PRIMITIVE GENERATORS FOR ALGEBRAS

STANLEY O. KOCHMAN

1. Introduction. Let H be a graded commutative algebra with a nice set of algebra generators. Let H also be a comodule over a Hopf algebra A. In Section 2 we give conditions under which certain of these generators of H can be rechosen to be primitive. In addition we give explicit formulas expressing these primitive generators in terms of the original set of generators.

In Section 3 we apply the theory of Section 2 to the $\bmod p$ homology of the Thom spectra $M O, M U$ and $M S p$. In particular we give two explicit descriptions of the image of the Hurewicz homomorphism for $M O$. One of these makes explicit the recursive computation of E . Brown and F. Peterson [1].

In Section 4 we give a variation of the theory of Section 2 which computes primitive generators of certain Hopf algebras. This theory is applied to study the primitive elements of $H^{*}(B U)$ and $H_{*}\left(S O ; Z_{2}\right)$.

Other applications of the theory of Section 2 will appear in [3] and [4].
2. A change of generators theorem. Let $H=R\left[Y_{1}, \ldots, Y_{n}, \ldots\right]$ be a graded polynomial algebra which is a comodule over a Hopf algebra A. It may happen that $G=R\left\{1=Y_{0}, \ldots, Y_{n}, \ldots\right\}$ is a subcomodule of H. This may occur because there is $\alpha: X \rightarrow W$ with $A=E_{*} E$ and $\alpha_{*}: E_{*} X \rightarrow E_{*} W$ the inclusion of G into H. Or, we may have made a clever choice of polynomial generators. (See [4].) Write

$$
\psi\left(Y_{n}\right)=\sum_{k=0}^{n} \theta_{n, k} \otimes Y_{k} .
$$

We then ask whether it is possible to choose new polynomial generators of H so that some are primitive and the non-primitive ones span a subcomodule of H. This will split $H=H_{1} \otimes H_{2}$ as algebras and comodules with H_{1} primitive. The following theorem accomplishes this change of generators under two assumptions. We require that $\left\{Y_{n} \mid n \in S\right\}$, which we wish to replace by a set of primitive generators, spans a subcomodule $R\left\{Y_{n} \mid n \in S\right\}$ of H. We also require analogues $\phi_{n, k}$ in (H, ψ) of the $\theta_{n, k}$

[^0]in (A, Δ). That is,
$$
\Delta\left(\theta_{n, k}\right)=\sum_{i=k}^{n} \theta_{n, i} \otimes \theta_{i, k}
$$
by coassociativity and we need to be able to choose the $\phi_{n, k}$ with
$$
\psi\left(\phi_{n, k}\right)=\sum_{i=k}^{n} \theta_{n, i} \otimes \phi_{i, k} .
$$

Note that it is possible for the subset S of Z^{+}to be finite or all of \mathbf{Z}^{+}.
Theorem 2.1. Let R be a commutative ring, and let A be a Hopf algebra over R. Let $H=R\left[Y_{1}, \ldots, Y_{n}, \ldots\right]$ or $H=E\left(Y_{1}, \ldots, Y_{n}, \ldots\right), R=Z_{2}$. Let $Y_{0}=1$ and $\operatorname{deg} Y_{n}=\alpha_{n}$ where $0=\alpha_{0}<\alpha_{1} \leqq \ldots \leqq \alpha_{n} \leqq \ldots$ Let H be an A-comodule whose coproduct ψ is an algebra homomorphism. Assume that:
(a) The R-submodule of H spanned by $\left\{Y_{0}, \ldots, Y_{n}, \ldots\right\}$ is a subcomodule of H. Write
$\psi\left(Y_{n}\right)=\sum_{k=0}^{n} \theta_{n, k} \otimes Y_{k} \quad$ with $\theta_{n, k} \in A_{\alpha_{n}-\alpha_{k}}$.
(b) There are $\phi_{n, k} \in H_{\alpha_{n}-\alpha_{k}}$ for $0 \leqq k \leqq n$ such that

$$
\psi\left(\phi_{n, k}\right)=\sum_{i=k}^{n} \theta_{n, i} \otimes \phi_{i, k} .
$$

(c) There is a set of positive integers S such that $\theta_{n, k}=0$ for $n \in S$ and $k \notin S, k>0$. In addition $\theta_{n, 0}=0$ and $\phi_{n, 0}=Y_{n}$.
Then there is a Hopf algebra structure with coproduct Δ on H, and there are $p_{n} \in H_{\alpha_{n}}$ for $n \in S, Q_{m} \in H_{\alpha_{m}}$ for $m \notin S$ such that:
(i) $\Delta\left(Y_{n}\right)=\sum_{k=0}^{n} \phi_{n, k} \otimes Y_{k}$.
(ii) The P_{n} are primitive under both ψ and Δ.
(iii) $Q_{0}=1$ and for $m>0$:
$\psi\left(Q_{m}\right)=\sum_{i \leqq m, i \notin S} \theta_{m, i} \otimes Q_{i} ;$
$\Delta\left(Q_{m}\right)=\sum_{0<i \leqq m, i \notin S} \phi_{m, i} \otimes Q_{i}+Q_{m} \otimes 1$.
(iv) $\left\{P_{n} \mid n \in S\right\} \cup\left\{Q_{m} \mid m \nexists S\right\}$ is a set of algebra generators of H.
(v) $Y_{n}=P_{n}+\sum_{k<n} \phi_{n, k} P_{k} \quad$ for $n \in S$;
$Y_{m}=Q_{m}+\sum_{k<m, k \in S} \phi_{m, k} P_{k} \quad$ for $m \notin S$.
(vi) $P_{n}=Y_{n}+\sum_{k<n} \chi\left(\phi_{n, k}\right) Y_{k}$ for $n \in S$;
$Q_{m}=Y_{m}+\sum_{k<m, k \in S} \chi\left(\phi_{m, k}\right) Y_{k} \quad$ for $m \notin S ;$
where χ is the conjugation of H.

