# GENERATOR CONDITIONS ON THE FITTING SUBGROUP OF A POLYCYCLIC GROUP 

by J. F. HUMPHREYS

(Received 30th July 1975)

In an earlier paper (3), polycyclic groups in which every subgroup can be generated by $d$, or fewer, elements were studied. In this paper we investigate the structure of those polycyclic groups $G$ such that every abelian normal subgroup of $F(G)$, the Fitting subgroup of $G$, can be generated by at most $d$ elements.

In Section 1, we prove the existence of a function $f$ such that if $G$ is a finitely generated nilpotent group in which every abelian normal subgroup can be generated by at most $d$ elements, then every subgroup of $G$ can be generated by $f(d)$, or fewer, elements. It is shown in Section 2 that for $G$ a polycyclic group in which $F(G)$ can be generated by at most $d$ elements, $G / F(G)$ may be regarded as a subgroup of a direct product of linear groups of degree at most $d$. Section 3 contains the results on those polycyclic groups $G$ such that every abelian normal subgroup of $F(G)$ can be generated by at most $d$ elements.

## 1.

We first introduce some notation. Given a positive integer $d$, as in (3) we denote by $\mathscr{X}_{d}$ the class of soluble groups $G$ such that every subgroup of $G$ can be generated by at most $d$ elements. Given a group $G$, we write $d(G)=d$ to mean that $G$ has $d$ elements in a minimal generating set and $d_{n}(G) \leqslant d$ to mean that every abelian normal subgroup of $G$ can be generated by $d$, or fewer, elements. The purpose of this section is to prove the following result.

Theorem 1. Let $G$ be a finitely generated nilpotent group with $d_{n}(G) \leqslant$ d. Then $G \in \mathscr{X}_{f(d)}$ where $f(d)=3 d^{2}+\left[d^{2} / 4\right]$ and $[x]$ denotes the integer part of $x$.

Before proving Theorem 1, we need several lemmas.
Lemma 1. Let $A$ be an abelian group with $d(A)=d$. Let $B$ be the torsion subgroup of $A$. Define
$G=\{\theta \in$ Aut $A \mid b \theta=b$ for all $b \in B$ and $a \theta \equiv a \bmod B \quad$ for all $a \in A\}$. Then $G \in \mathscr{X}_{\left[d^{2} / 4\right]}$.

20/4-A

Proof. Since $G$ is an abelian group, we only need show that $G$ can be generated by at most [ $\left.d^{2} / 4\right]$ elements. Let $\left\{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right\}$ be a generating set for $A$ chosen such that $r+s=d$ and $\left\{x_{1}, \ldots, x_{r}\right\}$ generate $B$. For $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s$, define a map $\theta_{i j}: A \rightarrow A$ by

$$
x_{k} \theta_{i j}=x_{k}, \quad y_{i} \theta_{i j}=y_{j} x_{i}, \quad y_{i} \theta_{i j}=y_{l},
$$

where $1 \leqslant k \leqslant r, 1 \leqslant l \leqslant s$ and $l \neq j$. Then $\theta_{i j}$ is an automorphism of $A$ in $G$ and it is clear that any automorphism of $A$ in $G$ can be written as a product of suitable powers of the $\theta_{i j}(1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s)$. Thus $G$ can be generated by $r s=r(d-r)$ elements. The result follows since $r(d-r) \leqslant\left[d^{2} / 4\right]$.

Lemma 2. Let $G$ be a finitely generated nilpotent group, $A$ be a maximal abelian normal subgroup of $G$ and $T$ be the torsion subgroup of $A$. Let $P$ be a Sylow p-subgroup of $T$ and $C$ be the centralizer of $P$ in $G$. Then $G / C$ is a finite $p$-group.

