
18
The real Klein–Gordon field

The relativistic scalar field satisfies the Klein–Gordon equation. This equation
can be interpreted as the quantum mechanical analogue of the relativistic energy
relation

E2 = p2c2 + m2c4, (18.1)

and is found by making the usual replacement pµ → −ih̄∂µ, and allowing the
equation to operate on a real scalar field φ(x). The result is(

− + m2c2

h̄2

)
φ(x) = 0. (18.2)

18.1 The action

If we generalize the single scalar field above to a set of N real scalar fields
φA(x) for A = 1, . . . , N , with a linear perturbation, JA, then all of the physical
information about this system can be derived from the following action:

S =
∫
(dx)

{
1

2
h̄2c2(∂µφA)(∂µφA)+ 1

2
m2c4φAφA + V (φ)− JAφA

}
.

(18.3)

Note that the position of the A indices is immaterial here, since they only label
the number of the field components. The repeated indices are summed using a
Euclidean metric, for which there is no notion of ‘up’ or ‘down’ indices.

Looking at this action, it can be noted that it does not have the familiar form
of an integral over T − V (kinetic energy minus potential energy). Instead, it
has the form of an integral over −E2 + p2 + m2 + V . Although this looks
dimensionally incorrect, this is not the case, since the dimensions of the field
are simply chosen so that S has the dimensions of action.
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18.2 Field equations and continuity 417

In what follows, the position of an index A is chosen for clarity. The
Lagrangian density L is defined by

S =
∫
(dx)L. (18.4)

In the usual canonical tradition, we define the conjugate momentum to the field
φa(x) by

!A
σ =

δL
δ(∂σφA)

= h̄2c2∂σφ, (18.5)

where σ is a specific direction, normal to a spacelike hyper-surface. Usually we
do not need to be this general and we can just pick σ = 0 for the normal, which
corresponds to the time direction (normal to space in an observer’s rest frame).
Then we have, more simply,

!A = h̄2c2∂0φA. (18.6)

The Hamiltonian density is then obtained straightforwardly from the Legendre
transformation

H = !(∂0φ)− Lg00. (18.7)

Or, using the fully covariant form,

H = !σ(∂σφ)− Lgσσ . (18.8)

Note the positions of the indices here and the presence of the metric in the
second term of the right hand side. The need for this factor will become
apparent later when looking at transformations and the energy–momentum
tensor. It makes the relativistic Legendre transformation more subtle than that
in Euclidean space, because of the indefinite metric. Eqns. (18.7) and (18.8)
evaluate to

H = 1

2
h̄2c2

[
(∂0φ)

2 + (∂iφ)
2
]+ 1

2
m2c4φ2 + V (φ). (18.9)

18.2 Field equations and continuity

The variation of the action (with V = 0) leads to

δS =
∫
(dx)

{
h̄2c2δφA(− )φA + m2c4φAδφA − JAδφA

}
+ 1

c

∫
dσµ

{
1

2
h̄2c2δφA(∂µφA)

}
. (18.10)
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418 18 The real Klein–Gordon field

Appealing to the action principle (see chapter 4), we surmise that the field
equations are (

− + m2c2

h̄2

)
φA = (h2c2)−1 JA, (18.11)

and that the condition for continuity of the field through any n-dimensional
surface is

�!A
σ = 0. (18.12)

If a delta-function source �JA = δ jAδ(x) is added to Ja exactly on the surface
σ , then this continuity equation is modified, and the new condition is given by

�!A
σ = � j A nσ , (18.13)

where nµ is the unit normal vector to σ . This equation tells us that a sudden
change in the momentum of the field can only be caused by an impulsive force
(source) � j .

18.3 Free-field solutions

The field φ(x) may be expanded as a linear combination of a complete set of
plane wavefunctions satisfying the equation of motion,

φ(x) =
∫

dn+1k

(2π)n+1
φ(k)eikxδ

(
h̄2c2k2 + m2c4

)
, (18.14)

where φ(k) are arbitrary coefficients, independent of x . The reality of the field
requires that

#∗(k) = #(−k). (18.15)

The integral ranges over all energies, but one can separate the positive and
negative energy solutions by writing

φ(x) = φ(+)(x)+ φ(−)(x), (18.16)

where

φ(+)(x) =
∫

dn+1k

(2π)n+1
φ(k)eikxθ(−k0)δ

(
h̄2c2k2 + m2c4

)
φ(−)(x) =

∫
dn+1k

(2π)n+1
φ(k)eikxθ(k0)δ

(
h̄2c2k2 + m2c4

)
. (18.17)

The symmetry of the energy relation then implies that

φ(+)(x) = (
φ(−)(x)

)∗
. (18.18)
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18.5 Conserved norm and probability 419

The positive and negative energy solutions to the free relativistic field equations
form independently complete sets, with respect to the scalar product,

(φ(+)(x), φ(+)(x)) = const.

(φ(−)(x), φ(−)(x)) = const.

