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AN INVARIANT SUBSPACE THEOREM ON
SUBDECOMPOSABLE OPERATORS

MINGXUE Liu

H. Mohebi and M. Radjabalipour raised a conjecture on the invariant subspace
problem in 1994. In this paper, we prove the conjecture under an additional con-
dition, and obtain an invariant subspace theorem on subdecomposable operators.

In [9] Mohebi and Radjabalipour raised the following conjecture.

THE MOHEBI-RADJABALIPOUR CONJECTURE. (See [9, p.236].) Assume the operators
T e B(X) and B e B(Z) on Banach spaces X and Z, and the nonempty open set G
in the complex plane C, satisfy the following conditions:

(1) qT = Bq for some injective q € B(X, Z) with a closed range qX.
(2) There exist sequences {G(n)} of open sets and {M(n)} of invariant

subspaces of B such that G(n) C G(n+ 1), G = \JG(n), <r(B\M(n)) C
C\G(n) and a{B/M(n)) C G(n), n = 1,2, . . . . "

(3) a(T) is dominating in G.

Then T has a (non-trivial) invariant subspace.
It is easy to see that the Mohebi-Radjabalipour Conjecture, if true, will contain

the main results of [1, 2, 4, 5, 7, 8, 9] (and others) as special cases.
In the present article, using the S. Brown Technique, we prove the Mohebi-

Radjabalipour Conjecture under an additional condition. But the additional condition
will be used in only one place, namely in the proof of Lemma 4. Our main result is as
follows.

THEOREM 1. Assume the operators T 6 B(X) and B e B(Z) on Banach spaces
X and Z, and the nonempty open set G in C, satisfy conditions (1), (2) and (3) in
the Mohebi-Radjabalipour Conjecture and the following additional condition:

(4) {qX + M(n)} is a sequence of closed sets in Z.
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12 M. Liu [2]

Then T has an invariant subspace.

To prove Theorem 1 we first recall some basic notation and facts, and give some
lemmas.

We denote by H°°(G) the Banach algebjra of all bounded analytic functions on G

equipped with the norm | | / | | = sup{|/(A)| ; A G G}. It is well known that H°°(G)

is a w'-closed subspace of L°°(G) relative to the duality (LX(G), L°°(G)) and that
a sequence {/*} in HCO(G) converges to zero relative to the w*-topology if and only
if it is norm-bounded and converges to zero uniformly on each compact subset of G.

In particular, we can identify H°° (G) with the dual space of the Banach space Q =

L1(G)/±H°°(G). Since Q is separable, the above characterisation of w* -convergent
sequences in H°°(G) immediately implies the w* -continuity of all point evaluations
Ex : H°°{G) -> C, / - » / ( A ) ( A 6 G ) .

For / € H°°(G) and A € G we deonte by f\ the unique function in H°°(G) with
(A - AO/A(/Z) = /(A) - f{fi) for n € G. It is easy to check that for fixed A 6 G the
map H°°(G) -> H°°(G), f -* f\, is w*-continuous.

A subset F of C will be called dominating in G if | | / | | = sup{|/(A)|; A e FnG}

holds for all feH°°{G).

Let E be a Banach space. Then we denote the dual space of E by E*. If M and

N are closed linear subspaces of E, then we set

a(M,N) = mi{\\x - y\\ ; x e M with ||x|| = 1 and y € N}.

For M C E arbitrary, by definition V - ^ denotes the closed linear hull of M. For
A e B(E) the left essential spectrum crie{A) of A is the set of those points A in C

such that ran (A — A) is not closed or dimker(A — A) = oo. For A € B(E), if M is
a closed linear subspace of E with AM C M, then A\M denotes the restriction of A

onto M, and A/M denotes the quotient operator induced by A on E/M. If E and
F are Banach spaces, and A e B(E,F), then A* denotes the adjoint operator of A.

Throughout the rest of the present article, we shall assume that X, Z, T, B, q, G,

G(n) and M(n) are as in Theorem 1.

LEMMA 1 . If o-ie(r*) ^ <r(T*), then T has an invariant subspace.