Proof. Since $G$ is polycyclic, $P$ is a finite group and so $G / C$ is a finite nilpotent group. Suppose $G / C$ is not a $p$-group so that there exists a prime $q$ different from $p$ and an element $g$ of $G$ such that $g \notin C$ but $g^{a} \in C$. Let $H=\langle g, P\rangle$ so that $P$ is a normal subgroup of $H$ with cyclic factor group and $g^{q} \in Z(H)$. Thus $H /\left\langle g^{q}\right\rangle$ is a finite nilpotent group with Sylow $q$ subgroup of order $q$. Hence, for any $x \in P$, there exists an integer $n$ such that

$$
x^{g}=x g^{n q}
$$

If $g$ has infinite order, this equation can only hold if $n=0$ in which case $g \in C$. Thus we may suppose that $g$ has finite order so that $H$ is a finite nilpotent group. It then follows that $H / C_{H}(P)$ is a $p$-group and so there exists an integer $n$ such that $g^{p^{n}} \in C_{H}(P) \leqslant C$. Since $g^{q} \in C$, we deduce that $g \in C$ contrary to assumption. Thus $G / C$ is a $p$-group.

Lemma 3. Let $G$ be a finitely generated nilpotent group and A be a free abelian normal subgroup of $G$ of rank $n$. Then

$$
G / C_{G}(A) \in \mathscr{X}_{\frac{1}{2} n(n-1)} .
$$

Proof. Write $B=Z(G) \cap A$ so that $B$ is a normal subgroup of $G$ and $B>1$. We first prove that $A / B$ is torsion-free. For, if not, let $C / B$ be the torsion subgroup of $A / B$. Thus, given $g \in C$, there exists an integer $m$ such that $g^{m} \in B$. Since $C$ is a normal subgroup of $G$, given any $x \in G$ there exists an element $z$ of $C$ such that $g^{x}=g z$. Then

$$
\left(g^{m}\right)^{x}=g^{m} z^{m}=g^{m}
$$

since $g^{m} \in B \leqslant Z(G)$. Thus $z=1$ as required.
Repeating this argument and using the fact that $A$ has finite rank we
obtain a series

$$
1=B_{0} \leqslant B=B_{1} \leqslant \cdots \leqslant B_{r}=A
$$

with $B_{i}$ a free abelian normal subgroup of $G, A / B_{i}$ torsion-free and $B_{i} / B_{i-1} \leqslant Z\left(G / B_{i-1}\right)(1 \leqslant i \leqslant r)$. Now taking a generating set of $A$ based on this series, we see that $G / C_{G}(A)$ is isomorphic to a subgroup of $\operatorname{STL}(n, Z)$, the group of lower unitriangular $n \times n$ matrices with integer entries. However, there is a series for $\operatorname{STL}(n, Z)$, obtained by refining its lower central series, which is a series of length $\frac{1}{2} n(n-1)$ in which each factor is cyclic. Thus $G \in \mathscr{X}_{12 n(n-1)}$ as required.

Proof of Theorem 1. Let $A$ be a maximal abelian normal subgroup of $G$ so that $A=C_{G}(A)$ by Lemma 2.19 .1 of (5). Let $T$ be the torsion subgroup of $A$ and suppose $T=P_{1} \times \cdots \times P_{r}$ where $P_{i}$ is a Sylow $p_{i}$-subgroup of $T$. Lemma 2 implies that $G / C\left(P_{i}\right)$ is a $p_{i}$-group. Since $d\left(P_{i}\right) \leqslant d(T) \leqslant d$, a result of $P$. Hall (see (5, Lemma 7.44)) gives that every subgroup of $G / C\left(P_{i}\right)$ can be generated by at most $\frac{1}{2} d(5 d-1)$ elements. Thus since

$$
C(T)=\bigcap_{i=1}^{r} C\left(P_{i}\right)
$$

we have that $G / C(T)$ is a subgroup of a direct product of $p_{i}$-groups and so $G / C(T) \in \mathscr{X}_{\frac{1}{2}(S d-1)}$.

