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1. Introduction

Since 1954, when Yang and Mills [7] presented their idea of isotopic gauge
transformation, the method of introducing interactions into field theories by using
general gauge invariance has been extensively studied.

A general formalism was presented by Utiyama [6]. Reference [6] also contains
the first application of the formalism to the theory of gravitation. A more general
approach to the Young-Mills formalism applied to general relativity was described
by Kibble [3]. In a special case of interacting Dirac field the gauge invariance
group can still be enlarged, leading to the possibility of describing short-range
interactions together with gravitation and electromagnet ism [5]. It is, therefore
important to have a definite formulation of the common geometrical content of
such theories.

Differential geometers who came into contact with Young-Mills theory
realized that the theory is almost identical with the theory of connections in vector
bundles. Certain aspects of such relation were discussed in references [1] and [2].
Correspondence between Yang-Mills theory and differential geometry of fibre
bundles is explicitly studied in the next section in a form suitable for applications.
In Section 3 the formalism is applied to the Utiyama's construction of gravitational
interactions. A relation between space-time metric and Yang-Mills fields is derived
without the assumption about vanishing torsion of the linear connection of
bundle of frames. Use of this ad hoc assumption in Utiyama's paper was criticized
by Kibble [3], and it was one of the reasons that lead him to consider a generalized
approach.

2. Convariant Derivative

Consider a principal fibre bundle P(B, G) (for basic definitions and theorems of
the theory of fibre bundles see e.g., [4]) where B is the base manifold of dimension
n, and G is the structure group, n denotes the projection map
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(1) n:xeP-*u = 7t(x)eB

satisfying

(2) n(x • a) - n{x) for all xeP, ae G.

Further consider a differentiable function

(3) £:xeP-*£(x)e.F,

satisfying a condition

(4) f(x-a) = a- 1 ^x) > aeG.

F is a (real or complex) representation space of G. Together with a cross-section

(5) x • u e B -> x(«) e P, TT(X(«)) = u

function ^ defines an f-valued function £ on manifold B by

(6) ««) = «*(«)).

In physics, B is the space-time manifold and £(«) is the "old" field that is to
interact with "new" Yang-Mills field. The latter fields are contained in a con-
nection T defined in P(B, G).

Any tangent vector X at point xoeP can be written as

X = Xh + Xv,

where Xh and Xv are the horizontal and vertical components of X defined by
connection T in P. Applying X to function £(*)

(7) Xax0) = Xk£(.x0) + Xvi(x0).

The best way to see explicitly how this decomposition works is to consider a
differentiable curve x(f) with x(0) = x0 and tangent X at x0. Then

(8) XZ(x0) = lim (1 / 0 « W 0 ) - «*„)).
!->0

If xA(0 denotes the horizontal projection of x(0 passing through xo(xA(0) = xo)
then x(t) may be written as

(9) x(t) = x,,(0 • a(t)

where a(t) is a differentiable curve in G, a(0) = e (the identity element).
We have

Xt(x0) = li
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(10)

where

(11) XhZ(x0) = lim (
t->0

and

(12) XvZ(x0) = (lim (IIt)(a~l(t)-

Here

(13) lim (l/t)(a~i(t) — e) =

is an element of the Lie algebra of group G.

Xh^(x0) yields the covariant derivative of function £(u) by

where £ and £, are related through Equation (6). n{X) means the projection of
vector X onto base manifold B.

Let u{t) be a differentiable curve in B with tangent n(X) at u0 = TT(X0) and x(0
a curve obtained by

x(0 = x(«(0)

with tangent vector X at x(0) = x0. Transforming £(u) into

where a{u) e G is differentiable, we have

C(«(0) = fl(u(0)C(«(0).

Denoting a(«(0) = au{t)

0) = «*(0 • fl." '(0).
But as

X^{x{i)-a;\t)) = lim

and

[x(o-fl;

we have
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(15) [*»«x(0- fl.T'WXUo = lim (1 lt)au(O)(i(xh(t)) - £(x0)) = «,,(0)^(x0)
f ->0

or

(16) V,wC(t/0) = fl(iio)Vll(X)f(Mo)-

Equation (16) shows that operator Vs(Jf) has the required covariant properties.
Further

and using Equations (10) to (14)

(18) V,(X)f(«) = TT(Z)C(U) - A(X)C(u).

Choosing {Bjdu',---,8 Idu") as the basis of the tangent vector space at ueB
and {Au---,Ad} as the basis of the Lie algebra of group G we can rewrite (18) for

d

(19)
CM

This is the covariant derivative as introduced in Reference [6] with Bk(u) being
the "new" Yang-Mills fields.

3. Yang-Mills Fields and Tetrads

We shall now consider a specific case of bundle of frames in the four-
dimensional space-time manifold. Structure group G is then the homogeneous
Lorentz group, and representation space F is to be considered as a four-dimensional
real vector space with a basis {elte2,e3,eA}. Points of fibre manifold P are local
frames defined by four orthogonal vectors

d (*}

(20) Xljj^ k = 1,2,3,4.

Group G acts on vectors (20) in the same way as on vectors ek of the basis of
space F.

We consider a function

(21) t:P->F,

where local frame x e P is defined by X", and

(*) A pair of identical indices will always mean summation.
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(22) — £>„,

Function £, satisfies condition (4), and besides that it defines (together with a
cross-section in P) function £ (see Equation (6)).

(23) C(M) = hl(u)ek.

Functions hk(u) assign a local orthogonal frame to every point u of the
space-time manifold and are usually called tetrads in general relativity.

The question we want to answer is as follows: Suppose we have a connection
in the bundle of frames with co-ordinates T/v defined in the usual way [4]. What is
the relation between rf, and the Yang-Mills fields of Equation (19)?

Vector X^ = —• has its horizontal lift given by [4]
Ox

y*= — -rf
 YV 8

" dx" "v k3Xk'

Applied on function ^ this gives

(24) Xfcx) = r>Xek.
By definition of covariant derivative (14) with

n(X) = X,, (i.e., Xh = X*) and (23) we have

(24) Vxh
k
v(u)ek = TPX(u)ek.

At the same time

(26) - E Bl(u)Aq{h\{u)ek).

Aw are 4 x 4 matrices forming a basis of the Lie algebra of the homogeneous
Lorentz group. Normally, index q is replaced by a pair of indices i,j = 1,2,3,4
and

= - BJi

= - A41 =

*43 =

o o o r
o o o o
o o o o
1 0 0 0.

0 0 0 0'

o o o o
0 0 0 1
.0 0 10.

A2A. =: - A42 =

A,-> = — A,, =

0 0 0 0"
0 0 0 1

o o o o
0 1 0 0.

0 -1 0 0-
1 0 0 0
o o o o
o o o o
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^ 2 3 = -

ro o o o
0 0-10
0 1 0 0
o o o o

"31 ~ ~

ro o l o
o o o o
1 0 0 0

o o o o

Such choice also corresponds to Reference [6].

A direct calculation yields

(27) i E
i J = 1

& i K ) = BkJhJvek,

where h4v = h* and hJv = - /ij if j ^ 4.

Comparing (25) and (27)

• / ' v

which is identical to the relation obtained in Reference [6] under assumption that

r£v = F ^ . No such assumption is necessary when using the general approach

described above.
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