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ABSTRACT

Whittaker graduation is applied to the spatial smoothing of insurance data.
Such data (e.g. claim frequency) form a surface over the 2-dimensional
geographic domain to which they relate. Observations on this surface are subject
to sampling error. They need to be smoothed spatially if a reliable estimate of
the underlying surface is to be obtained.

A measure of smoothness of a surface has been defined. This has been
incorporated in 2-dimensional Whittaker graduation to effect the necessary
smoothing. The details of this are worked out in Section 4. The procedure is
illustrated by numerical example in Section 5. The Bayesian interpretation of
this form of spatial smoothing is discussed, and used to assist in the selection of
the Whittaker relativity constant.
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1. INTRODUCTION

In certain lines of insurance business the risk varies geographically. This is
typical of domestic lines, where the geographic variation may be related to
directly geographic factors (e.g. traffic density, proximity to arterial roads in
auto insurance) or socio-demographic factors (perhaps affecting theft rates in
house insurance).

In such cases it will be desirable to estimate the geographic variation in
risk premium and to price accordingly. Usually data will be available by quite
fine geographic divisions, e.g. zipcodes in the US, postcodes (or sub-postcodes in
the UK). The subdivisions will typically be fine enough that sampling error in
each is substantial.
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As a result, a mapping of sampled geographic risk takes on a rather patchy
appearance. Despite this, general trends in geographic variation will often be
visible. It is necessary to find a way of smoothing sampling error from one
subdivision to the next in order to estimate the underlying geographic signal.

Taylor (1989) applied 2-dimensional spline functions to this problem.
Boskow and Verrall (1994) provided an alternative treatment which made use
of the Gibbs sampler to implement a Bayesian revision of the observations on
subdivisions. The Bayesian framework recognised the magnitudes of sampling
error and also incorporated the concept of smoothness over neighbouring
subdivisions.

The present paper takes a rather similar approach, applying an accepted
actuarial technique for compromising between smoothness and fit to data. This
is Whittaker graduation, which has also been shown (Taylor, 1992; Verrall, 1993)
to have a Bayesian interpretation.

2. MODEL AND NOTATION

Consider a random variable X whose mean /i is characterised by n covariates.
One covariate comprises a pair of spatial (Cartesian) coordinates.

For example, X might denote claim frequency, and the coordinates might
represent the centroid of a postcode region.

Although n may be any natural number, it will suffice here, and maintain
brevity of notation, if the concepts are illustrated for the case n = 3. The
extension to the general case will be obvious.

Thus, let i, j , k represent specific values of the 3 covariates, with i
representing the spatial member. These values define a cell of data
{Nyk, Xyk), where Nyk is a volume measure. In the above example it might
be number of years of policy exposure.

Consistent with the notation given above,

E[Xijk] = fiyk. (2.1)

Suppose that the spatial effect is separable as follows:

lJ-ijk = Vi9jk, (2.2)

for suitable parameters vi, Ojk.
It will be supposed that the vt are to be estimated, but the Ojk are known,

perhaps by means of an earlier estimation program.
There is one degree of redundancy among the parameters vt, Ojk- It will often

be useful to set the scale of the Ojk so that they are scattered about 1. If this is
done, then Ojk can be thought of as an adjustment multiplier to correct the
quantity V[ so that it is specific to cell ijk.

Define

Yi = YlN>jk{Xijk/Ojk) Y.Nvk- (2-3)
jk I jk
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On this definition, y, is the summary of experience in region / but standardized
for other covariates, as discussed by Brockman and Wright (1992). This
adjustment to data is found in Taylor (1989) and Boskow and Verrall (1994).

By(2.1)-(2.3),

(2.4)

showing that Y isolates the spatial effect. It will assumed that

F[Y;] = a2/^ (2.5)

with

Y (2-6)
jk

and for some suitable (though perhaps unknown) constant a2 > 0.
This last assumption is convenient but will often involve some degree of

approximation. For example, when X denotes claim frequency with Nyk Xyk

Poisson, one finds that

F[Yi] = frvi/Ni, (2.7)

with

J 2 ( ) - (2-8)
jk

At this point, it is useful to write vt in the alternative form:

*>i = K*«)> (2-9)

expressing the fact that v : R2 —> R is a function of the spatial coordinates x.
Similarly, write Yj = Y(JC,).