Assume now that $H=R\left[Y_{n} \mid n \geqq 1\right]$.
(vii) If A is a free R-module then $P_{\psi} H=R\left[P_{n} \mid n \in S\right]$.
(viii) Assume that char $R=\gamma$ is either 0 or a prime. Let

$$
T=\left\{m \notin S \mid Q_{m} \text { is } \Delta \text {-primitive }\right\} .
$$

Then $P_{\Delta} H$ is R-free with basis

$$
\begin{cases}\left\{Q_{m}, P_{n} \mid n \in S, m \in T\right\} & \text { if } \gamma=0 \\ \left\{Q_{n}^{r r}, p_{n}^{r \mid} \mid n \in S, m \in T, r \geqq 0\right\} & \text { if } \gamma>0 .\end{cases}
$$

Proof. Define the Hopf algebra structure on H by the formula in (i). Then define the P_{n} and Q_{m} inductively on their degree so that (v) holds. Clearly $P_{n} \equiv Y_{n}$ and $Q_{m} \equiv Y_{m}$ modulo decomposables, so (iii) is valid. We check (ii) and (iii):

$$
\begin{aligned}
& \psi\left(P_{n}\right)= \psi\left(Y_{n}\right)-\sum_{k<n} \psi\left(\left({ }_{n, k}\right) \psi\left(P_{k}\right)\right. \\
&=\sum_{i<n} \theta_{n, i} \otimes Y_{i}-\sum_{k<n} \sum_{i=k}^{n} \theta_{n, i} \otimes \phi_{i, k} P_{k}=1 \otimes Y_{n}-\sum_{k<n} 1 \otimes \phi_{n, k} P_{k} \\
& \quad+\sum_{i=1}^{n-1} \theta_{n, i} \otimes\left[Y_{i}-P_{i}-\sum_{k=1}^{i-1} \phi_{i, k} P_{k}\right]=1 \otimes P_{n} .
\end{aligned}
$$

Similarly, $\Delta\left(P_{n}\right)=P_{n} \otimes 1+1 \otimes P_{n}$.

$$
\begin{aligned}
\psi\left(Q_{m}\right) & =\psi\left(Y_{m}\right)-\sum_{\substack{k<m \\
k \in S}} \psi\left(\phi_{m, k}\right) \psi\left(P_{k}\right) \\
& =\sum_{i \leqslant m} \theta_{m, i} \otimes Y_{i}-\sum_{\substack{k<m \\
k \in S}} \sum_{i=k}^{m} \theta_{m, i} \otimes \phi_{i, k} P_{k} \\
& =1 \otimes Y_{m}-\sum_{\substack{k<m \\
k \in S}} 1 \otimes \phi_{m, k} P_{k} \\
\quad & +\sum_{\substack{i<m \\
i \in S}} \theta_{m, i} \otimes\left[Y_{i}-P_{i}-\sum_{k<i} \phi_{i, k} P_{k}\right] \\
& +\sum_{\substack{i<m \\
i \notin S}} \theta_{m, i} \otimes\left[Y_{i}-\sum_{\substack{k<i \\
k \in S}} \phi_{i, k} P_{k}\right]=1 \otimes Q_{m}+\sum_{\substack{i<m \\
i \notin S}} \theta_{m, i} \otimes Q_{i} .
\end{aligned}
$$

Similarly,

$$
\Delta\left(Q_{n}\right)=1 \otimes Q_{m}+\sum_{0<i<m, i \notin S} \phi_{m, i} \otimes Q_{i}+Q_{m} \otimes 1 .
$$

We now prove (vi). Let λ be either a fixed Q_{m} or P_{m}. Let $N-1$ be the cardinality of the set $\left\{k \in S \mid \alpha_{k}<\alpha_{m}\right\}$. Then the equations in (v) include N linear equations with coefficients in H and with unknowns $\{\lambda\} \cup\left\{P_{k} \mid \alpha_{k}<\alpha_{m}\right\}$. Observe that the matrix of coefficients is lower tri-
angular with ones on the diagonal. We solve such a system of equations in a general setting in Lemma 2.2. This solution gives the formulas in (vi).