Now writing $\bar{G}=G / T$ and $\bar{A}=A / T$, Lemma 3 gives that $\bar{G} / C(\bar{A}) \in$ $\mathscr{X}_{1_{1 d(d-1)}}$. Defining $K$ by $K / T=C(\bar{A})$, we have therefore that $G / K \cap C \in$ $\mathscr{X}_{d(3 d-1)}$ where $C=C(T)$. It follows from the definition of $K$ that $K \cap C$ consists of those elements $g$ of $G$ such that $b^{g}=b$ for all $b \in T$ and $a^{g} \equiv a \bmod T$ for all $a \in A$. Thus since $A=C_{G}(A)$ and $A \leqslant K \cap C$, Lemma 1 implies that $K \cap C / A \in \mathscr{X}_{\left[d^{2} / 4\right] \text {. }}$. It now follows that $G \in \mathscr{X}_{f(d)}$ where

$$
f(d)=d(3 d-1)+\left[d^{2} / 4\right]+d=3 d^{2}+\left[d^{2} / 4\right]
$$

Example. Let $n$ be a positive integer and $p_{1}, \ldots, p_{n}$ be $n$ distinct odd primes. Let $C_{i}=\left\langle x_{i}\right\rangle$ be cyclic of order $p_{i}(1 \leqslant i \leqslant n)$ and $C=$ $C_{1} \times C_{2} \times \cdots \times C_{n}$. For $1 \leqslant i \leqslant n$, define a map $\theta_{i}: C \rightarrow C$ by

$$
x_{i} \theta_{i}=x_{i}^{-1} ; \quad x_{j} \theta_{i}=x_{i} \quad \text { for } j \neq i .
$$

Then $\theta_{i}$ is an automorphism of $C$ of order 2. Let $H=\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$ so that $H$ is elementary abelian of order $2^{n}$ and define $G$ to be the semi-direct product of $C$ by $H$. It is clear from construction that $C$ is the largest normal nilpotent subgroup of $G$.

Thus $G$ is an example of a finite supersoluble group with every abelian normal subgroup cyclic but with a subgroup $H$ which cannot be generated by fewer than $n$ elements. This example shows, therefore, that the assumption of nilpotency in Theorem 1 is of crucial importance.

## 2.

Following Robinson (5; Part I, p. 66) a normal series of a polycyclic group $G$ will be called a weak chief series if each finite factor $H / K$ is a minimal normal subgroup of $G / K$ while each infinite factor is a rationally irreducible $G$-module, that is each such factor has no non-trivial $G$ admissible subgroups of infinite index. Our first result in this section is an analogue of a well-known result for finite groups.

Lemma 4. Let $G$ be a polycyclic group and

$$
1=G_{0} \leqslant G_{1} \leqslant \cdots \leqslant G_{r}=G
$$

be a weak chief series for $G$. Then

$$
F(G)=\bigcap_{i=1}^{r} C_{i}
$$

where $C_{i}$ denotes the centralizer of $G_{i} / G_{i-1}$ in $G(1 \leqslant i \leqslant r)$.
Proof. Write $D=\cap_{i=1}^{r} C_{i}$ and define $D_{j}=D \cap G_{i}(0 \leqslant j \leqslant r)$. Since each $C_{i}$ is a normal subgroup of $G, D$ is a normal subgroup of $G$ and

$$
\left[D_{i}, D\right] \leqslant\left[G_{i}, C_{i}\right] \cap D \leqslant G_{i-1} \cap D=D_{i-1}
$$

Thus $D$ has a central series and so is nilpotent. Hence $D \leqslant F(G)$.
Conversely, we will show that $F(G) \leqslant C_{i}$ for $1 \leqslant i \leqslant r$. Since $F(G) G_{i-1} / G_{i-1}$ is a normal nilpotent subgroup of $G / G_{i-1}$, we will suppose for convenience of notation that $i=1$. Since $G_{1}$ is an abelian normal subgroup of $G, G_{1} \leqslant F(G)$ and so defining $Z_{1}$ to be $G_{1} \cap Z(F(G))$ we have that $Z_{1}>1$. If $G_{1}$ is a finite group, minimality of $G_{1}$ forces $Z_{1}$ to equal $G_{1}$ so that $F(G)$ centralizes $G_{1}$ as required. Thus we may suppose that $G_{1}$ is free abelian of rank $s$, say and that $Z_{1}$ also has rank $s$. By the fundamental theorem of finitely generated abelian groups, there exist non-zero integers $d_{1}, \ldots, d_{s}$ and elements $x_{1}, \ldots, x_{s}$ of $G$ such that $\left\{x_{1}, \ldots, x_{s}\right\}$ generate $G_{1}$ and $\left\{x_{1}^{d_{1}}, \ldots, x_{s}^{d_{s}}\right\}$ generate $Z_{1}$. For any $g \in F(G)$, define elements $w_{i}(g)$ of $G_{1}$ by