PROOF: The proof of Lemma 1 is routine, and is therefore omitted. D

N O T E 1. By Lemma 1 and the condition (3) in Theorem 1, the proof of Theorem 1 can
be reduced to the case in which T satisfies the following additional condition:

(3)' <TU(T*) is dominating in G.

By conditions (1) and (2) in Theorem 1, we can readily obtain Lemma 2 below.
Moreover, Lemma 2 can be found in [9, Note 2].
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[3] An invariant subspace theorem 13

LEMMA 2 .

(1) q'B* = T*q* and q" € B(Z*, X*) is suijective.

(2) For every natural number n, M(n)± is an invariant subspace of B* and

*\M{n)x^ CG(n), u{Bm/M{n)J-) C C\G(n).

LEMMA 3 . Define B : qX -> qX by Bz = Bz, and define q : X -+ qX by
qx = qx. Then B € B(qX), g € B(X,qX) and

(1) For any polynomial p, for any vectors z e qX and z* e Z*, we have

where z* denotes the restriction of z* onto qX, that is, z* = z*\qX.

(2) For any x 6 X and z* € Z*, we have (x, q*z*) = (x, q'z*) and \\q*z* \\ =

\\q'z* ||, where z* = z'\qX.

PROOF: Since qT = Bq, it follows that BqX C qX. Hence B is a well-defined
bounded linear operator on the Banach space qX, that is, B 6 B(qX).

(1) Since BqX C qX, it follows that p{B)qX C qX. Consequently

{z,p{B*)z') = (p(B)z, z*) = (p(B)z, ?) = (l,

(2) It is clear that q e B(X,qX) and

(x,?Z) = {qx,z') = (qx,z*) = (x,q*z*).

Therefore \\q*z'\\ = ||g*z*||. D

LEMMA 4 . For each natural number n, set

M(n^lqX = {z* e (qX)* ; there is z* e M{n)L with z*\qX = z*}.

Then M(n)±\qX is a closed linear subspace in the Banach space (qX)r.

PROOF: It is obvious that M(n) \qX is a linear subspace in (qX)*. To show

that M(n)'L\qX is closed in (qX)*, it suffices to show that for any sequence iz^ > in

M{n)%X,\t

(4.1) lim 7m = 4 € (qX)\
m-+oo
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then z% e M ( n ) x | g X .

In fact, since z^ 6 M(n)x\qX, there exists z*m € M{n)x such that zj, =

z^\qX. Hence, it follows from (4.1) that

(4.2) ]im{z,z'm) = (z,4)
m—*oo

for any z € qX. Since zJJ, G M ( n ) x , it follows that (2,zJ,) = 0 for any z 6 M(n) .

Therefore, for any z € M(n) we have

(4.3) JmJz.z^O.

Since z£, € Z*, z*m is well-defined on qX + M(n). Thereby, it follows from (4.2) and

(4.3) that for any z e qX + M(n) the sequence {(z, z^ )} of numbers is convergent.

Set
Urn (z, z^} = <p(z), z£qX + M{n).

m~¥oo

Define the functional ZQ' acting on qX + M(n) by the equation

Obviously, zjj' is a linear functional and

z,zjj), zeqX,

Since gX, M(n) and qX + M(n) are closed in the Banach space Z, by the Open
Mapping Theorem there exists a real number K > 0 such that for any z e qX +

M(n) there are vectors z\ e qX, zi e M(n) with z = zi + Z2 and ||zi|| ^ Jf ||«||-
Consequently, we have

|<z,zo")| = \(Zl,z*0)\ < \\z'0\\ | | 2 l | K K\\z'0\\ INI •

Thus ZQ is a bounded linear functional on qX + M(n). By applying the Hahn-Banach

Theorem we can find zj, € Z* such that z5|(gX + M(n)) = ZQ . Thus by (4.4) we get

z5 e M{n)x and 4 = zj |gX € Min)^ \qX. D

LEMMA 5 . Let n be a natural number. If A 6 G(n), tien X-B*/(M(n)±\qX) is

a bijective bounded linear operator from (qX)* / (M(n)±\qX) onto (qX)* / (M(n)J~\qX).

