show
that either (3.10) holds at x with both sides equal to zero or that there

is a permutation 7, so that (3.11)-(3.14) now hold for 7, . . ., 7,1
Consider the numbers

(3.15) Witr b+ 1), ..., T,k 4+ q), T,k + 1)) (x),
t=qg+1,...,n—Fk
If all these are zero we may apply Lemma 3.2 to assert that either

Wilr b+ 1), ..., 1,k 4+ ¢))(x) =0

or that

Wilr,(k + 1), ..., T, (n))(x) = 0.
For ¢ = 0, with the first alternative interpreted as W(x) = 0, we sec
that both sides of (3.10) are zero. For ¢ > 0, condition (3.13) forces the
second alternative to hold and then W(vy, ...,y,)(x) =0, so that

again both sides of (3.10) are zero, where we have used (3.13) and (3.14)
with ¢ in place of p.

Consider, then, the case when not all the numbers in (3.15) are zero.
We select 40, ¢ + 1 = 40 = n — k so that

W (rg(k 4+ 1), ..., ok 4 q), 7o (k - 1)) (x) = 0.

(For ¢ = 0 this is to be interpreted as W, (k 4+ 1y) (x) # 0.) The permu-
tation 7,4, 0f Yk 4+ 1,.. ., n} is then given by

Tk + 1) =71,k 4+ 1), forl =1 =g,
T([+](k '+' q + l) = Tu<k + i(;), and
Tk + g+ 2) <tk +qg4+3) <. < 71a(n).

It is easy to check that (3.11), (3.12) and (3.13) hold for ¢, ..., 7,4
and further that

(3.16) sign 7,41 = (—1)%t(sign 7,),
(BAT) rk4 i) =1k 4+i+ 1), forg+1<i<iy—1,
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and
(3.18) 71,k +12) =71,k 4+ i), forig+1=71=n— k.
We must also check that (3.14) holds for p = ¢ + 1. Using (3.6) and
(3.8) we obtain
WW.(r (ke +1),...,7,(k+q), 7,k +qg+1)),...,
Wilry(k + 1), ..., 7,(k + q), 7,(n))](x)
= Wilrg(k + 1), ..ok + @), 7ok + 40)) ()]

Wilr,(k + 1), ..., 7 (k +q), r(k + ¢+ 1))
Wi(r,(k 4+ 1), ... 7,k +¢q), 7, (R +140)) "7

| Wilry(k + 1), ... rylk + ), 74(n)) ]m
Y-..,I/Vk(‘rq<k-'{_ 1)'--‘qu(k‘i‘q)qu(k‘{‘io)) ’

= (=" Wilr, (e + 1), 7ok + ) @)

X [Wilro(k 4+ 1), ..., 7,k + ), 7,k 4 o)) ()] 7

X WWi(r (b + 1), ... 7,k + q), 7, (k +10), 7, (k + g + 1))
v Wilr (b 4+ 1), oo 7k 4 q), (R + 40), 7 ())](x).

We use properties (3.16), (3.17) and (3.18) and rewrite (3.14) (with
p = ¢) using the above calculations. After some tedious manipulations
we arrive at (3.14) with p = ¢ + 1.

This inductive step may be carried out » — k — 1 times unless for
some ¢ < n — k — 1 all the numbers in (3.15) are zero. In this latter
case we have seen that (3.10) holds at x. In the former we let p =
n — k — 1in (3.14) to obtain

Wi a(x) = (sign 7,_ 1) (Wip ()" =W (rpeper (b + 1), .. .,
Tn—k—l(n)) (X)
= (sign 7——1) (Wi ()" "Wy Vigr, - - -, D) (%)

by (3.9). This establishes the result at « which was an arbitrary point of
I, and so the lemma is proved.

XW[

This identity was originally proved by Frobenius [3, p. 247] by a
method requiring the additional hypothesis that for each x € I none of
Wy (x), Wy, y2)(x), ..., Wy, ..., v:)(x) is zero. Our proof avoids
this assumption and this feature will be important for subsequent
applications.