$$
x_{i}^{g}=x_{i} w_{i}(g) ; \quad(i \leqslant i \leqslant s)
$$

Then, since $x_{i}^{d_{i}} \in Z(F(G)),\left(x_{i}^{d_{i}}\right)^{g}=x_{i}^{d_{i}}$. However

$$
\left(x_{i}^{d_{i}}\right)^{g}=\left(x_{i}^{g}\right)^{d_{i}}=x_{i}^{d_{i}}\left(w_{i}(g)\right)^{d_{i}}
$$

Thus $\left(w_{i}(g)\right)^{d_{i}}=1$ which means that $w_{i}(g)=1$ and so $g$ centralizes each $x_{i}$ as required.

The main result of this section is the following.
Theorem 2. Let $G$ be a polycyclic group and suppose that $F(G)$ can be generated by d elements. Then $G / F(G)$ is isomorphic to a subgroup of a direct product $G_{1} \times \cdots \times G_{r}$, where $G_{i}$ is either an irreducible subgroup of
$\mathrm{GL}\left(d_{i}, p_{i}\right)$ for some prime $p_{i}$ or a rationally irreducible subgroup of $\mathrm{GL}\left(d_{i}, Z\right)$ where $d_{i} \leqslant d \quad(1 \leqslant i \leqslant r)$.

Proof. By a result of Hirsch, $\phi(G)$, the Frattini subgroup of $G$, is nilpotent (5; Part 2, p. 196). Refine the series

$$
1 \leqslant \phi(G) \leqslant F(G) \leqslant G
$$

to a weak chief series and suppose that the terms between $\phi(G)$ and $F(G)$ in this refinement are

$$
\phi(G)=G_{0} \leqslant G_{1} \leqslant \cdots \leqslant G_{t}=F(G) .
$$

Since $F(G) / \phi(F(G))$ is abelian and $\phi(F(G)) \leqslant \phi(G), F(G) / \phi(G)$ is abelian with at most $d$ generators. Defining $C_{i}$ to be the centralizer of $G_{i} / G_{i-1}$ in $G$ $(1 \leqslant i \leqslant t)$ and $D=\cap_{i=1}^{i} C_{i}$, we only need show that $D=F(G)$ to complete the proof of the theorem.

A theorem of $P$. Hall (2; Theorem 2) gives that $F(G) / \phi(G)=$ $F(G / \phi(G))$ and so we may suppose without loss of generality that $\phi(G)=$ 1. Lemma 4 now implies that $D \geqslant F(G)$. If $D \neq F(G)$, refine the series

$$
1=G_{0} \leqslant G_{1} \leqslant \cdots \leqslant G_{t}=F(G)<D \leqslant \cdots \leqslant G
$$

to a weak chief series of $G$ and let $G_{t+1}$ be the first term above $F(G)$ in this refinement. It is then clear that the centralizer of each factor in this weak chief series will contain $G_{t+1}$ contrary to Lemma 4. Thus $D=F(G)$ as required.

Remark. The theorem of Hall referred to in the proof of Theorem 2 applies to a much wider class of groups than polycyclic. It is perhaps of interest to point out that Hall's theorem has a relatively easy proof for polycyclic groups. This proof uses similar methods to the standard proof for finite groups together with a theorem of Hirsch (5; Theorem 10.51) that a non-nilpotent polycyclic group has a finite epimorphic image which is non-nilpotent.