PROOF: Since M(n) is an invariant subspace of B*, it follows from Lemmas

3 and 4 that M{n)±\qX is a closed linear subspace in (qX)* and
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C M(n)± \qX. Therefore, A — B*/(M(n) \qX) is a bounded linear operator from

(qX)'/(M(n)X\qX) into (qX)*/(M{n)X\qX) .

By applying Lemma 2, we get A 6 p(B*/M(n) ) . Consequently, A — B*/M(n)x

is a bijective bounded linear operator from Z*/M{n) onto Z'/M(n) .

First we show that A - B*/(M{n)x\qX) is surjective from {qX)*/(M{n)x\qX)

onto (qXY/(M(.n)±\qX). In fact, for any zj + M(n)x\qX e {qX)*/(M(n)x\qX),

by the Hahn-Banach Theorem there exists zjj € Z* such that zj = Zg\qX. Since

A - B*/M{n)x is surjective from Z*/Af(n)x onto Z*/M(n)x, there is a vector z* +

M(n)x 6 Z'/Min)1- such that

(A - B")z* + M{n)x = (A - B7M(n)x) (zm + M^) =z£ + Min)-1.

Hence

(5.1) ((A - B*)zm)\qX + M(n)x|gA- = z}+ M(n)x\qX.

Set z* = 2*|g-X\ Then it follows from Lemma 3 and (5.1) that

(A - B7(M(n)-L|(?X)) (z* + M(n)L\qX) = (\- B*)? + M{n)%X

= ((A - B*)z*)\qX + M(n)X\qX

= z}+M(n)±\qX.

Next it will be shown that X-B*/(M(n)±\qX) is injective from (qX)*/(M(n)x\qX)

onto (gX)*/(iW(n)x|gX). It is sufficient to show that for any z* + M(n)X\qX €

(gX)7(M(n)x|gA-), if (A - B*/(M(n)x\qX)} {? + M{n)x\qX) = 0, then (z» +

M(n)x|gX) = 0. That is, it is sufficient to show that for any 2* + M(n)x\qX €

(qX)'/(M(n)x\qX),ii

then ?+M(n)x\qX = 0.

In fact, since A - B*/M(n)x is surjective from Z*/M(n)x onto Z"/M(n)x, it
follows that

Z7M(n)x = {(A - B*/M(n)x)(z* +M(n)x) ; 2* + Af(n)x e Z7M(n)x

= {(A - B')z" + M(n)x ; z* € Z*}.

Similarly, since A - B*/(M(n)x\qX) is surjective from (qX)*/(M(n)x\qX) onto

(qX)"/(M(n)x\qX), it foUows that

7(M(n)xM0 = {(A- B')i"» +M(n)x|gX; i"« 6
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Therefore we can define a map A : Z'/M^ -> [qX)*/{M{n)x\qX) by

A((X - B*)z* + Min)-1) = (X - B*)z* + M(n)x\qX,

where z* = z*\qX. It is easy to see that the image point of the vector (A — B*)z* +
M(n)'L € Z*/M(n)'L under A is independent of the particular choice of (A — B*)z*,
that is, if (A - B*)zl+M(n)X = (A - B*)4+M(n)x in the quotient space Z*/M(n)±,
then

A((\ - B*)z\ + Min)1-) =A{{\- B*)Z*2 + Min)-1).

So A is well denned.
It is plain that A is a linear operator. We now show that A is bounded. Indeed,

for any z" G Min)-1, set z*' = z*'\qX, then z*' S M(n)x\qX. Thus by Lemma 3 we
obtain

- B*)z* + Z*')\9X

for every z* € Z*, where z* = z*\qX. Consequently

- B')z' + M(n)x)| = I (A - B')z* + M{n)x\qX\\

= inf{|(A- B*)z"* +z*'\\; ? ' € M(n)

< inf{||(A - B*)z" + z*'\\; z" g Minf

It is obvious that A is surjective from the Banach space Z*/M(n)x onto the
Banach space (gX)*/(M(n)x|gX). Thus the Open Mapping Theorem implies there
exists a real number K > 0 such that for any

(A - B*)Z + MinflqX e (qXy/iMinflqX),

there is a vector (A - B*)z* + Min)1- e Z*/M(n)x with

(5.2) A({\ - B*)z* + Min)-1) = (A - B*}z* + M(n)-L|gX,

and
||(A - B*)z* + M(n)J-|| < KJ (A - Bm}z* + M(n)x\qx\\.
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Therefore, if (A - B*}z* + M(n)x\qX = 0, then

(5.3) (A - B*/M(n)x) (z* + M{n)x) = (A - B*)z* + M(n)x = 0.