3. WHITTAKER SMOOTHING

Whittaker graduation was devised by Whittaker (1923) and introduced into the
actuarial literature by Henderson (1932). Since then, it has appeared in a
number of standard actuarial texts, e.g. London (1985).

All of these early treatments involved smoothing a 1-dimensional sequence of
observations. The generalisation to 2 or more dimensions was begun by McKay
and Wilkin (1977), and a number of subsequent papers have published
developments (e.g. Lowrie, 1992).

Consider points x € R2, Euclidean 2-space. The objective is to find values
which provide a smooth version of the Y(JC,-) and estimate v{xi). Define

D = Y,Ni\?(xl)-W{xi)]
1 (3.1)
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which is a measure of the deviation, or error, in the observations relative to their
smoothed version.

The use of {Nj} as the set of weights in (3.1) is justified by assumption (2.5).
Define

F=D + kS, (3.2)

where S is a suitably chosen measure of smoothness of W{-), and k(0 < k < oo)
is the tuning constant, or relativity constant. This constant is often
chosen empirically, although Taylor (1992) and Verrall (1993) have given an
analytical basis.

Whittaker smoothing consists of choosing {^(x,)} so as to minimise (3.2),
thus achieving a compromise between error and smoothness.

The choice of S can conveniently be based on the theory of thin plate splines
(see e.g. Green and Silverman, 1994), which uses the following penalty for lack
of smoothness:

• = f fd2w\2 fd2w\2 fd2w\'
\ dx2 ) \dxdyj \ dy2 )

dx dy (3.3)

for W = W{x,y) (using the (x,y) notation just for this equation) and with
integration over the entire spatial region of interest.

Approximated in finite form, this is:

Y^) (3.4)
i

with

S(x) = [A2
nfV(x)]2+2[A2

2W(x)]2+[A2
22W(x)}2 (3.5)

and

A2
pq W(x) = A p [ A , W ( x ) } , p , q = 1 , 2 (3.6)

AqW(x)=W(x + eq)-W(x), (3.7)

with e\, e-i denoting (1, 0) and (0, 1) respectively. Thus, Aq is the difference
operator in the direction of the g-th coordinate axis.

4. APPLICATION

4.1. Smoothing

The basic procedure of Whittaker smoothing needs to be adapted to the
situation in which the arrangement of points x at which Y() is sampled is
irregular, rather than forming a lattice as in Section 3. In the case of general
{XJ}, it is not clear how the differences A2 W{xi) should be calculated.
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Note that, in the lattice case, W(y) is required at 6 distinct values of y to
determine the 3 terms A2

q W{x) at a fixed x. This reflects the fact that a general
quadratic defined on 2-space, is defined by 6 parameters.

One possibility therefore would be to select 5 points "close to" a given x and
fit a quadratic Qx{-) to the 6 points. The values Aj; W(x) for that x could then be
read off from the coefficients of Qx{-).

To the extent that Qx(-) is merely an approximation for W(-) in the
neighbourhood of x, there will be disagreement between the functions Qx(-)
defined by different x. Fitting a quadratic through precisely 6 points will cause
that function to be highly sensitive to the values assumed at those points. In the
same way, working with a function / : R —> R, fitting a 5th degree polynomial
to each set of 6 consecutive values {/(x), f(x + 1 ) , ..., f(x + 5)} would be liable
to produce eccentric fitted functions and a high degree of conflict between them.

For this reason, it is doubtful that the most meaningful smoothness measure
is obtained by the precise quadratic fitting described above. One alternative, and
preferable, procedure is to fit each Qx{-) by reference to a larger-number of
points than 6. Let h be the number of such points.