(φ(+)(x), φ(−)(x)) = 0. (18.19)

18.4 Reality of solutions

It should be noted that the uses of the real scalar field are somewhat limited. The
boundary conditions one can apply to a real scalar field are only the retarded or
advanced ones. The solution

φ(x) =
∫
(dx ′) G(x, x ′)J (x ′) (18.20)

is only real if the Green function itself is real. This excludes the use of the
time-ordered (Feynman) Green function.

18.5 Conserved norm and probability

Since the real scalar field has no complex phase symmetry, Noether’s theorem
leads to no conserved quantities corresponding to a conserved inner product.
It is possible to define an invariant inner product on the manifold of positive
energy solutions, however. This is what introduces the complex symmetry in
the non-relativistic limit;

φ∂0φ (18.21)

has no definite sign.
Since the relativistic energy equation E2 = p2c2 + m2c4 admits both

possibilities, we do this by writing the real field as a sum of two parts,

φ = φ(+) + φ(−), (18.22)

where φ(+)∗ = φ(−). φ(+) is a complex quantity, but the sum φ(+) + φ(−) is
clearly real. What this means is that it is possible to define a conserved current
and therefore an inner product on the manifold of positive energy solutions φ(+),

(φ
(+)
1 , φ

(+)
2 ) = ih̄c

∫
dσµ(φ(+)∗1 ∂µφ

(+)
2 − (∂µφ(+)1 )∗φ(+)2 ) (18.23)

and another on the manifold of negative energy solutions φ(−). Thus there is
local conservation of probability (though charge still does not make any sense)
of particles and anti-particles separately.
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420 18 The real Klein–Gordon field

18.6 Normalization

The scalar product is only defined for normalizable wave-packet solutions, i.e.
those for which (φ, φ) <∞. A plane wave is a limiting case, which can only be
defined by box normalization. It does not belong to the Hilbert space. However,
adopting an invariant normalization in momentum space, one can express plane
waves simply. Noting that the following construction is both invariant and ‘on
shell’, i.e. satisfies the Klein–Gordon equation,

φ =
∫

dn+1k

(2π)n+1
eikxθ(±k0)δ(p

2c2 + m2c4)

=
∫

dnk

(2π)n
eikx

2p0
. (18.24)

Adopting the normalization

(φ(p), φ(p)) = 2p0 δ(p− p′)(2π)n, (18.25)

a positive energy solution takes the form

φ+(p) = eikx
(

p0 =
√

p2 + m2
)
. (18.26)

18.7 Formal solution by Green functions

The formal solution of the equations of motion can be written down in terms
of Green functions. The essence of the procedure is to find the inverse of the
differential operator on the left hand side of eqn. (18.11). Formally, we may
write

φA(x) =
(
− + m2c2

h̄2

)−1

(h̄2c2)−1 JA, (18.27)

where this is given meaning by comparing it with the expression involving the
Green function or ‘kernel’ G AB(x, x ′):

φA(x) = (h̄2c2)−1
∫
(dx ′)G AB(x, x ′)JB(x

′). (18.28)

Comparing eqns. (18.27) and (18.28), we see that G(x, x ′) must satisfy the
equation (

− + m2c2

h̄2

)
G AB(x, x ′) = δABδ(x, x ′), (18.29)

and thus we see that G AB(x, x ′) is the inverse of the differential operator, insofar
as δABδ(x, x ′) can be regarded as the ‘identity’ operator.
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18.8 All the Green functions 421

In this case, the indices A, B on the Green function are superfluous, since

G AB(x, x ′) = δAB G(x, x ′), (18.30)

but non-diagonal terms in A, B might be important when the components of the
field interact. This is the case in a gauge theory, for example.

The Green function G(x, x ′) is not unique: there is still a freedom to choose
the boundary conditions. By this we mean a specification of how the field is
affected by changes in the source Ja both in the past and in the future. The
‘causal’ Green function, also referred to as the retarded Green function, is such
that φ(x) is only affected by a change in J (x ′) if x > x ′.

18.8 All the Green functions

The symmetry of the Green functions is as follows:

G AB(x, x ′) = G B A(x
′, x)

G̃ AB(x, x ′) = −G̃ B A(x
′, x)

GF AB(x, x ′) = GF B A(x
′, x). (18.31)

The symmetrical parts of the Wightman functions may be constructed explicitly.
For example

1

2

[
G(+)

AB (x, x ′)+ G(+)
B A(x

′, x)
]
= 1

2

[
G(+)

AB (x, x ′)− G(−)
AB (x, x ′)

]
= 1

2

[
G(+)

AB (x, x ′)−
(

G(+)
AB (x, x ′)

)∗]
= iImG(+)

AB (x, x ′). (18.32)

The retarded, advanced and Feynman Green functions are all constructed from
causally selective combinations of the Wightman functions.