Since A - B*/M(n)x is injective from Z*/M(n)x onto Z*/M(n)x, it follows from
(5.3) that z* + M(n)x = 0. Hence z* € M(n)-1-. Thus by (5.2) we get

z* = z*\qX € M(n)x\qX.

Therefore z' + M{n)x\qX = 0. D

LEMMA 6. Let n be a natural number. If A € <xje(T*) n G{n), then for each
closed finite codimensional subspace XQ in X*, there exist sequences {xj^} in XQ,
{z^} in Z* and {z^} in M(n)x\qX such that

\\x*m\\ = 1, q*z^ = x*m, lim (A-B*)z*^ = 0, lim (z^ - z%) = 0,

where z^ = z^qX.

PROOF: By [7, Lemma 0.1], there exists a sequence {x^,} in XQ such that ||a£j| =
1 and

lim (A — T jXjn ^ 0.
m—too

Therefore by Lemma 2 we can find a sequence {%%,} in Z* such that x^ = q*z^ for
m = 1, 2, . . . , and

lim q*(\ - B')z*m = Urn (A - T*)q<z*m = lim (A - T*)x*m = 0.
m—*oo m—*oo m—+oo

Thus by Lemma 3 we obtain 9*2^ = rcĵ  for m = 1, 2, . . . , and

(6.1) lim \\? (A - B*)zl\\ = lim ||9*(A - B*)z*m\\ = 0,

where z^ = z^,|gX.
Since q £ B(X,Z) is an injection with a closed range qX, q € fl(A', gX) is

bijective from the Banach space X onto the Banach space qX. Thus by the Inverse
Mapping Theorem and (6.1) we have

Consequently,

(A - B*/(M(nf\qX))(zl + Mlnf^W = | (A - B')il + M(n)x\qX\\

»0, asm^oo.
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18 M. Liu [8]

Thus by Lemma 5 we get

- z~*|; z~* 6 M{nt\qX] = | | £ + M(n)x|</X||

= I (A -
—> 0, as m —> co.

Therefore, there is a sequence \ z% \ in M ( n ) x | g X such that lim ( z ^ — z ^ ) = 0 . D
I J 7*1—*OO V /

N O T E 2. By Lemma 6 we can find a natural number n0 such that M(n)± \qX ^ {0} for

all n ^ no. In fact, by Note 1, <7|e(T") is dominating in G. Thus by the condition (2)

in Theorem 1, there is a natural number no such that for each n ^ no, aie(T*) DG(n)

is nonempty. Thus by Lemma 6, if M(n) \qX = {0} for some n ^ no, then for any

given closed finite codimensional subspace XQ in X*, there are sequences {x^} in XQ

and {z*m} in Z* such that q*^\\ = \\x*m\\ = 1 and lim z*> = 0, where 7m = z*m\qX.
II m->oo

Therefore lim 9*5^11 = 0. This contradicts \\q*z^\\ = 1. Thus M(n)x\qX ^ {0}
T71-4OO || II II

for all n ^ no.
Prom now on fix no.

LEMMA 7 . Let n be a natural number. If A € C\G(n), then X-B* | (M(n)x \qX)

is a bijective bounded linear operator from M(n)"L|gA' onto M(n)x |gJT.

P R O O F : Since M ( n ) x is an invariant subspace of B*, it follows from Lemmas 3

and 4 that M(n) \qX is a closed linear subspace in {qX)* and B*(M(n) \qX) C

M(n)x |qJC. Therefore, A — B*\(M(n)^~\qX) is a bounded linear operator from

M(n)x\qX into M ( n ) x | g X .

By applying Lemma 2, we obtain A 6 p ( B * | M ( n ) x ) . Consequently, A - B * | M ( n ) x

is a bijective bounded linear operator from M(n) onto M(n) .