This is done in Appendix B and the smoothness measure S(x) in (3.5)
calculated by reference to the fitted Qx(-)- The calculation procedure is as follows.

Suppose that Y(x) is observed at m points x\, ..., xm. Let z denote the
vector [W(xi), ..., W(xm)]T of smoothed observations. Let yx\ ..., yx be the
subset of {xi} consisting of the h points closest to x, including yx = x and let

[ ]
For any y G R2, write y = (y\, yi) and

y*=[^yi,yiy2,±yl,yuy2, if, (4.1)

yx \ in its j-th row.
uenne J

Ax = (XT
xXxy

lXT
x, (4.2)

and Bx as the 6 x m matrix containing the h columns of Ax placed within Bx in
the same positions as the components of zx occupy in z.

Define Bx as the 3 x / i submatrix of B consisting of the latter's first 3 rows.
Then

S(x) = zTBT
xCBxz, (4.3)

(4.4)

with

C = diag(l, 2, 1). (4.5)
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The Whittaker criterion (3.2) may be written in the matrix notation established
above.

F=(Y-z)TA(Y-z)+kzTMz, (4.6)

where Y is the m-vector of observations Y(x,),

,, ..., Nm), (4.7)

BlCBXl. (4.8)

Minimisation of F is carried out by differentiating (4.6) with respect to z and
setting the result equal to zero. This yields the smoothed vector

z=(l+kA~lM)~1Y. (4.9)

The smoothed vector is equal to the unsmoothed plus a "smoothing correction"
kh~xMY. The greater the value chosen for the relativity constant k, the greater
the correction. The correction made at any point is inversely proportional to the
volume of experience at that point; the greater that volume, the less it requires
smoothing.

Note that, because Fis quadratic in Y and z, a scale change in Y induces the
same scale change in z, provided that k is changed appropriately. This allows the
useful device of replacing Yj, defined in (2.3), by YJv, where v is in some sense
an overall average of the i/j.

This converts the observed values of Yj to a scatter about 1, and (2.4) and
(2.7) are replaced by £[Y;] = ui/u and F[Yj] = (vi/D^/NiV.

The Bayesian interpretation of k may be obtained from Taylor (1992).
Straightforward extension of the 1-dimensional reasoning given there to
2 dimensions shows that, if all second differences of z in coordinate
axis directions are viewed as subject to independent priors each with
variance r2, then

, (4.10)

with a1 defined by (2.5).

4.2. Zoning

Consider the framework established in Section 2, in which some pricing
function, such as claim frequency is being estimated by postcode. The smoothing
formula (4.9) produces such estimates. In principle, it is feasible to price
accordingly, i.e. postcode by postcode.

Often, however, an insurer will wish to group postcodes into convenient
rating zones, or regions. For pricing purposes, the geographic effect will be taken
as constant over such a zone.
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A procedure for achieving this would be as follows:
1. Map the smoothed vector z to postcodes on a proper geographic map of the

whole region being priced.
2. Colour code the postcodes according to the values of z,. For example, values

of z, might range (mainly, ignoring a scatter of extreme values) from 40% for
rural areas to 150% for inner city areas. In this case, different colours might
be applied to the ranges < 70%, 70-80%, 80-90%, etc. The colours should be
spectrally ordered, e.g. red, pink, orange, yellow, etc. While the constant
bandwidth illustrated above is simply to apply, it may be neater to use a
multiplicative (logarithmic) scale, e.g. 91-100%, 100-110%^ 110-121%, etc.

3. Scan the map to select zones consisting largely of the one colour, or of a
small number of colours adjacent in the chromatic scheme. This requirement
of chromatic homogeneity will need to be balanced against the desirability of
spatially continuous connected zones.

4. Re-fit the whole model with the collection of selected zones introduced as a
rating variable.

In Step 4, the model structure (2.2) is still assumed, but the spatial index / now
applies to the coarser zoning determined in Step 3 instead of individual
postcode.

