# FIBRE BUNDLES AND YANG-MILLS FIELDS 

P. K. SMRZ<br>(Received 1 June 1972)<br>Communicated by C. A. Hurst

## 1. Introduction

Since 1954, when Yang and Mills [7] presented their idea of isotopic gauge transformation, the method of introducing interactions into field theories by using general gauge invariance has been extensively studied.

A general formalism was presented by Utiyama [6]. Reference [6] also contains the first application of the formalism to the theory of gravitation. A more general approach to the Young-Mills formalism applied to general relativity was described by Kibble [3]. In a special case of interacting Dirac field the gauge invariance group can still be enlarged, leading to the possibility of describing short-range interactions together with gravitation and electromagnetism [5]. It is, therefore important to have a definite formulation of the common geometrical content of such theories.

Differential geometers who came into contact with Young-Mills theory realized that the theory is almost identical with the theory of connections in vector bundles. Certain aspects of such relation were discussed in references [1] and [2]. Correspondence between Yang-Mills theory and differential geometry of fibre bundles is explicitly studied in the next section in a form suitable for applications. In Section 3 the formalism is applied to the Utiyama's construction of gravitational interactions. A relation between space-time metric and Yang-Mills fields is derived without the assumption about vanishing torsion of the linear connection of bundle of frames. Use of this ad hoc assumption in Utiyama's paper was criticized by Kibble [3], and it was one of the reasons that lead him to consider a generalized approach.

## 2. Convariant Derivative

Consider a principal fibre bundle $P(B, G)$ (for basic definitions and theorems of the theory of fibre bundles see e.g., [4]) where $B$ is the base manifold of dimension $n$, and $G$ is the structure group. $\pi$ denotes the projection map

$$
\begin{equation*}
\pi: x \in P \rightarrow u=\pi(x) \in B \tag{1}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\pi(x \cdot a)=\pi(x) \text { for all } x \in P, a \in G \tag{2}
\end{equation*}
$$

Further consider a differentiable function

$$
\begin{equation*}
\xi: x \in P \rightarrow \xi(x) \in F, \tag{3}
\end{equation*}
$$

satisfying a condition

$$
\begin{equation*}
\xi(x \cdot a)=a^{-1} \xi(x), \quad a \in G \tag{4}
\end{equation*}
$$

$F$ is a (real or complex) representation space of $G$. Together with a cross-section

$$
\begin{equation*}
\chi: u \in B \rightarrow \chi(u) \in P, \pi(\chi(u))=u \tag{5}
\end{equation*}
$$

function $\xi$ defines an $F$-valued function $\zeta$ on manifold $B$ by

$$
\begin{equation*}
\zeta(u)=\xi(\chi(u)) \tag{6}
\end{equation*}
$$

In physics, $B$ is the space-time manifold and $\zeta(u)$ is the "old" field that is to interact with "new" Yang-Mills field. The latter fields are contained in a connection $\Gamma$ defined in $P(B, G)$.

Any tangent vector $X$ at point $x_{0} \in P$ can be written as

$$
X=X_{h}+X_{v}
$$

where $X_{h}$ and $X_{v}$ are the horizontal and vertical components of $X$ defined by connection $\Gamma$ in $P$. Applying $X$ to function $\xi(x)$

$$
\begin{equation*}
X \xi\left(x_{0}\right)=X_{h} \xi\left(x_{0}\right)+X_{v} \xi\left(x_{0}\right) \tag{7}
\end{equation*}
$$

The best way to see explicitly how this decomposition works is to consider a differentiable curve $x(t)$ with $x(0)=x_{0}$ and tangent $X$ at $x_{0}$. Then

$$
\begin{equation*}
X \xi\left(x_{0}\right)=\lim _{i \rightarrow 0}(1 / t)\left(\xi(x(t))-\xi\left(x_{0}\right)\right) \tag{8}
\end{equation*}
$$

If $x_{h}(t)$ denotes the horizontal projection of $x(t)$ passing through $x_{0}\left(x_{h}(0)=x_{0}\right)$ then $x(t)$ may be written as

$$
\begin{equation*}
x(t)=x_{h}(t) \cdot a(t) \tag{9}
\end{equation*}
$$

where $a(t)$ is a differentiable curve in $G, a(0)=e$ (the identity element).
We have

$$
X \xi\left(x_{0}\right)=\lim _{t \rightarrow 0}(1 / t)\left(\xi\left(x_{h}(t) a(t)\right)-\xi\left(x_{0}\right)\right)
$$

$$
\begin{align*}
= & \lim _{t \rightarrow 0}(1 / t)\left(a^{-1}(t) \cdot \xi\left(x_{n}(t)\right)-\xi\left(x_{h}(t)\right)\right. \\
& +\lim _{t \rightarrow 0}(1 / t)\left(\xi\left(x_{h}(t)\right)-\xi\left(x_{0}\right)\right)  \tag{10}\\
= & X_{v} \xi\left(x_{0}\right)+X_{h} \xi\left(x_{0}\right)
\end{align*}
$$

where

$$
\begin{equation*}
X_{h} \xi\left(x_{0}\right)=\lim _{t \rightarrow 0}(1 / t)\left(\xi\left(x_{h}(t)\right)-\xi\left(x_{0}\right)\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{v} \xi\left(x_{0}\right)=\left(\lim _{t \rightarrow 0}(1 / t)\left(a^{-1}(t)-e\right)\right) \cdot \xi\left(x_{0}\right) \tag{12}
\end{equation*}
$$