First we show that A — B*\[M(n) \qX) is surjective from M(n)±\qX onto

M ( n ) x | g X . In fact, for any zj e M ( n ) x | 9 X , there exists ZQ € M ( n ) x such that
zo ~ 2ol9-^- Since A — B* |M(n) X is surjective from M ( n ) x onto M(n)±, there is

z* € M ( n ) x such that

(7.1) (A - B*)z* = (A - B*\M{n)x)z* = z0*.

Set z* = z*|gX, then z* e M(n)^\qX. Thus by Lemma 3 and (7.1) we have

(A - §*)? = ((A - B*)z*)\qX = z\.
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[9] An invariant subspace theorem 19

Next it will be shown that A - B*\(M(n)x\qX) is injective from M(n)x\qX onto

M ( n ) x | g X . It will be sufficient to show that for any z* 6 M{n)L\qX, if (X - B*)z* =

0, then z* = 0.

In fact, since A — B*\M(n)'L is surjective from M(n)'L onto M(n)J~, it is true that

M(n)x = {(X- B*)z* ; z' <E M(n)- 1 } .

Similarly, since A-B*|(M(n)J"|gX) is surjective from M{n)±\qX onto Min^lqX, it
is true that

M(n)x\qX = { (A - B'^z* ; z" e M(n)-L|gX}.

Therefore, we can define a map 5 : M(n)"1" —> M(n)x|gX by

where z* = z* \qX. It is easy to see that 5 is well defined.
By Lemma 3, we get

||S(A - B')z'\\ = I (A - B')z*\\ = || ((A - B')z*)\qX\\ < ||(A - B')z*\\.

Therefore, 5 is a bounded linear operator. Moreover, for any (A — B* ) z* € M(n) \qX

with z* e M(n)x\qX, there exists z* e M(n)x such that z* = z*|gX. Hence

5((A-B*)z*) = (A — B*)z*. Consequently, 5 is a surjective bounded linear op-

erator from the Banach space M(n) onto the Banach space M(n) \qX. Thus by

the Open Mapping Theorem there exists a real number K > 0 such that for any

(A-B*).? e M{n)x\qX with z* G M{n)x\qX, there is a vector (A - B*)z* 6 M{n)x

with z* € Af(n) ,

(7.2)

and

Therefore, if (x-B'^z* = 0, then (A - B')z' = 0. Since A - B*\M(n)x is an

injection from M(n)± onto M(n) . It follows that z* = 0. Thus by (7.2) we obtain

z' =z'\qX = 0,
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and this concludes the proof of Lemma 7. D

To prove Thoerem 1, we need to construct some w* -continuous linear functional

acting on H°°(G). By Lemma 2 and [9, Lemma 1.2], we obtain Min)1- C M(n + l ) x

for n = 1, 2, . . . . Therefore M(n)x|gX C M(n + l^lqX for n = 1, 2, . . . . Set

M(G) = \J(M(n)x\qX).
n

For any x e X, z* e M(G), choose a natural number n > no such that z* £

Mfa^lqX. By Note 2 and Lemma 7, we have

C G(n) C G.

Consequently, we can define a functional x ® z* : H°°(G) —>• C by

where B* denotes S*|(M(n)-L|gX), and /(-B*) is defined by the Riesz-Dunford func-

tional calculus with analytic functions. As in [2], we can show that for any x € X

and z* € M(G), x ® z* is a well-defined w* -continuous linear functional which is

independent of the particular choice of n.

LEMMA 8 . (Similar to [8, Proposition 2.8], or [4, Lemmas 4.2 and 4.3], et cetera.)

Let r, s be natural numbers. Consider non-negative real numbers ci, . . . , cv with
c\ + ••• + Cr = 1 and complex numbers Ai, . . . , Ar € o-je(T*) n G. If ai, ... , as e
X, b\, ... , 6J e M(G) and e > 0 are arbitrary, then there are vectors x G X, z* e
M(G) such that ||z|| < 3, ||9*z*|| < 2 and

(1) J
(2) |a:®&j|| < e , ||o,-®f*|| ^ e, j = 1, 2, . . . , s.