## 3.

In this section we prove two results.
Theorem 3. There exists a function $g$ such that if $G$ is a polycyclic group with $d_{n}(F(G)) \leqslant d$ then the Fitting length of $G$ is at most $g(d)$.

Proof. Frick and Newman prove in (1) that a soluble linear group of degree $d$ has Fitting length at most

$$
s(d)=4+2 r(d)+\left[(2 d-1) / 8 \cdot 3^{r(d)}\right]
$$

where $r(d)=\left[\log _{3}(2 d-1) / 4\right]$. The result follows, using Theorems 1 and 2 , taking $g(d)=s(f(d))+1$.

We need some extra notation to state our second result. Let $G$ be a polycyclic group and

$$
1=G_{0} \leqslant \cdots \leqslant G_{n}=G
$$

be a weak chief series for $G$ which we denote by $\mathscr{C}$. Denote by $r_{\mathscr{C}}(G)$ the maximum of the integers $d\left(G_{i} / G_{i-1}\right)(1 \leqslant i \leqslant n)$ and let $r(G)$ be the maximum of $r_{\mathscr{G}}(G)$ as $\mathscr{C}$ ranges over all weak chief series $\mathbf{f}$ or $G$. Our final result is

Theorem 4. Let $G$ be a polycyclic group with $d_{n}(F(G)) \leqslant d$. Then $r(G) \leqslant$ $f(d)=3 d^{2}+\left[d^{2} / 4\right]$.

Proof. Theorem 1 implies that any weak chief factor below $F(G)$ can be generated by at most $f(d)$ elements. By Theorem $2, G / F(G)$ is isomorphic to a subgroup of a direct product $G_{1} \times \cdots \times G_{r}$ where $G_{i}$ is either an irreducible subgroup of $G L\left(d_{i}, p_{i}\right)$ for some prime $p_{i}$ or a rationally irreducible subgroup of $\mathrm{GL}\left(d_{i}, \boldsymbol{Z}\right)$ where $d_{i} \leqslant f(d)(1 \leqslant i \leqslant r)$. If $G_{i}$ is a rationally irreducible subgroup of $G L\left(d_{i}, Z\right)$, then $G$ is irreducible regarded as a subgroup of $G L\left(d_{i}, Q\right)$ (see remarks on pages $80-81$ of Part I of (5)). A theorem of Huppert (4, Satz 12) states that a finite soluble linear group $G$ of degree $n$ which is completely reducible over an algebraically closed field has $r(G) \leqslant n$. In fact Huppert's result extends to polycyclic linear groups provided one uses results of Suprunenko (6) to handle the case where the group is primitive. Thus $r(G) \leqslant f(d)$ as required.

Remark. There is no upper bound in general for the derived length of a polycyclic group $G$ with $d_{n}(F(G)) \leqslant d$. Theorem 1 of (3) shows that for any positive integer $n$ there is a finite $p$-group $K(n)$ of derived length $n$ all of whose subgroups can be generated by 3 , or fewer, elements.

## REFERENCES

(1) M. Frick and M. F. Newman, Soluble linear groups, Bull. Austral. Math. Soc. 6 (1972), 31-44.
(2) P. Hall, The Frattini subgroups of finitely generated groups, Proc. London Math. Soc. 11 (1961), 327-352.
(3) J. F. Humphreys and J. J. McCutcheon, A bound for the derived length of certain polycyclic groups, J. London Math. Soc. 3 (1971), 463-468.
(4) B. HUPPERT, Lineare auflösbare Gruppen, Math. Z. 67 (1957), 479-518.
(5) D. J. S. Robinson, Finiteness conditions and generalised soluble groups (Springer-Verlag, Berlin, 1972).
(6) D. A. SUPRUNENKo, Soluble and nilpotent linear groups, Transl. Math. Monographs Vol. 9. Amer. Math. Soc., Providence 1963.

Department of Pure Mathematics, The University, Liverpool.