4. Factorization of differential operators. The first result of this
section is a generalization of Satz 3 in [4] and Theorem 3.1 in [5].
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Tueorem 4.1, Let L be a differential operator of order n = 2 where L

1s given by (1.1) and p,(x) > 0 for x ¢ 1. The following conditions on L
are equivalent.

(4.1)  There ure differential operators, R, S and 1 of orders r, s and
n — r — s respectively so thal L= R*T'S.

(4.2) There are solutions vy, ... ,v.0of Ly =0 on I und =y, . ..
L*vy = O on [ sothat for x < I, Wivy, ..., v)x) =0, IW(s, ...
#Oand vz =0forl 0S5, 1275

When these conditions hold v 4 5 = nand R, .S may be laken to be given

by

(4.3) Ry == Wz, 0o v o), W ey oo, fory o (8
and

() Sy o= oy oo v o) W, .y, fory = (.

Assumie further that y v, ..., v, are also solutions of Ly = 0 and tha!
Loy gy are solutions of L*y = O sothat [y, 3, = Owhen 1 £ 1 < g,
SiSrorwhenl 155,127 = p. Then the following hold.

-

pag

<

—

(4.5) The functions

Wy, ooy ) Wy, ooy yy), s+1=57 =g,

are solutions of 1y = 0 and are linearly independent provided that
Wivy, ooy vy) ts not identically zero on 1. 1f this is the cuse then v + g < n
and 1f n = r 4+ g these functions form « fundamental sel of solutions of
I'v = O und the linctions

W, oo Yo Van e N Y ooy ¥/ DWW, oo vg),
s+1=1=y,
Torm « fundamental sc: o) soludions of 1%y = 0.
(+.6) Fhe tinction s

W, ovs ) Wi, oo 2, r+ 127 2 ),

are solutions of 1*y = 0 and are linearly independent provided that
Wisy, ...,3) tsnol identicully zevo on 1. If this is the cuse then s + p = n
and if n = s 4 p these functions form « fundumental set of solutions of
1™y = 0 and the functions

Wi S Sty e ey Sie Sty o e s S0) PaW (51, o, 2r),

r+1=1=p,

form « fundamental set of solutions of 1y = 0.
Now assume  further  that  for x ¢ I, Wy, ..., v,)() # 0,
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Wiz, ..., 2,)(x) # 0 and that |y; 2], =0 for 1 =1 = ¢, 1
Then the following hold.
(4.7)  p 4+ g = nand the functions
Wy, oo ¥a )/ W, ..o,y s +1 27 =g,

IIA
[IA

p.

and
I/I/(Zly ceey 2 Zj)//VV(Zlv e vzr)y 4 + 1 é ] _S_ pr

are mattually conjugate solutions with respect to 17 of 1y = 0 and 1*y = 0
respectively.

(4.8) 1" can be fuctorized us 1" = G*WH where G and H have leading
coefficients 1 and are of orders p — r and g — s respectively. The functions
wm (4.7) form fundamental sets of solutions for Hy = 0 and Gy = 0
respectively.

Proof. Let (4.1) hold. By Lemma 2.1 there is no loss of generality in
assuming that R and S both have leading coefficient 1. Further, L* =
S*T7*R and by Theorem 2.4 applied to L and L* we deduce that there are
solutions yy, ...,y 0of Ly =0 and z,,...,2, of L*y = 0 so that, for
x eI, Wy, ...,y)x) #£0, Wz, ...,z2,)(x) # 0, Ris givenby (4.3)
and S by (4.4). Theorem 2.4 also yields

K

(4.9)  V*Ry = (R*1)*y = 2 (=1)"[ys, yleys* fory ¢ (",

where y* is given by (2.1) with s in place of n and p, = 1. Since Rz, = 0

for 1 =j =<r and since y,* ...,y* are linearly independent by

Theorem 2.3 we deduce that [y;, ;] =0for1 <=5, 1 =7 =7
Conversely, let (4.2) hold. By Theorem 2.4 we may write L = IS

where .S is given by (4.4) and

Wy = > (—=1)" vy, vly*, fory e 7,
i=1

where y;* is obtained from (2.1) mutatis mutandis. As |y, ;] = 0, we
deduce that W*z; = Ofor 1 £ j < r so that by Theorem 2.4, W* = [™*R
where R is given by (4.3). Since W = R*1” we now have L = R*T’S and
(4.1) holds.