Here

$$
\begin{equation*}
\lim _{t \rightarrow 0}(1 / t)\left(a^{-1}(t)-e\right)=A(X) \tag{13}
\end{equation*}
$$

is an element of the Lie algebra of group $G$.
$X_{h} \xi\left(x_{0}\right)$ yields the covariant derivative of function $\zeta(u)$ by

$$
\begin{equation*}
\nabla_{\pi(X)} \zeta\left(u_{0}\right)=X_{h} \xi\left(x_{0}\right) \tag{14}
\end{equation*}
$$

where $\zeta$ and $\zeta$ are related through Equation (6). $\pi(X)$ means the projection of vector $X$ onto base manifold $B$.

Let $u(t)$ be a differentiable curve in $B$ with tangent $\pi(X)$ at $u_{0}=\pi\left(x_{0}\right)$ and $x(t)$ a curve obtained by

$$
x(t)=\chi(u(t))
$$

with tangent vector $X$ at $x(0)=x_{0}$. Transforming $\zeta(u)$ into

$$
\tilde{\zeta}(u)=a(u) \zeta(u)
$$

where $a(u) \in G$ is differentiable, we have

$$
\tilde{\zeta}(u(t))=a(u(t)) \zeta(u(t))
$$

Denoting $a(u(t))=a_{u}(t)$

$$
\tilde{\zeta}(u(t))=a_{u}(t) \xi(x(t))=\xi\left(x(t) \cdot a_{u}^{-1}(t)\right)
$$

But as

$$
X_{h} \xi\left(x(t) \cdot a_{u}^{-1}(t)\right)=\lim _{t \rightarrow 0}(1 / t)\left(\xi\left(\left[x(t) \cdot a_{u}^{-1}(t)\right]_{h}\right)-\xi\left(x_{0} a_{u}^{-1}(0)\right)\right)
$$

and

$$
\left[x(t) \cdot a_{u}^{-1}(t)\right]_{h}=x_{h}(t) \cdot a_{u}^{-1}(0)
$$

we have

$$
\begin{equation*}
\left[X_{h} \xi\left(x(t) \cdot a_{u}^{-1}(t)\right)\right]_{t=0}=\lim _{t \rightarrow 0}(1 / t) a_{u}(0)\left(\xi\left(x_{h}(t)\right)-\xi\left(x_{0}\right)\right)=a_{u}(0) X_{h} \xi\left(x_{0}\right) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{\pi(X)} \tilde{\zeta}\left(u_{0}\right)=a\left(u_{0}\right) \nabla_{\pi(X)} \zeta\left(u_{0}\right) \tag{16}
\end{equation*}
$$

Equation (16) shows that operator $\nabla_{\pi(X)}$ has the required covariant properties.
Further

$$
\begin{equation*}
X \xi(x(t))=\frac{d}{d t} \xi(x(t))=\frac{d}{d t} \zeta(u(t))=\pi(X) \zeta(u(t)) \tag{17}
\end{equation*}
$$

and using Equations (10) to (14)

$$
\begin{equation*}
\nabla_{\pi(X)} \zeta(u)=\pi(X) \zeta(u)-A(X) \zeta(u) \tag{18}
\end{equation*}
$$

Choosing $\left\{\partial / \partial u^{\prime}, \cdots, \partial / \partial u^{n}\right\}$ as the basis of the tangent vector space at $u \in B$ and $\left\{A_{1}, \cdots, A_{d}\right\}$ as the basis of the Lie algebra of group $G$ we can rewrite (18) for

$$
\begin{gather*}
\pi(X)=\frac{\partial}{\partial u^{k}} \text { as } \\
\nabla_{\pi(X)} \zeta(u)=\frac{\partial}{\partial u^{k}} \zeta(u)-\sum_{p=1}^{d} B_{k}^{p}(u) A_{p} \zeta(u) . \tag{19}
\end{gather*}
$$

This is the covariant derivative as introduced in Reference [6] with $B_{k}(u)$ being the "new'" Yang-Mills fields.

## 3. Yang-Mills Fields and Tetrads

We shall now consider a specific case of bundle of frames in the fourdimensional space-time manifold. Structure group $G$ is then the homogeneous Lorentz group, and representation space $F$ is to be considered as a four-dimensional real vector space with a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Points of fibre manifold $P$ are local frames defined by four orthogonal vectors

$$
\begin{equation*}
X_{k}^{\mu}{\frac{\partial}{}{ }^{(*)}}_{\partial u^{\mu}} \quad k=1,2,3,4 \tag{20}
\end{equation*}
$$

Group $G$ acts on vectors (20) in the same way as on vectors $e_{k}$ of the basis of space $F$.

