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GENERATOR CONDITIONS ON THE FITTING
SUBGROUP OF A POLYCYCLIC GROUP

by J. F. HUMPHREYS
(Received 30th July 1975)

In an earlier paper (3), polycyclic groups in which every subgroup can
be generated by d, or fewer, elements were studied. In this paper we
investigate the structure of those polycyclic groups G such that every
abelian normal subgroup of F(G), the Fitting subgroup of G, can be
generated by at most d elements.

In Section 1, we prove the existence of a function / such that if G is a
finitely generated nilpotent group in which every abelian normal subgroup
can be generated by at most d elements, then every subgroup of G can be
generated by f(d), or fewer, elements. It is shown in Section 2 that for G a
polycyclic group in which F(G) can be generated by at most d elements,
GIF(G) may be regarded as a subgroup of a direct product of linear groups
of degree at most d. Section 3 contains the results on those polycyclic
groups G such that every abelian normal subgroup of F(G) can be
generated by at most d elements.

1.

We first introduce some notation. Given a positive integer d, as in (3)
we denote by 9Hd the class of soluble groups G such that every subgroup of
G can be generated by at most d elements. Given a group G, we write
d(G) = d to mean that G has d elements in a minimal generating set and
dn(G)^d to mean that every abelian normal subgroup of G can be
generated by d, or fewer, elements. The purpose of this section is to prove
the following result.

Theorem 1. Let G be a finitely generated nilpotent group with
d. Then G G #/«o where f(d) = 3d2 + [d2l4] and [x] denotes the integer part
of x.

Before proving Theorem 1, we need several lemmas.

Lemma 1. Let A be an abelian group with d(A) = d. Let B be the
torsion subgroup of A. Define

G = {0 G Aut A\bO = b for all b&B and ad = a mod B for all a G A}.
Then G G %{dim.
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Proof. Since G is an abelian group, we only need show that G can be
generated by at most [d2l4] elements. Let {xu ... ,xr,yu ... ,ys} be a
generating set for A chosen such that r + s = d and {xu ..., xr} generate B.
For 1 =si =£ r, U / « i , define a map fy:A-*A by

xk0,j = xk, yfia = yjXi, yiOa = y,,

where l=s/c=sr, 1 =£ / =s s and l¥ j . Then 0;, is an automorphism of A in G
and it is clear that any automorphism of A in G can be written as a product
of suitable powers of the da (1 « / ^ r, 1 s= j « s). Thus G can be generated
by rs = r(d — r) elements. The result follows since r(d - r) s£ [d2l4].

Lemma 2. Let G be a finitely generated nilpotent group, A be a
maximal abelian normal subgroup of G and T be the torsion subgroup of A.
Let P be a Sylow p-subgroup of T and C be the centralizer of P in G. Then
G/C is a finite p-group.

Proof. Since G is polycyclic, P is a finite group and so G/C is a finite
nilpotent group. Suppose G\C is not a p-group so that there exists a prime
q different from p and an element g of G such that gg C but g" G C. Let
H = (g, P) so that P is a normal subgroup of H with cyclic factor group
and g" G Z(H). Thus Hl(g") is a finite nilpotent group with Sylow q-
subgroup of order q. Hence, for any x £ P, there exists an integer n such
that

xg = xg"".

If g has infinite order, this equation can only hold if n = 0 in which case
g e C. Thus we may suppose that g has finite order so that if is a finite
nilpotent group. It then follows that H/CH(P) is a p-group and so there
exists an integer n such that gp" G. CH(P)S^C. Since g"EC, we deduce
that g &C contrary to assumption. Thus G\C is a p-group.

Lemma 3. Let G be a finitely generated nilpotent group and A be a free
abelian normal subgroup of G of rank n. Then

GICo(A) G af|n(n-,).

Proof. Write B = Z(G) H A so that B is a normal subgroup of G and
B>1. We first prove that A\B is torsion-free. For, if not, let C\B be the
torsion subgroup of AlB. Thus, given g G C, there exists an integer m such
that gm G B. Since C is a normal subgroup of G, given any x G G there
exists an element z of C such that gx = gz. Then

( g T = g
mzm = gm,

since gm G B «£ Z(G). Thus z = 1 as required.
Repeating this argument and using the fact that A has finite rank we
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obtain a series

l = Bo«B = Bi=s- • -^Br = A,

with Bi a free abelian normal subgroup of G, AlB, torsion-free and
BJBi-i =s Z(GIBi-i) (1 =£ i s£ r). Now taking a generating set of A based on
this series, we see that GICG(A) is isomorphic to a subgroup of STL(n, Z),
the group of lower, unitriangular n x n matrices with integer entries.
However, there is a series for STL(n, Z), obtained by refining its lower
central series, which is a series of length \n(n - 1) in which each factor is
cyclic. Thus G G ̂ n<n-i) as required.