The fact that, in this case, r + s = #n follows immediately from the last
statement in Theorem 2.3. The claims that r +¢ = #n, s + p = »n and
p+ g = nin (4.5), (4.6) and (4.7) respectively follow in the same way.

To prove (4.6), observe from (4.9) that Rz;,» + 1 = j £ p, are solu-
tions of I"*y = 0. This proves the first part of (4.6). Also if Lemmas 3.3
and 3.5 are invoked we see that

W(Rzr41, ..., Rzp) = Wiz, ...,2)/W(z,...,32,),

which proves the statement about linear independence. If n = s + p,
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then p —r = n — r — s so that Rz,,4, ..., Rz, form a fundamental set
of solutions of ™y = 0 as 1™ has order n — r — 5. If Lemmas 3.3 and
3.5 are used to calculate

W(Rz, 1y ooy Ry, R2ipn,y ooy R2y)/ W(Rz,44, ..., R3,),

forr4+1 =1 = p,

the remainder of (4.6) follows from Theorem 2.3.

Now (4.5) can be proved analogously by applying Theorem 2.4 (o
L* = S*T™*R.

To prove (4.8) first observe that since (4.1) and (4.2) are equivalent
we may write L = P*W(Q where 1 is the leading coefficient of both 7 and
Qand vy, 1 £1 = ¢, 24 1 =17 = p are respectively fundamental sets of
solutions of Qy = 0 and Py = 0. Since (4.2) holds, Theorem 2.4 can be
applied to find operators G, H of leading coefficient 1 so that Q = HS
and P = GR. Thus

L= R*WS = P*IVQ = R*(G*WH)S,

so that I" = G¥*IWWH by Lemma 2.2. Also H(Sy,) = 0fors+1=j =y
and G(Rz;) =0 for r +1 =7 £ p. H has order ¢ — s and the Sy,
s + 1 £ 7 £ gare linearly independent by (4.4) and (4.5), so we see that

SVerty -« ., 9y, form a fundamental set of solutions of Hy = 0. The
corresponding statement for GG is proved in like manner and so (4.8) is
established.

Finally we use Theorem 2.4 again to obtain for y € ("~7=%,

q
W*Gy = (G*TWV)*y = 2 (=1)""""[Sy, y]v(Sy)*
=g+ 1
where (Sy)* is obtained from (2.1) mutatts mutandss. Since G(Rz;) = 0
forr +1 = 1 £ pand since the (Sy)*, s + 1 £ 7 £ ¢, are independent,
we deduce that [Sy;, Rz;]y =0fors+1=1=¢,r+1 =7 = p. By
(4.3) and (4.4), this proves (4.7).

We should remark that the requirements that Wy, ..., y,).
Wiz, ..., z,) benotidentically zero in (4.5) and (4.6) could be replaced
cquivalently by demanding that yy, ..., v, and =, ..., 3, be linearly

independent respectively, for in each case the functions in question are
solutions of a common differential equation (see [6, p. 118]).

COROLLARY 4.2, Consider the case where L = Q*DQ where Q s « dif-

Sferentiul operator of order v. Then there is « fundamental set vy, ..., y, of
solutions of Qy =0 so that Wy, ...,v,)(x) #0 for x ¢ [ und
oyl =0 fori,7=1,...,n Also there is « one dimensional vector

space ¥ of functions so that if f & ¥,
Lf=0,ly,f1c =0, forl =1 =n
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and Wyy, ...y, )/ Wi, ..., v,) is constant on 1. ¥ cannot be chosen
to have dimension greuter than one.

Proof. From |5, Theorem 4.1] it follows that if %7 is the set of functions
sothat Lf = Oand |y, f], = Ofor1 £ 1 £ r, then ¥~ is one dimensional.
The result we have just proved shows that for f € ¥~

DWWy, ooy )/ Wy, ..o v =0,

and so the result is proved.