In addition, Ojk can no longer be assumed known, since these values will have
been estimated with geographic effects ignored. Now that the effects are
"known", the Ojk need to be reestimated, taking them into account.

For example, suppose that (2.2) may be expanded in the form:

fJ'ijk = vi Oj 4>k\ (4.11)

equivalently,

log fiiJk = log vt + log Oj + log <j)k. (4.12)

Then the usual regression modelling (e.g. generalised linear) may be applied to
estimate the parameters. Note that, at this stage, the numerical results obtained
from the smoothing (the vector z) are discarded, and the only role played by the
smoothing is the determination of zones.

An example is provided in Section 5.

4.3. Further research

The smoothing procedure described in the foregoing sections appears to work
effectively most of the time. It seems well adapted to metropolitan areas, usually
characterised by densely packed postcodes.

An example of cases in which it tends to break down is illustrated in
schematic form in Figure 1. The polygons in the figure are a stylised
representation of postcodes in a rural area. The circled numbers label the
10 postcodes. The uncircled numbers represent unsmoothed values of
geographic risk, i.e. Y(xt).
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FIGURE 1: Example of geographic variation.

The small postcodes 1-4 represent a regional town, and postcodes 5-10,
geographically much larger, represent surrounding rural districts.

The spatial smoothing of Section 4.1 seems poorly adapted to these
circumstances. The difficulty relates to the highly localised variation of
postcodes 1-4 from the surrounding trend.

According to Section 4.1, the smoothness measure for postcode 1 is
calculated by reference to h postcodes. Suppose h — 10, and the 10 relevant
postcodes are those appearing in Figure 1. In the detail of Appendix B, the
smoothness measure is calculated from the curvature of the surface fitted over
these 10 postcodes.

The surface needs to be mostly flat, but with a peak concentrated over a
small area formed by postcodes 1-4. It is impossible to obtain this by fitting a
quadratic surface, which will be much flatter than the experience of the diagram
suggests.

This means that the smoothing algorithm sees postcodes 1-10 as relatively
smooth before smoothing, and so applies little smoothing to them.
The "smoothed" results are likely to exhibit the same "patchiness" over
postcodes 1-4 as found in the unsmoothed.
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Such failures are less likely to occur in metropolitan areas, since the localised
extremes which cause the difficulty are less likely in these cases.

The solution to this difficulty may lie in some form of variation of h with the
local topography of the Y(x) surface. Such techniques might be akin to adaptive
kernel smoothing of the type discussed by Bailey and Gatrell (1995, p. 87).

5. EXAMPLE

The smoothing procedure derived in Section 4.1 is applied to a particular claim
frequency data set in Figures 2 to 6. These maps show smoothing produced by
different choices of the relativity constant k, which increases steadily from
Figure 2 to Figure 6.

c=3< 70
c=3 70 - 80
CZ3 80 - 90
ESSI 90 - 100
Kjfl.&£3 1 0 0 — 1 1 0

t^$ffi 110—120
a m 120 - 130
• m > 130

FIGURE 2: No smoothing (k = 0).

FIGURE 3: Smoothing with k = 100
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FIGURE 4: Smoothing with A: = 500.

= 70
c=3 70 - 80
c=3 80 - 90

- 100
c=> 100 - 110
C=3 110 - 120

120 - 130
> 130

FIGURE 5: Smoothim; with A — 1000

< 70
70 - 80
80 - 90

- 100
c=3 100 - 110
[=3 110 - 120
™s120 - 130
ms>> 130

FIGURE 6: Smoothing with A- = 5000.
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Figure 2 uses k = 0, which reproduces the unsmoothed statistics (see (4.9)).
These statistics are "residual ratios" from a regression which models all effects
other than geographic. The residual ratios are defined as follows:

_ . . , . „ . . number of claims observed in postcode
Residual ratio for postcode i = — .

model fit of this number

This is the case in which Xyk represents claim frequency, but Y; has been rescaled
by the device mentioned at the end of Section 4.1. The rescaled values of Y; are
scattered about 1, and the legend in Figures 2 to 6 expresses the ratio as a
percentage. For example, the band 70-80 includes residual ratios 70-80%.