We consider a function

$$
\begin{equation*}
\xi: P \rightarrow F, \quad \xi(x)=Y_{\mu}^{k} e_{k} \tag{21}
\end{equation*}
$$

where local frame $x \in P$ is defined by $X_{k}^{\mu}$, and
(*) A pair of identical indices will always mean summation.

$$
\begin{equation*}
X_{k}^{\mu} Y_{v}^{k}=\delta_{v}^{\mu}, \quad X_{i}^{\mu} Y_{\mu}^{k}=\delta_{i}^{k} . \tag{22}
\end{equation*}
$$

Function $\xi$ satisfies condition (4), and besides that it defines (together with a cross-section in $P$ ) function $\zeta$ (see Equation (6)).

$$
\begin{equation*}
\zeta(u)=h_{\mu}^{k}(u) e_{k} . \tag{23}
\end{equation*}
$$

Functions $h_{\mu}^{k}(u)$ assign a local orthogonal frame to every point $u$ of the space-time manifold and are usually called tetrads in general relativity.

The question we want to answer is as follows: Suppose we have a connection in the bundle of frames with co-ordinates $\Gamma_{\mu \nu}^{p}$ defined in the usual way [4]. What is the relation between $\Gamma_{\mu \nu}^{\rho}$ and the Yang-Mills fields of Equation (19)?

Vector $X_{\mu}=\frac{\partial}{\partial_{x}^{\mu}}$ has its horizontal lift given by [4]

$$
X_{\mu}^{*}=\frac{\partial}{\partial x^{\mu}}-\Gamma_{\mu v}^{f} X_{k}^{v} \frac{\partial}{\partial X_{k}} .
$$

Applied on function $\xi$ this gives

$$
\begin{equation*}
X_{\mu}^{*} \xi(x)=\Gamma_{\mu \nu}^{\rho} Y_{k}^{k} e_{k} . \tag{24}
\end{equation*}
$$

By definition of covariant derivative (14) with

$$
\begin{gathered}
\pi(X)=X_{\mu}\left(\text { i.e., } X_{h}=X^{*}\right) \text { and (23) we have } \\
\nabla_{X} h_{v}^{k}(u) e_{k}=\Gamma_{\mu \nu}^{\rho} h_{\rho}^{k}(u) e_{k} .
\end{gathered}
$$

At the same time

$$
\begin{equation*}
\nabla_{X} h_{v}^{k}(u) e_{k}=\frac{\partial h_{v}^{k}(u)}{\partial u^{\mu}} \cdot e_{k}-\sum_{q=1}^{6} B_{\mu}^{q}(u) A_{q}\left(h_{v}^{k}(u) e_{k}\right) \tag{26}
\end{equation*}
$$

$\mathrm{A}_{u}$ are $4 \times 4$ matrices forming a basis of the Lie algebra of the homogeneous Lorentz group. Normally, index $q$ is replaced by a pair of indices $i, j=1,2,3,4$ and

$$
\begin{aligned}
& B_{\mu}^{i j}=-B_{\mu}^{j i}, \\
& A_{14}=-A_{41}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& A_{34}=-A_{43}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad A_{24}=-A_{42}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
A_{23}=-A_{32}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad A_{31}=-A_{13}=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Such choice also corresponds to Reference [6].
A direct calculation yields

$$
\begin{equation*}
\frac{1}{2} \sum_{i, j=1}^{4} B_{\mu}^{i j} A_{i j}\left(h_{v}^{k}(u) e_{k}\right)=B_{\mu}^{k j} h_{j v} e_{k} \tag{27}
\end{equation*}
$$

where $h_{4 v}=h_{v}^{4}$ and $h_{j v}=-h_{v}^{j}$ if $j \neq 4$.
Comparing (25) and (27)

$$
\Gamma_{\mu \nu}^{\rho} h_{\rho}^{k}=\frac{\partial h_{v}^{k}}{\partial u^{\mu}}-B_{\mu}^{k j} h_{j v}
$$

which is identical to the relation obtained in Reference [6] under assumption that $\Gamma_{\mu \nu}^{\rho}=\Gamma_{v \mu}^{\rho}$. No such assumption is necessary when using the general approach described above.

## References

[1] R. Hermann, Fourier Analysis on Groups and Partial Wave Analysis (W. A. Benjamin, 1968).
[2] R. Herman, Vector Bundles in Mathematical Physics (W. A. Benjamin, 1970).
[3] T. W. B. Kibble, 'Lorentz invariance and the gravitational field', J. Math. Phys. 2(1961), 212-221.
[4] S. Kobayashi and K. Nomizu, Fondations of Differentialfi Geometry, Vol. I (Interscience Pub., 1963).
[5] P. Smrz, 'Gauge invariance of the Dirac equation', J. Aust. Math. Soc., 15 (1973), 117-122.
[6] R. Utiyama, 'Invariant theoretical interpretation of interaction,' Phys. Rev. 101 (1956), 1597-1607.
[7] C. N. Yang and R. N. Mills, 'Conservation of isotopic spin and isotopic gauge invariance', Phys. Rev. 96 (1954), 191-195.

The University of Newcastle
N.S.W. 2308, Australia