THEOREM 4.3. Let L be « differential operator of order n = 4 und let L
be giwen by (1.1) where p,(x) > 0 for x € I. Let integers sy = 0 < 5, <
o< <5y, and vy =0<r <ry< ... <r, be gwen. Then the

following conditions are equivalent.

(4.10)  There are differential operators Sy, ..., S, 11, ..., 1 and
Ry, ..., R, so that S; has order s; — s,-1, V'; hus order v — r; — s, und
R, has order v; — r,_y, and

L=R*. .. R¥XINS,...S), forl1<j<p.

(4.11)  There are solutions vy, . . ., v,,0f Ly = 0 and solutions z,, . . ., z,,

of L*y = 0o that forx € Tand 1 £ 1,5 < p,
Wiy, oo, v ) () # 0, Wiz, ..., 2,,) (x) # 0 and
vzl =0;for 1 i <5, 1 <=7,

When these conditions ure satisfied the operators in (4.10) may be chosen
so that the following hold.

(4.12) 17, = R, 1, S for 0 =5 = p — 1 where 1y = L.
4.13)  vi, ...,y ts o fundamental set of solutions of (S;...S1)y =0
and zy, ...z, 05 a fundamental set of solutions of (R;...Ri)y = 0 for
1=s7=0p
(4.14)  The s, — s; funclions

W oo v, 3 W v s+ 1S k<,

are lineurly independent solutions of 1y =0, 1 27 =< p — 1 and the
corresponding s ;1 — s; funcltions obtained as above by restricting k to the
range s; + 1 = k = 5,41 form a fundumental set of solutions of S;1y = 0

for1=j=p—1.
(4.15) Ther, — r; functions

Wiz, oo, a)/ Wy o5, + 1Sk

IIA

Vo,

arer, — r;linearly independent solutions of V' *y = 0,1 £ j £ p — 1 und

<
the corresponding v\ — r; functions obtuined us above by restricting k to
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the range v; + 1 <k < r;p0 form « fundamental set of solutions of
Riypywy=0for1 £7=p—1.

(4.16)  The functions in (4.14) for s, + 1 < k = s, and the [unclions in
(4.15) for r; + 1 = k = r, are mutuully conjugate solutions with respect
to Viof Vyy = 0and ¥y = 0 respectively for 1 < j < p — 1.

Proof. Let (4.11) hold. By Theorem 4.1 there are operators 1/;, NV,
I, for 1 £ 7 =< psothat L = MW *I7,N;, M, is given by (4.3) with 7; in
place of r, N;is given by (4.4) with s, in place of s and 17, has order
n — r; — s, Theorem 2.4 shows that if 1 £7 < p — 1, we may write
Mg = RjaM;yand Ny = S, N; where R,y has order ;. — r; and
S;+1 has order s;41 — s, Thus

L= M*"N;= M*U 0N = MXR %0840 N,
forit =7=p—1,

so by Lemma 2.2 we deduce that 7, = R, 17,5, If we define
Ry = M;and S, = N, then (4.12) is proved.

Also from the above we have M ; = R; ... RoRiand N; =.5;,...5.5
and now (4.13) is immediate, as also is (4.10). Since L = 1 *17,.V,,
(4.14) follows from (4.5) and (4.15) from (4.6). Finally (4.16) is an
easy consequence of (4.7).

This shows that (4.11) implies all other conditions in the theorem. That
(4.10) implies (4.11) comes from the equivalence of the two conditions
(4.1) and (4.2) and is straightforward. This completes the proof.

In Section 5 of [5] results have been obtained concerning the successive
reduction of the order of . by 2. This corresponds to the situation in
Theorem 4.3 of having r; = s; = jand L* = 4 L. Thus the factorization
in (4.10) of L can be regarded as a process which successively reduces the
order of L by ri 4 s1, r2 4 5o, ..., 7, + s,. However whereas the
argument used in |5] depends upon properties of the Lagrange bracket,
the procedure here is based more directly on Theorem 2.4. It is possible
that the Lagrange bracket plays a significant rdle in these more general
factorization results.

Remark. This work was done while the second author was visiting The
University of Calgary.
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