Proof of Theorem 1. Let A be a maximal abelian normal subgroup of G
so that A = Co(A) by Lemma 2.19.1 of (5). Let T be the torsion subgroup
of A and suppose T = P, x • • • x Pr where i>, is a Sylow p,-subgroup of T.
Lemma 2 implies that GlC(Pi) is a p,-group. Since d(Pf) =£ d(T) =s d, a
result of P. Hall (see (5, Lemma 7.44)) gives that every subgroup of
GIC(Pj) can be generated by at most \d(5d- 1) elements. Thus since

r

=n c(Pi)

we have that GIC(T) is a subgroup of a direct product of p,-groups and so
G/C(T) 6 affod-,,._

Now writing G = G/T and A = A/T, Lemma 3 gives that G/C(A)G
^d(d-i). Defining K by KIT = C(A), we have therefore that GIKHCG
%dQd-n where C = C(T). It follows from the definition of K that KC\C
consists of those elements g of G such that bs = b for all b &T and
a8 = a mod T for all a G A. Thus since A = CG(A) and A ^ K H C , Lemma
1 implies that K D CM £ ^V/4]. It now follows that G G af/(<o where

f(d) = d(3d - 1) + [d2/4] + d = 3d2 + [d2l4].

Example. Let n be a positive integer and p\,..., pn be n distinct odd
primes. Let C, = Oc) be cyclic of order p, ( 1 ^ / ^ n ) and C =
C, x C2x • • • x Cn. For U i ^ n , define a map 0,: C-> C by

JC,-0J = xr1; xfii = Xj for jV i.

Then 0, is an automorphism of C of order 2. Let H = {0\,..., dn) so that H
is elementary abelian of order 2" and define G to be the semi-direct
product of C by H. It is clear from construction that C is the largest
normal nilpotent subgroup of G.

Thus G is an example of a finite supersoluble group with every abelian
normal subgroup cyclic but with a subgroup H which cannot be generated
by fewer than n elements. This example shows, therefore, that the assump-
tion of nilpotency in Theorem 1 is of crucial importance.
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2.

Following Robinson (5; Part I, p. 66) a normal series of a polycyclic
group G will be called a weak chief series if each finite factor HIK is a
minimal normal subgroup of GIK while each infinite factor is a rationally
irreducible G-module, that is each such factor has no non-trivial G-
admissible subgroups of infinite index. Our first result in this section is an
analogue of a well-known result for finite groups.

Lemma 4. Let G be a polycyclic group and

1 = Go =£ G\ =£ • • • « Gr = G

be a weak chief series for G. Then
r

F(G) = PI G

where G denotes the centralizer of G,/G,-i in G (1 «£ i «s r).
Proof. Write D = D'=i G and define D, = £> n G, (0 =£ j =s r). Since each

C, is a normal subgroup of G, D is a normal subgroup of G and

[D,, D] ^ [G,, C ] H D « G,_, n D = A-i.

Thus D has a central series and so is nilpotent. Hence D *£ F(G).
Conversely, we will show that F(G) =£ G for 1 «s i «s r. Since

F(G)G,-i/G,-i is a normal nilpotent subgroup of G/G,-i, we will suppose for
convenience of notation that i = 1. Since Gi is an abelian normal subgroup
of G, d =£ F(G) and so defining Zi to be Gi D Z(F(G)) we have that Z\ > 1.
If Gi is a finite group, minimality of G\ forces Z\ to equal G\ so that F(G)
centralizes G\ as required. Thus we may suppose that G\ is free abelian of
rank s, say and that Z\ also has rank s. By the fundamental theorem of
finitely generated abelian groups, there exist non-zero integers di,...,d,
and elements Xi,...,xs of G such that {x\,...,x,} generate G\ and
{xi\ ..., xd

s'} generate Zx. For any g G F(G), define elements w,(g) of Gi by

Then, since xf!(= Z(F(G)), (xf>)8 = xf'. However

(x?08 = (xf)"' = xf'(w,(g))d'.
Thus (w,(g))di = 1 which means that wi(g) = 1 and so g centralizes each x,
as required.