G(+)
AB (x, x ′) = −G(−)

B A(x
′, x)(

G(+)
AB (x, x ′)

)∗
= G(−)

AB (x, x ′). (18.33)

The properties of the step function lead to a number of linear relations:

Gr(x, x ′) = −θ(t − t ′)G̃(x, x ′)
Ga(x, x ′) = θ(t ′ − t)G̃(x, x ′)
Gr(x, x ′) = GF(x, x ′)− G(−)(x, x ′)
Ga(x, x ′) = GF(x, x ′)+ G(+)(x, x ′)
GF(x, x ′) = −θ(t − t ′)G(+)(x, x ′)+ θ(t ′ − t)G(−)(x, x ′). (18.34)
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422 18 The real Klein–Gordon field

Some caution is needed in interpreting the latter two relations, which should
be considered formal. The causal properties of the Green functions distinguish
G(±)(x, x ′), which satisfy the homogeneous eqn. (5.65), from Gr,GF, which
pose as right-inverses for a differential operator and satisfy an equation such as
eqn. (5.62). We can investigate this by calculating time derivatives. Starting with
the definition in eqn. (18.34), we obtain the time derivatives using the relations
in sections A.1 and A.2 of Appendix A:

∂t GF(x, x ′) = −δ(t, t ′)G̃(x, x ′)− θ(t − t ′)∂t G
(+)(x, x ′)

+θ(t ′ − t)∂t G
(−)(x, x ′), (18.35)

where eqn. (5.71) was used. The second derivative is thus

∂2
t GF(x, x ′) = − ∂tδ(t − t ′)G̃(x, x ′)− δ(t − t ′)∂t G̃(x, x ′)

− δ(t − t ′)∂t G̃(x, x ′)− θ(t − t ′)∂2
t G(+)(x, x ′)

+ θ(t ′ − t)∂2
t G(−)(x, x ′). (18.36)

The property in eqn. (A.14) was used here. Thus using eqn. (5.73) we may write

∂2
t GF(x, x ′) = δ(t − t ′)δ(x− x′)− θ(t − t ′)∂2

t G̃(x, x ′)
+θ(t ′ − t)∂2

t G(−)(x, x ′). (18.37)

From this it should be clear that

(− + M2)GF(x, x ′) = δ(t − t ′)δ(x− x′)
− θ(t − t ′)(− + M2)G̃(x, x ′)
+ θ(t ′ − t)(− + M2)G(−)(x, x ′)
= cδ(x, x ′). (18.38)

The Green function for the scalar field is directly related to that for the
electromagnetic field in the Lorentz–Feynman gauge, up to factors of h̄ and
µ0.

Dµν(x, x ′)
∣∣∣
α=1

= µ0h̄2 G(x, x ′)
∣∣∣
m=0

gµν. (18.39)

18.9 The energy–momentum tensor

The application of Noether’s theorem for spacetime translations leads to a
symmetrical energy–momentum tensor. Although the sign of the energy is
ambiguous for the Klein–Gordon field, we can define a Hamiltonian with the
interpretation of an energy density which is positive definite, from the zero–zero
component of the energy–momentum tensor. Using the action and the formula
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18.9 The energy–momentum tensor 423

(11.44), we have

θ00 = ∂L
∂(∂0φ)A

(∂0φA)− Lg00

= H = 1

2
h̄2c2

[
(∂0φA)

2 + (∂iφA)
2
]+ 1

2
m2c4φ2

A + V (φ). (18.40)

This quantity has the interpretation of a Hamiltonian density. The integral over
all space provides a definition of the Hamiltonian:

H =
∫

dσH. (18.41)

The explicit use of zero instead of a general timelike direction here makes this
definition of the Hamiltonian explicitly non-covariant. Note that this is not a
differential Hamiltonian operator analogous to that in eqn. (17.3), but more like
an expectation value. In the quantum theory (in which the fields are operator-
valued) this becomes the Hamiltonian operator.

The off-diagonal spacetime components give

θ0i = θi0 = ∂L
∂(∂0φ)A

(∂iφ)A

= h̄2c2(∂0φA)(∂iφA). (18.42)

Since there is no invariant inner product for the real scalar field, it is awkward to
define this as a field momentum. However, on the manifold of positive energy
solutions φ(+), the integral over all space may be written∫

dσθ0i = c
∫

dσ(φ(−)
↔
∂0 ∂iφ

(+))

≡ −(φ(+), pi cφ
(+)), (18.43)

where pi = −ih̄∂i . The diagonal spatial components are

θi i = ∂L
∂(∂ iφA)

(∂iφA)− L

= h̄2c2(∂iφA)
2 − 1

2
h̄2c2(∂µφA)(∂µφA)− 1

2
m2c4φ2

A − V (φ),

(18.44)

where the repeated i index is not summed. The off-diagonal ‘stress’ tensor is

θi j = ∂L
∂(∂ iφA)

(∂ jφA)

= (∂iφA)(∂ jφA), (18.45)
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424 18 The real Klein–Gordon field

where i �= j . Notice that the trace of the space parts in n + 1 dimensions gives∑
i

θi i = H− m2c4φ2
A − 2V (φ)+ (n − 1)L (18.46)

so that the full trace is

θµµ = gµνθνµ = −m2c4φ2
A − 2V (φ)+ (n − 1)L, (18.47)

which vanishes in 1+ 1 dimensions in the massless, potential-less theory.
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