Clearly $P_{\psi} H$ and $P_{\Delta} H$ contain the R-modules which we assert they equal. If $Z \in H$ then we can write Z as a polynomial in the P_{n} and Q_{m}. If $Z \forall R\left[P_{n} \mid n \in S\right]$ then choose a monomial summand of Z,

$$
\alpha P_{a_{1}} \ldots P_{a_{s}} Q_{b_{1}}{ }^{e_{1}} \ldots Q_{b t_{t}}^{e_{t}}
$$

with $\alpha \in R, t>0$ and $0<b_{1}<\ldots<b_{t}$. Assume that we have chosen the monomial with t least and among such monomials $\left(e_{l}, \ldots, e_{1}\right)$ is least in the lexicographical order. Then $\psi(Z)$ contains

$$
\alpha e_{t} \theta_{b t, 0} \otimes P_{a_{1}} \ldots P_{a_{s}} Q_{b_{1}}{ }^{e_{1}} \ldots Q_{b}^{e_{t-1}^{t-1}} Q_{b_{t}}{ }^{e_{t-1}}
$$

as a nonzero summand, and hence $\psi(Z)$ is nonzero. This proves (vi). If Z has a summand

$$
\alpha P_{a_{1}} \ldots P_{a_{s}} Q_{c_{1}} \ldots Q_{c_{u}} Q_{D_{1}}{ }^{e_{1}} \ldots Q_{b t}{ }^{e_{t}}
$$

with $\alpha \in R, t>0,0<b_{1}<\ldots<b_{t},\left\{b_{1}, \ldots, b_{t}\right\} \not \subset T$ then choose the monomial with t least and among such monomials let (e_{t}, \ldots, e_{1}) be least in the lexicographical order. Then $\bar{\Delta}(Z)$ contains

$$
\alpha \phi_{b t, b} \otimes P_{a_{1}} \ldots Q_{b}^{e_{t-1}^{t-1} Q_{b}{ }^{e_{t}}}
$$

as a nonzero summand for some $0<b<b_{t}$. Thus

$$
\begin{aligned}
P_{\Delta} H=P_{\Delta} R\left[Q_{m}, P_{n} \mid m \in T, n\right. & \in S] \\
& =R\left\{Q_{m^{r}}, P_{n}{ }^{\gamma} \mid n \in S, m \in T, r \geqq 0\right\} .
\end{aligned}
$$

Lemma 2.2. Let H be a commutative Hopf algebra. Let $b_{i j}, 1 \leqq i, j \leqq n$ and $c_{i}, 1 \leqq i \leqq n$, be elements of H. Let $B=\left(b_{i j}\right), C=\left(c_{1}, \ldots, c_{n}\right)^{\top}$ and $Z=\left(z_{1}, \ldots, z_{n}\right)^{\top}$. Consider the n equations in n unknowns $B Z=C$. Assume that:
(i) B is lower triangular.
(ii) The diagonal entries of B are all ones.
(iii) $\Delta\left(b_{i, j}\right)=\sum_{s=i}^{j} b_{i, s} \otimes b_{s, j}$.

Then

$$
z_{k}=c_{k}+\sum_{i=1}^{k-1} \chi\left(b_{k, i}\right) c_{i} \quad \text { for } 1 \leqq k \leqq n
$$

Proof. By Cramer's rule, $z_{k}=\operatorname{det} B_{k} / \operatorname{det} B=\operatorname{det} B_{k}$ where $B_{k}=\left(b_{i j}^{\prime}\right)$ is the $k \times k$ matrix with $b_{i j}^{\prime}=b_{i j}$ for $j<k$ and $b_{i k}^{\prime}=c_{i}$. We expand det B_{k} by minors of the last column to obtain:

$$
z_{k}=c_{k}+\sum_{i=1}^{k-1}(-1)^{i+k} c_{i} \operatorname{det} B_{k, i} .
$$

Observe that $B_{k, i}$ has the shape:

$$
i-1\left(\begin{array}{cccc|c}
1 & i-1 & 0 & k-i \\
& \cdot & & & 0 \\
& \cdot & & 0 \\
* & & & 1 & \\
\hline & * & & B_{k, i}^{\prime}
\end{array}\right)
$$

Thus

$$
z_{k}=c_{k}+\sum_{i=1}^{k-1}(-1)^{i+k} c_{i} \operatorname{det} B_{k, i}^{\prime} .
$$

The matrices $B_{k, i}^{\prime}$ have the form:

$$
B=\left(\begin{array}{cccccccc}
\beta_{11} & 1 & & & & & & \\
\beta_{21} & \beta_{22} & 1 & \cdot & & & 0 & \\
& \cdot & & \cdot & \cdot & & \\
& \cdot & & & & \cdot & & \\
& \cdot & & & & & 1 & \\
\beta_{u-1,1} & & \cdot & \cdot & \cdot & & \beta_{u-1, u-1} & 1 \\
\beta_{u 1} & & \cdot & \cdot & \cdot & & & \beta_{u, u-1}
\end{array}\right)
$$

Observe that

$$
\operatorname{det} B=\sum_{e=0}^{u-2} \sum_{1<Q_{1}<\ldots<q_{e}<u}(-1)^{u+e+1} \beta_{\beta_{1}, q_{e}} \beta_{q_{e}, q_{e}-1} \ldots \beta_{q_{2}, q_{1}} \beta_{q_{1}, 1} .
$$

Thus

$$
z_{k}=c_{k}+\sum_{i=1}^{k-1} \sum_{e=0}^{k-i-2} \sum_{i<{ }_{q 1}<\ldots<g_{e}<k}(-1)^{e+1} c_{i} b_{k, q_{e}} \ldots b_{q_{1}, i} .
$$

The following lemma applies to show that

$$
z_{k}=c_{k}+\sum_{i=1}^{k-1} c_{i} \chi\left(\bar{b}_{k, i}\right) .
$$

Lemma 2.3. Let H be a connected Hopf algebra with $\bar{\psi}^{(0)}=1$ and $\bar{\psi}^{(k)}$ the kth iterated reduced coproduct. Define

$$
\Psi(Y)=\sum_{k=0}^{\infty} \sum_{i}(-1)^{k+1} Y_{i 1}^{(k)} \ldots Y_{i, k+1}^{(k)}
$$

where

$$
\bar{\psi}^{(k)}(Y)=\sum_{i} Y_{i 1}^{(k)} \otimes \ldots \otimes Y_{i, k+1}^{(k)}
$$

Then $\Psi=\chi$.