PROOF: We start by choosing an arbitrary real number 6 with 0 < 6 < 1. Let

n ^ no be a natural number such that Ai, . . . , Ar € <Tie(T*) n G(n), 6*, . . . , 6* 6

M{n)L\qX. Since

D = {«v(3;)6j; / e H°°(G) with Il/H ̂  l, j = l, 2 , . . . ,

is compact, there are vectors x*_t, . . . , x*_t, XQ e X* such tha t

(8.1) m i n { | | x * - x l f c | | ; Jfc = 0, 1, . . . , < } < <J
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[11] An invariant subspace theorem 21

ioi all i* e D. Define

By [10, Lemma III.l.l] there is a closed finite codimensional subspace Xf in X*
such that

Thus by Lemma 6 there are vectors x\ € XQ n X{, z\ € Z*, z f € M(n)x |gJf, such
that

| |zl| | = 1, tTzt - x\,

where zj = z* \qX.

Likewise, by [10, Lemma III.l.l] there is a closed finite codimensional subspace
X | in X* such that

a(\J{xtt,...,x*0,xl}, XS

Again by Lemma 6 there are vectors x\ € X£ n X{ n X | , 4 e Z ' , z | ' €
such that

||( - s*)4| < <5, 114 - 4'|| < s,

where 4 = Z2 \iX •

Continuing in this way, we obtain vectors x{, ... ,x* 6 XQ ; z{, ... , z*

Z* ; zf', . . . , zj' € MCn)-1-!?^ such that

(8.3) a ( \ /{*! .« , • • • > * S - i } , V {x*' • • • • < > ) > 1 ~ 5>

hiII = i, §*4 = *;, I (A* - B*)zl\\ < s, ||4 - 4'|| < s,

where k = 1, 2, . . . , r , and 4 = zfcl9-^-

An easy calculation shows that

(8.4) max{|af c | ; fe = l , 2 , . . . , p
r

holds for all ai , . . . , a r € C and that the canonical projection of L = V i J onto
r fc=-t
V zjfc has norm less than 2/(1 — S). By Zenger's Lemma (see [11] or [3, p.20]) there
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exist a linear functional tp on L and complex numbers fii, ... , /zr such that \\ip\\ <

2/(1 - 5) and

(8.5)
fc=i

1, = cfc (fe = 1, 2, . . . , r),

xj) = 0 (k = 0, —1 - 0 -

Using the canonical isometric identification L* = XjLL we can choose a vector x & X

such that ||z|| < 2/(1 - 6) and

(8.6) (z, *;> = ? (* ; ) , ft = -t, ... , - 1 , 0, 1, . . . , r.

If 6 is chosen small enough, then ||a;|| < 2/(1 — <5) ̂ 3 .

Let z* = J2 f̂cZfc'- l 4 follows from (8.3), (8.4) and (8.5) that if 6 is chosen small
fc=i

enough,then

fc=l

^ r
It will now be shown that | |x® z* - J2 CkE\k\\ < e. In fact, it follows from (8.3),

fc=i
(8.5) and (8.6) that

for each k = 1, 2, . . . , r. So by (8.3) if S is chosen small enough, then the estimate

fc=i fc=i
< e,

holds for all / € H°°{G) with | | / | | ^ 1.

Next it will be shown that ||x®bj\\ ^ s for each j = 1, 2, . . . , s. In fact, it follows

from (8.5) and (8.6) that

(x, xlh) = v(xU) = 0

for each k = 0, 1, . . . , t. So by (8.1) if 6 is chosen small enough, then the estimate

*n)^-xU\\, fc = 0, 1, ... , t }
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holds for each ; = 1, 2, . . . , s. and all / e H°°(G) with | | / | | < 1.

Finally, we show that ||a,- ® z*\\ < e for each j = 1,2, ... , s. In fact, by (8.2),
(8.3) and x*k e X£ (k = 1, 2, . . . , r) we obtain

(o>, ?%) = («i- **> = 0

for all fc = 1, 2, . . . , r , and j = 1, 2, . . . , s. So by (8.3) if 6 is chosen small enough,
then the estimate

holds for each j = 1, 2, . . . , s and all / e Jf°°(G) with | | / | | s? 1.

LEMMA 9 . For any given A e G, there exist sequences {xn}%L0 in X and

{5*}~= 0 in M(G) such that

(1) \\EX -xn® ^ | | < 2 - 2 " + \ n = 0, 1, 2, . . . ,

(2) ||xB - x n _ ! < 2 -n+5 „ =, n = l, 2, . . . .