The main result of this section is the following.

Theorem 2. Let G be a polycyclic group and suppose that F(G) can be
generated by d elements. Then GIF(G) is isomorphic to a subgroup of a
direct product Gi x • • • x G,, where d is either an irreducible subgroup of
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GL(d,,p,) for some prime p, or a rationally irreducible subgroup of
GL(d,, Z) where d,i =£ d (1=£ i =£ r).

Proof. By a result of Hirsch, <£(G), the Frattini subgroup of G, is
nilpotent (5; Part 2, p. 196). Refine the series

1 =£ <KG)« F (G)« G

to a weak chief series and suppose that the terms between <f>(G) and F(G)
in this refinement are

4>{G) = Go« Gi« • • • « G, = F(G).

Since F(G)l<f>(F(G)) is abelian and <f>(F(G))*s<f>(G), F{G}l<f>(G) is abelian
with at most d generators. Defining C, to be the centralizer of G,/Gj-i in G
(1 «£ i as f) and D = n!=i C,-, we only need show that D = F(G) to complete
the proof of the theorem.

A theorem of P. Hall (2; Theorem 2) gives that F(G)l<j>(G) =
F(GI<f>{G)) and so we may suppose without loss of generality that <KG) =
1. Lemma 4 now implies that D ^ F(G). If D^ F(G), refine the series

to a weak chief series of G and let Gt+i be the first term above F(G) in this
refinement. It is then clear that the centralizer of each factor in this weak
chief series will contain G,+i contrary to Lemma 4. Thus D = F(G) as
required.

Remark. The theorem of Hall referred to in the proof of Theorem 2
applies to a much wider class of groups than polycyclic. It is perhaps of
interest to point out that Hall's theorem has a relatively easy proof for
polycyclic groups. This proof uses similar methods to the standard proof
for finite groups together with a theorem of Hirsch (5; Theorem 10.51) that
a non-nilpotent polycyclic group has a finite epimorphic image which is
non-nilpotent.

3.

In this section we prove two results.

Theorem 3. There exists a function g such that if G is a polycyclic
group with dn(F(G))^ d then the Fitting length of G is at most g(d).

Proof. Frick and Newman prove in (1) that a soluble linear group of
degree d has Fitting length at most

s(d) = 4 + 2r(d) + [(Id - l)/8 • 3r(d>],

where r(d) = [log3 (2d - l)/4]. The result follows, using Theorems 1 and 2,
taking g(d) = s(f(d))+ 1.
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We need some extra notation to state our second result. Let G be a
polycyclic group and

1 = Go « • • • s= Gn = G

be a weak chief series for G which we denote by <€. Denote by r<g(G) the
maximum of the integers d(G,/G,-i) (1 *£ i =s n) and let r(G) be the maxi-
mum of r<e(G) as % ranges over all weak chief series for G. Our final result
is

Theorem 4. Let Gbea polycyclic group with dn(FCG))« d. Then r(G) =s
= 3d2+[d2l4].

Proof. Theorem 1 implies that any weak chief factor below F(G) can
be generated by at most f(d) elements. By Theorem 2, GIF(G) is isomor-
phic to a subgroup of a direct product G\ x • • • x G, where G, is either an
irreducible subgroup of GL(d,-, pi) for some prime pt or a rationally ir-
reducible subgroup of GL(d,, Z) where di^f(d) ( l ^ / « r ) . If G, is a
rationally irreducible subgroup of GL(rf,-, Z), then G is irreducible regarded
as a subgroup of GL(d,, (?) (see remarks on pages 80-81 of Part I of (5)). A
theorem of Huppert (4, Satz 12) states that a finite soluble linear group G
of degree n which is completely reducible over an algebraically closed field
has r(G)^n. In fact Huppert's result extends to polycyclic linear groups
provided one uses results of Suprunenko (6) to handle the case where the
group is primitive. Thus r(G)=£ f(d) as required.

Remark. There is no upper bound in general for the derived length of
a polycyclic group G with dn(F(G))^ d. Theorem 1 of (3) shows that for
any positive integer n there is a finite p-group K(n) of derived length n all
of whose subgroups can be generated by 3, or fewer, elements.
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