Proof. We prove $\Psi(Y)=\chi(Y)$ by induction on the degree of Y. By coassociativity,

$$
\begin{aligned}
\Psi(Y) & =-Y-\sum_{i} Y_{i 1}^{(1)} \Psi\left(Y_{i 2}^{(1)}\right)=-Y-\sum_{i} Y_{i 1}^{(1)} \chi\left(Y_{i 2}^{(1)}\right) \\
& =\chi(Y) .
\end{aligned}
$$

3. Applications to Thom spectra. Recall [5] that

$$
H_{*}\left(M O ; Z_{2}\right)=Z_{2}\left[b_{1}, \ldots, b_{n}, \ldots\right]
$$

where

$$
H_{*}\left(M O(1) ; Z_{2}\right)=H_{*}\left(R P^{\infty} ; Z_{2}\right)=Z_{2}\left\{1, b_{0}, b_{1}, \ldots, b_{n}, \ldots\right\}
$$

and

$$
b_{n} \in H_{n}\left(M O ; Z_{2}\right)
$$

$H_{*}\left(M O ; Z_{2}\right)$ is a comodule over the dual of the mod 2 Steenrod algebra \mathfrak{N}_{*} and $H_{*}\left(M O(1) ; Z_{2}\right)$ is a subcomodule. By [8] the component of $\psi\left(b_{n}\right)$ in $\mathfrak{A}_{*} \otimes b_{2^{s}-1}$ is

$$
\xi_{l-s}^{2 s} \otimes b_{2^{s}-1} \text { if } n=2^{t}-1
$$

and is zero otherwise. Thus Theorem 2.1 applies to $H_{*}\left(M O ; Z_{2}\right)$ with $S=\left\{n>0 \mid \quad n \neq 2^{t}-1\right\}$. The coproduct Δ which Theorem 2.1 imposes upon $H_{*}\left(M O ; Z_{2}\right)$ is not of geometric origin. It is not induced from

$$
H Z_{2} \wedge M O \stackrel{\cong}{\rightrightarrows} H Z_{2} \wedge S \wedge M O \xrightarrow{1 \wedge \eta \wedge 1} H Z_{2} \wedge M O \wedge M O
$$

Also neither of the canonical H-space structures on $B O$ induces Δ via the Thom isomorphism. Nevertheless, Δ is the key to unravelling problems of geometric relevance about $H_{*}\left(M O ; Z_{2}\right)$. Note that conclusions (i)-(vi) of the following theorem were derived by E. Brown and F. Peterson [1].

Theorem 3.1. There is a Hopf algebra structure on $H_{*}\left(M O ; Z_{2}\right)$ and there are $V_{n} \in H_{n}\left(M O ; Z_{2}\right)$ for $n \neq 2^{t}-1$ and $\zeta_{m} \in H_{2^{m}-1}\left(M O ; Z_{2}\right)$ such that:
(i) The V_{n} are primitive under both ψ and Δ.
(ii) $\psi\left(\zeta_{m}\right)=\sum_{i=0}^{m} \xi_{m-1}^{2 i} \otimes \zeta_{i} \quad$ and $\quad \Delta\left(\zeta_{m}\right)=\sum_{i=0}^{m} \zeta_{m-i}^{2^{i}} \otimes \zeta_{i}$.
(iii) $H_{*}\left(M O ; Z_{2}\right)=Z_{2}\left[V_{n} \mid \quad n \neq 2^{t}-1\right] \otimes Z_{2}\left[\zeta_{1}, \ldots, \zeta_{m}, \ldots\right]$.
(iv) Image $\left[h: \mathfrak{N}_{*} \rightarrow H_{*}\left(M O ; Z_{2}\right)\right]=Z_{2}\left[V_{n} \mid n \neq 2^{t}-1\right]$.

$$
\begin{aligned}
& (\mathrm{v}) b_{n}=V_{n}+\sum_{k<n} \phi_{n, k} V_{k} \text { for } n \neq 2^{t}-1 \\
& b_{2^{m}-1}=\zeta_{m}+\sum_{\substack{k<2^{m}-1 \\
k \neq 2^{s}-1}} \phi_{2^{m-1}-k} V_{k} ; \\
& \phi_{n, k}=\left(1+\zeta_{1}+\ldots+\zeta_{r}+\ldots\right)_{n-k}^{k+1} \text { for } n \geqq k \geqq 0 .
\end{aligned}
$$

(vi) $F\left(V_{n}\right)=U_{n}$ and $F\left(\zeta_{m}\right)=\xi_{m}$ where F is the Liulevicius isomor phism [5]:

$$
\begin{aligned}
& F: H_{*}\left(M O ; Z_{2}\right) \rightarrow \mathfrak{A}_{*} \otimes Z_{2}\left[U_{n} \mid \quad n \neq 2^{t}-1\right] \\
& \text { (vii) } V_{n}=b_{n}+\sum_{k<n} \chi\left(\phi_{n, k}\right) b_{k} \text { for } n \neq 2^{t}-1 ; \\
& \zeta_{m}=b_{2^{m}-1}+\sum_{\substack{k<2^{m-1} \\
k \neq 2^{s-1}}} \chi\left(\phi_{2^{m}-1, k}\right) b_{k} ; \\
& \quad \chi\left(\phi_{n, k}\right)=\left(1+\chi\left(\zeta_{1}\right)+\ldots+\chi\left(\zeta_{r}\right)+\ldots\right)_{n-k}^{k+1} \\
& \quad=\left(1+m_{1}+\ldots+m_{2^{r}-1}+\ldots\right)_{n-k}^{k+1}
\end{aligned}
$$

in the notation of Theorem 3.2.