PROOF: Let xo = 0 £ X, zjj = 0 e M(G). Assume by induction that we have

constructed the vectors XQ, XI, ... , xn-i € X ; z$, z\, ... , z*_x € Af (G) such that

(9.1)

(9.2)

\\Ex-xk®?k\\<2-2k+\ * = l , . . . , n - l >

||xfc - Xk-xll < 2 - f c + s , fc = l , 2 , . . . , n - l ,

2 ~ * + 5 it — 1 2 n —1
z > K — 1 , 4, . . . ,n 1 .

We now wish to construct xn € X, ijj 6 M(G) satisfying (9.1), (9.2) and (9.3) for

fe = n.

By Note 1, <x(e(T*) is dominating in G. Thus by [6, Proposition 2.8] (or [4,

Lemma 4.4]) and (9.1), there are complex numbers Aj., . . . , Ar e o-je(T"*) n G and

complex numbers ci, . . . , tv such that

(9.4)

Write Cj = c y - c2j + ic3j - ictj, where j = 1,2, ... ,r, i = \ / - T and 0 ̂  ckj ^ | c , | .

Then

(9.5) = 1 ,2 ,3 ,4 .
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Without loss of generality, we assume that for each k, the real numbers Cfci, . . . , c/tr

/
T r

J2 Ckj, then c'fcj ^ 0 and ]T dkj = 1. Conse-
3 = 1 J = l

quently, for any given real number e > 0, by Lemma 8 we can choose successively pairs
(z<*>, i"*(*))1<fc<4 of vectors z<*> e X, .?<*) e M(G) such that

(9.6) 2,

||xn_! ® z*(fc)|| < e, ||x(fc) ® C ^ | | ^ e,

for all ifc, m = 1, 2, 3, 4 with k^m. Define

1/2 / r v 1/2

l / 2

Then it follows from (9.5) and (9.6) that the estimate

e,

r \ 1/2 / r v 1/2 / r . 1 /2 / r

=i 7 S=i ' S=i j=i

1/2

P(4)

Eici
^j=l

1/2 / 4

(E
* = i

j=\

holds, if e is chosen small enough. Hence it follows from (9.4), (9.5) and (9.6) that

V2
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PROOF OF THEOREM 1: Fix an arbitrary point A e G. By Lemma 9, there exist
sequences {xn}£L0 in X and (z^}^=0 in M(G) such that

(a) \\Ex-xn®?n\\<2-^+\ n = Q,\£ — .

(b) \\xn - xn-x II < 2-2"+5, \\? ( < - < - i ) I < 2 - 2 n + 5 , n = 1, 2, . . . .

The inequality in (b) ensures that the sequences {xn}£L0 and {CTZ^}^-Q are Cauchy
in X and X*, respectively. Hence, there are vectors x € X and x* € X* such that

lim xn = x, lim 9*2:? = x*.
n-K» n-»oo

Since z£ G M(G), there is a natural number m(n) > no such that z£ e M (m(n)) |gX.

Thus there exists z* e M(m(n)) such that z^ = z£|g-X\ Consequently, for any

polynomial p, by Lemma 2, Lemma 3 and (a) we obtain

p(A) = E\(p) = lim z n ® z^(p)
n • o o

Therefore (x, a;') = 1 and {{T - X)nx, x*) = 0 for all n = 1, 2, Hence x ^ 0,
x' ± 0, and (T - X)nx £ kerx* for all n = 1, 2, Two cases may arise: ( r - A)x =
0 or (T - X)x ^ 0. If (T-A)x = 0, then ker(T-A) is an invariant subspace of
T. If (T - X)x jt 0, then we write Lo = y{(T- X)x, (T - A)2x, .. . }, and hence
io C kerx*. Consequently, it follows from x* ^ 0 that Lo # {0} and LQ •£ X. It
is e a s y t o s e e t h a t L o = \ / { T x , T2x, . . . } i f A = 0 , a n d L o = \ / { x , T x , T2x, . . . } i f
A / 0. Therefore Lo is an invariant subspace of T. D
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