$$
(\text { viii }) \Delta\left(b_{n}\right)=\sum_{k=0}^{n} \phi_{n, k} \otimes b_{k}
$$

(ix) $H^{*}\left(M O ; Z_{2}\right) \cong \mathfrak{A} \otimes \Gamma\left[V_{n}^{*} \mid \quad n \neq 2^{t}-1\right]$ as Hopf algebras.

There is an analogue of Theorem 3.1 where b_{n}, V_{n}, ξ_{n} is replaced by $m_{n}, \beta_{n}, \chi\left(\xi_{n}\right)$, respectively. Here m_{n} is the coefficient of X^{n+1} in the inverse power series of $X+b_{1} X^{2}+\ldots+b_{k} X^{k+1}+\ldots$ Then

$$
H_{*}\left(M O ; Z_{2}\right)=Z_{2}\left[m_{1}, \ldots, m_{n}, \ldots\right]
$$

To define the β_{n} we consider the Liulevicius map [7]

$$
G: H_{*}\left(M O ; Z_{2}\right) \xrightarrow{\psi} \mathfrak{A}_{*} \otimes H_{*}\left(M O ; Z_{2}\right) \xrightarrow{1 \otimes g} \mathfrak{H}_{*} \otimes Z_{2}\left[U_{n} \mid \quad n \neq 2^{s}-1\right]
$$

where g is the algebra homomorphism induced by $g\left(m_{n}\right)=U_{n}$ if $n \neq 2^{s}-1$ and $g\left(m_{2^{s}-1}\right)=0$. Then G is an isomorphism of Z_{2}-algebras and \mathfrak{A}_{*}-comodules. Define β_{n} as the primitive element $G^{-1}\left(U_{n}\right)$. A. Liulevicius [7] computes

$$
\psi\left(m_{n}\right)=\sum_{s 2^{k}+2^{k}-1=n} \chi\left(\xi_{k}\right) \otimes m_{s}^{2^{k}} .
$$

Thus $\left\{1, m_{1}, m_{2}, \ldots\right\}$ is not a subcomodule of $H_{*}\left(M O ; Z_{2}\right)$. Thus Theorem 2.1 does not seem to apply to relate the m_{n} and β_{n}. However, this first impression is erroneous.

Theorem 3.2.
(i) $H_{*}\left(M O ; Z_{2}\right)=Z_{2}\left[\beta_{n} \mid \quad n \neq 2^{s}-1\right] \otimes Z_{2}\left[\zeta_{1}, \ldots, \zeta_{s}, \ldots\right]$.
(ii) Image $\left[h: \mathfrak{N}_{*} \rightarrow H_{*}\left(M O ; Z_{2}\right)\right]=Z_{2}\left[\beta_{n} \mid \quad n \neq 2^{s}-1\right]$.
(iii) $m_{2 n}=\beta_{2 n}$.
(iv) $m_{2^{s}-1}=\chi\left(\zeta_{s}\right)$.
(v) $m_{2 n-1}=\beta_{2 n-1}+\sum_{k=1}^{e} m_{2^{k}-1} \beta_{2^{e-k}(2 p+1)-1}^{2^{k}}$
where $n \neq 2^{s}$ and $2 n=2^{e}(2 p+1)$.
(vi) $\beta_{2 n-1}=m_{2 n-1}+\sum_{k=1}^{e} \zeta_{k} m_{2^{e-k}(2 p+1)-1}^{2^{k}}$
where $n \neq 2^{s}$ and $2 n=2^{e}(2 p+1)$.
Proof. (i)-(iv) are known; see [7]. To prove (v) it suffices to show by induction on n that

$$
\beta_{2 n-1}^{\prime}=m_{2 n-1}+\sum_{k=1}^{e} \chi\left(\zeta_{k}\right) \beta_{2 e-k}^{2 k}(2 p+1)-1
$$

is primitive and that $G\left(\beta_{2 n-1}^{\prime}\right)=U_{2_{n-1}}$:

$$
\begin{aligned}
& \psi\left(\beta_{2 n-1}^{\prime}\right)=\psi\left(m_{2 n-1}\right)+\sum_{k=1}^{e} \psi \chi\left(\zeta_{k}\right)\left(1 \otimes \beta_{2^{e-k}(2 p+1)-1}^{2 k}\right) \\
& =\sum_{k=0}^{e} \chi\left(\xi_{k}\right) \otimes m_{2 e-k}^{2 k}(2 p+1)-1 \\
& +\sum_{k=1}^{e} \sum_{i=0}^{k} \chi\left(\xi_{i}\right) \otimes \chi\left(\zeta_{k-i}\right)^{2^{i}}\left(1 \otimes \beta_{2 e-k(2 p+1)-1}^{2 k}\right)=1 \otimes \beta_{2 n-1}^{\prime} \\
& +\sum_{k=1}^{e} \chi\left(\xi_{k}\right) \otimes\left[m_{2 e-k(2 p+1)-1}^{2^{k}}+\sum_{j=0}^{e-i} \chi\left(\zeta_{j}\right)^{2^{k}} \beta_{2 e-j-k}^{2 j}(2 p+1)-1\right]=1 \otimes \beta_{2 n-1}^{\prime} \\
& +\sum_{k=1}^{e} \chi\left(\xi_{k}\right) \otimes\left[m_{2^{e-k}(2 p+1)-1}+\sum_{j=0}^{e-i} \chi\left(\zeta_{j}\right) \beta_{2^{e-j-k}(2 p+1)-1}^{2 j}\right]^{2^{k}}=1 \otimes \beta_{2 n-1}^{\prime} \\
& +\sum_{k=1}^{e} \chi\left(\xi_{k}\right) \otimes\left[m_{2^{e-k}(2 p+1)-1}+\beta_{2^{e-k}(2 p+1)-1}+\sum_{j=1}^{e-i} \chi\left(\zeta_{j}\right) \beta_{2^{e-j-k}(2 p+1)-1}^{2 j}\right]^{2^{k}} \\
& =1 \otimes \beta_{2 n-1}^{\prime} \text {. } \\
& G\left(\beta_{2_{n-1}}^{\prime}\right)=(1 \otimes g) \circ \psi\left(\beta_{2_{n-1}}^{\prime}\right)=1 \otimes g\left(\beta_{2_{n-1}}^{\prime}\right) \\
& =1 \otimes g\left(m_{2 n-1}\right)+\sum_{k=1}^{e} 1 \otimes g \chi\left(\zeta_{k}\right) g\left(\beta_{2 e-k}^{2 k}(2 p+1)-1\right)=1 \otimes g\left(m_{2 n-1}\right) .
\end{aligned}
$$

To prove (vi) observe that we have the following $e+1$ equations in the $e+1$ unknowns $\beta_{2^{e-s}}^{2 s}(2 p+1)-1,0 \leqq s \leqq e$:
(*) $\quad m_{2^{e-k}(2 p+1)-1}^{2 k}=\beta_{2^{e-k}(2 p+1)}^{2^{k}}+\sum_{h=1}^{e-k} \chi\left(\zeta_{h}\right)^{2^{k}} \beta_{2^{e-h-k}(2 p+1)-1}^{2 h+k} \quad(0 \leqq k \leqq e)$.
Observe that the coefficient matrix is $A=\left(a_{i j}\right)$ with $a_{i j}=\chi\left(\zeta_{i-j}\right)^{2 e^{-i}}$
for $0 \leqq j \leqq i \leqq e$. Hence

$$
\begin{aligned}
& \Delta\left(a_{i j}\right)=\Delta \chi\left(\zeta_{i-j}\right)^{2^{e-i}}=(\chi \otimes \chi) \circ T \circ \Delta\left(\zeta_{i-j}\right)^{2 e-i} \\
& =(\chi \otimes \chi) \circ T\left(\sum_{s=0}^{i-j} \zeta_{i-j-s}^{2 s} \otimes \zeta_{s}\right)^{2^{e-i}}=\sum_{s=0}^{i-j} \chi\left(\zeta_{s}\right)^{2^{e-i}} \otimes\left(\zeta_{i-j-s}\right)^{2^{s+e-i}} \\
& =\sum_{s=0}^{i-j} a_{i, i-s} \otimes a_{i-s, j}=\sum_{t=i}^{j} a_{i, t} \otimes a_{t, j} \quad \text { where } t=i-s
\end{aligned}
$$

Thus Lemma 2.2 applies to the system of equations (*) to give:

$$
\beta_{2 e-k}^{2 k}(2 p+1)-1=m_{2 e-k(2 p+1)}^{2 k}+\sum_{h=1}^{e-k} \zeta_{h}^{2^{k}} m_{2 e-h-k(2 p+1)-1}^{2 h+k} \quad(0 \leqq k \leqq e)
$$

We now let $k=0$ to obtain (vi).
Theorem 3.1 has an analogue where we replace $M O, 2, b_{n}, R P^{\infty}$ by $M U, p$ prime, $a_{n}, C P^{\infty}$, respectively. Then

$$
a_{n}, V_{n} \in H_{2 n}\left(M U ; Z_{p}\right) \quad \text { and } \quad \zeta_{m} \in H_{2\left(p^{m}-1\right)}\left(M U ; Z_{p}\right)
$$

Conclusions (i), (iii), (iv), (v) are identical. For p odd we get conclusion (ii) and for $p=2$ we now have

$$
\psi\left(\zeta_{m}\right)=\sum_{i=0}^{m} \xi_{m-1}^{2 i+1} \otimes \zeta_{i} .
$$

Conclusion (vi) becomes $F\left(V_{n}\right)=U_{n}, F\left(\zeta_{m}\right)=\xi_{m}$ for p odd and $F\left(\zeta_{m}\right)=\xi_{m}{ }^{2}$ for $p=2$ where F is the Liulevicius isomorphism [6]:

$$
\begin{aligned}
F: H_{*}\left(M U ; Z_{p}\right) \rightarrow Z_{p}\left[\xi_{1}, \ldots, \xi_{m}, \ldots\right] \otimes Z_{p}\left[U_{n} \mid\right. & \left.n \neq p^{t}-1\right] \\
& \text { for } p \text { odd, } \\
F: H_{*}\left(M U ; Z_{2}\right) \rightarrow Z_{2}\left[\xi_{1}^{2}, \ldots, \xi_{m}{ }^{2}, \ldots\right] & \\
\otimes Z_{2}\left[U_{n} \mid n \neq 2^{t}-1\right] & \text { for } p=2 .
\end{aligned}
$$

Theorem 3.1 has another analogue where we replace $M O, b_{n}, R P^{\infty}$ by $M S p, d_{n}, H P^{\infty}$, respectively. Then

$$
d_{n}, V_{n} \in H_{4 n}\left(M S p ; Z_{2}\right) \quad \text { and } \quad \zeta_{m} \in H_{4\left(2^{m}-1\right)}\left(M S p ; Z_{2}\right)
$$

Conclusions (i), (iii), (iv), (v) are identical. Conclusion (ii) becomes

$$
\psi\left(\zeta_{n}\right)=\sum_{i=0}^{n} \xi_{n-i}^{2 i+2} \otimes \zeta_{i} .
$$

Conclusion (vi) becomes

$$
F\left(V_{n}\right)=U_{n} \quad \text { and } \quad F\left(\zeta_{m}\right)=\xi_{m}^{4}
$$

where F is the Liulevicius isomorphism [6]:

$$
F: H_{*}\left(M S p ; Z_{2}\right) \rightarrow Z_{2}\left[\xi_{1}{ }^{4}, \ldots, \xi_{m}{ }^{4}, \ldots\right] \otimes Z_{2}\left[U_{n} \mid \quad n \neq 2^{t}-1\right] .
$$

4. Applications to Hopf algebras. A commutative Hopf algebra H with coproduct Δ becomes a comodule over H with coproduct $\psi(Y)=$
$\Delta(Y)-Y \otimes 1$. Then ψ-primitives are the same as Δ-primitives. However, Theorem 2.1 does not apply to this situation because ψ is not an algebra homomorphism. In Theorem 4.1 we consider a special case when an analogue of Theorem 2.1 holds. We apply Theorem 4.1 to study $P H^{*}(B U)$ and $P H_{*}\left(S O ; Z_{2}\right)$.

Theorem 4.1. Let H be a graded connected commutative cocommutative Hopf algebra over a commutative ring R. Let H have a set of algebra generators $Y_{n} \in H_{\alpha n}, n \geqq 1$, such that

$$
Y_{0}=1 \quad \text { and } \quad \Delta\left(Y_{n}\right)=\sum_{i=0}^{n} Y_{i} \otimes Y_{n-i} .
$$

Then there are $P_{n} \in H_{\alpha n}, n \geqq 1$, such that:
(i) The P_{n} are primitive.
(ii) If R is a field of characteristic zero, then $\left\{P_{1}, P_{2}, \ldots\right\}$ generates H.
(iii) $n Y_{n}=P_{n}+\sum_{0<k<n} Y_{n-k} P_{k}$.
(iv) $P_{n}=n Y_{n}+\sum_{0<k<n} \chi\left(Y_{n-k}\right) k Y_{n}$.
(v) $\chi\left(Y_{n}\right)=\sum_{e_{1}+2 e_{2}+\ldots+n e_{n}=n}(-1)^{e_{1}+\ldots+e_{n}}\left(e_{1}, \ldots, e_{n}\right) Y_{1}^{e_{1}} \ldots Y_{n}^{e_{n}}$
where $\left(e_{1}, \ldots, e_{n}\right)$ denotes the multinomial coefficient.

$$
\text { (vi) } P_{n}=\sum_{e_{1}+2 e_{2}+\ldots+n e_{n}=n}(-1)^{e_{1}+\ldots+e_{n}+1} \frac{n\left(e_{1}, \ldots, e_{n}\right)}{e_{1}+\ldots+e_{n}} Y_{1}^{e_{1}} \ldots Y_{n}^{e_{n}} .
$$

Proof. We make H into a comodule over H by $\psi(Y)=\Delta(Y)-Y \otimes 1$. Then Theorem 2.1 almost applies to this situation with $\theta_{n, k}=Y_{n-k}$. The only problem is that ψ is not an algebra homomorphism. In the proof of Theorem 2.1 we only used this property of ψ in verifying (iv). Thus in our case we have

$$
\psi\left(\theta_{n, k} P_{k}\right)=\Delta\left(\theta_{n, k}\right)\left(1 \otimes P_{k}\right)+\psi\left(\theta_{n, k}\right)\left(P_{k} \otimes 1\right)
$$

instead of

$$
\psi\left(\theta_{n, k} P_{k}\right)=\psi\left(\theta_{n, k}\right)\left(1 \otimes P_{k}\right)
$$

which we had in Theorem 2.1. To take advantage of this new situation we replace Y_{n} by $n Y_{n}$ in the formula which defines P_{n}. Then

$$
\psi\left(n Y_{n}\right)=\sum_{k=1}^{n}\left(k Y_{k}\right) \otimes Y_{n-k}+\sum_{k=1}^{n} Y_{k} \otimes(n-k) Y_{n-k} .
$$

Thus the P_{n} defined inductively by (iii) are primitive. Now the proof of Theorem 2.1 applies to prove (i)-(iv). Observe that P_{n} can replace Y_{n} as an algebra generator of H if and only if n is a unit in R. (v) follows from Lemma 2.3. We combine (iv) and (v) to obtain (vi).

Recall that $H^{*}(B U ; R)=R\left[C_{1}, \ldots, C_{n}, \ldots\right]$ with

$$
\Delta\left(C_{n}\right)=\sum_{k=0}^{n} C_{k} \otimes C_{n-k} .
$$

Thus Theorem 4.1 applies to $H=H^{*}(B U ; R)$ and derives Newton's formula, Corollary 4.2 (iii), and Girard's formula, Corollary 4.2 (vi). See [9, p. 195]. In addition we obtain a formula for P_{n} in terms of the C_{k} and $\chi\left(C_{k}\right)$ as well as a formula for $\chi\left(C_{n}\right)$.

Corollary 4.2. There are $P_{n} \in H^{2 n}(B U ; R)=R\left[C_{1}, \ldots, C_{n}, \ldots\right]$ such that:
(i) The P_{n} are primitive.
(ii) If R is a field of characteristic zero then

$$
H^{*}(B U ; R)=R\left[P_{1}, \ldots, P_{n}, \ldots\right] .
$$

(iii) $n C_{n}=P_{n}+\sum_{0<k<n} C_{n-k} P_{k}$.
(iv) $P_{n}=n C_{n}+\sum_{0<k<n} \chi\left(C_{n-k}\right) k C_{k}$.
(v) $\chi\left(C_{n}\right)=\sum_{e_{1}+2 e_{2}+\ldots+n e_{n}=n}(-1)^{e_{1}+\ldots+e_{n}}\left(e_{1}, \ldots, e_{n}\right) C_{1}^{e_{1}} \ldots C_{n}^{e_{n}}$.
(vi) $P_{n}=\sum_{e_{1}+2 e_{2}+\ldots+n e_{n}=n}(-1)^{e_{1}+\ldots+e_{n}+1} \frac{n\left(e_{1}, \ldots, e_{n}\right)}{e_{1},+\ldots+e_{n}} C_{1}^{e_{1}} \ldots C_{n}^{e_{n}}$.

Note that there are analogues of Theorem 4.2 for $H^{*}\left(B O ; Z_{p}\right)$, $H^{*}(B S p ; R), H_{*}(B U ; R), H_{*}\left(B O ; Z_{p}\right)$ and $H_{*}(B S p ; R)$. Next we apply Theorem 4.1 to $H_{*}\left(S O ; Z_{2}\right)$. This is the only example in this paper which is not a polynomial algebra. Recall from [2, pp. 17-10] that

$$
H_{*}\left(S O ; Z_{2}\right)=E\left(U_{1}, \ldots, U_{n}, \ldots\right)
$$

where
$\operatorname{deg} U_{n}=n \quad$ and $\quad \psi\left(U_{n}\right)=\sum_{i=0}^{n} U_{i} \otimes U_{n-i}$.
Corollary 4.3. There are $P_{n} \in H_{2 n-1}\left(S O ; Z_{2}\right)=E\left(U_{1}, \ldots, U_{n}, \ldots\right)$, $n \geqq 1$, such that:
(i) The P_{n} are primitive.
(ii) $U_{2 n-1}=P_{n}+\sum_{0<k<n} U_{2 n-2 k} P_{k}$.
(iii) $U_{2 n}=\sum_{0<k<n} U_{2 n-2 k+1} P_{k}$.
(iv) $P_{n}=U_{2 n-1}+\sum_{0<k<n} \chi\left(U_{2 n-2 k}\right) U_{2 k-1}$.
(v) $\chi\left(U_{m}\right)=U_{m}$.
(vi) $P_{n}=U_{2 n-1}+\sum_{0<k<n} U_{2 n-2 k} U_{2 k-1}$.

Proof. Theorem 4.2 defines a primitive in every degree. However, the primitive $P_{n}{ }^{\prime}$ in an even degree $2 n$ is zero by induction on n because

$$
P_{n}^{\prime}=2 n U_{2 n}+\sum_{0<k<n} U_{2 n-2 k+1} P_{k}=0
$$

by (vi). This explains (iii). Note that (v) follows immediately from the formula for $\psi\left(U_{n}\right)$. Then (iv) combined with (v) gives (vi).

This corollary is not a deep result because the formula in (vi) is known [2, pp. 17-11] and (i)-(iv) follow easily from (vi).

References

1. E. H. Brown and F. P. Peterson, Computation of the unoriented cobordism ring, Proc. Amer. Math. Soc. 55 (1976), 191-192.
2. Séminaire Henri Cartan 12ième année : 1959/60, Periodicité des groupes d'homotopie stables des groupes classiques, d'après Bott, Deux fasc., 2ième éd. (Ecole Normale Supérieure Secrétariat mathématique, Paris, 1961).
3. S. O. Kochman, Comodule and Hopf algebra structures for $H_{*} M U$, Ill. J. Math. (to appear).
4. -_Polynomial generators for $H_{*}(B S U)$ and $H_{*}\left(B S O ; Z_{2}\right)$, Proc. Amer. Math. Soc. 84 (1982), 149-154.
5. A. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962), 121-131.
6. - Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964), 1-16.
7. -_Immersions up to cobordism, Ill. J. Math. 19 (1975), 149-164.
8. J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.
9. J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies 76 (Princeton Univ. Press, Princeton, N.J., 1974).

The University of Western Ontario, London, Ontario

[^0]: Received January 6, 1981 and in revised form February 27, 1981. This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