The example illustrated here uses h — 10. The increased smoothing power
resulting from increasing k is evident through the sequence of diagrams.

Equation (4.10) gives the theoretical value of k. The paramater o2 is defined
by (2.5). For Yj representing claim frequency, Nt Y; might be assumed Poisson,
with Ni denoting exposure. This case, together with the rescaling oivt effected by
the residual ratios, is dealt with at the end of Section 4.1, where

V[Y{] = {viMfr/Nii?, (5.1)

giving

o2 = (vi/j?)<t>i/P. (5.2)

Now the values of Vi/i> are scattered about 1, and <j>j will also be of the order 1 if
the 6jk are "centralised" in the manner suggested just prior to (2.3). Thus, a
rough approximation is a2 = \/v, so that (4.10) gives k = \/4VT2.

Alternatively, one might take a2 to be somewhat greater than this, to allow
for some overdispersion relative to Poisson.

The nature of T2 is described at the end of Section 4.1. It is clearly more
difficult to estimate, but some indication can be obtained.

For reasons of data confidentiality, an estimate of v r2 is given here, rather
than separate estimates of v and T2. Based on Figure 5, a reasonable estimation
of v T2 appears to lie in the range 1/8,000 to 1/6,000, giving k in the range 1,500
to 2,000. This just fails to match k = 1,000 in Figure 5.

Alternatively, consider Figure 6 which suggests a value of r2 smaller by a
factor of perhaps 2, giving k in the range 3,000 to 4,000. This fails to match
k — 5,000 in Figure 6, but the discrepancy lies in the opposite direction from
that of Figure 5.

In view of the roughness of the estimated r2, it is inappropriate to regard the
above calculations too literally. To the extent that they are meaningful, however,
they indicate a value of A: between 1,000 and 5,000. This suggests that Figure 6
may be over-smoothed, while Figures 3 and 4 are perhaps under-smoothed.
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APPENDIX A

FITTING A QUADRATIC DEFINED ON 2-SPACE TO h OBSERVATIONS

Consider a quadratic Q : R2 -*• R. Let / ' > , ..., yW e R2 and z'1 ' , . . . , z<*> be
"observations":

error. (A.I)

If the quadratic is written out explicitly, it is

Q(y) = tf2o.Fi + qwy\}>2 + q<nyj + q\y\ + qiyi + qo, (A.2)

where y = (y\, y-i) . Write this as:

Q(y) = qTy®, (A.3)

with

q — (q2o, qu, qo2, qu qi, qo)T, (A.4)

y® = iy\, yiyi, yj, y \ , yi, i ) r (A.5)

By (A.I) and (A.3),

^ ) j ® j i= x ___5 h ( A - 6 )

OLS regression of the z^ on the [yW] yields the following estimate q of q:

q = Az, (A.7)

with

A = (XTX)~lXT, (A.8)

where

z=(z ( 1 ) z'Y, (A.9)

and X is the h x 6 matrix with \yf] as i-th row.
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APPENDIX B
CALCULATION OF THE SMOOTHNESS MEASURE

Section 4.1 requires that a local approximation Qx(-) be fitted to W{-) by
reference to the values of W(y) at h points y.

The fitting can be carried out by OLS regression. Write

where y= (yu y2)
T, and

.,® { -,,2 „ ,̂ ,,2 ,, ,, i"\^ / D o\
j = i ~ ^ i , y\yi, i^yii y\> yii i j > {"•*•)2 2

and qx is the corresponding vector of coefficients.
Let yx , ..., yx be the h points closest to x, including yx> = x, for which

Y() is sampled, and let

zx — \w(yx
V)), ..., W(yW)] • (B-3)

Appendix A shows that

qx =AX zx , (B.4)
6x1 6x/i Axl

where

Ax = (XT
xXxy

xXT
x, (B.5)

and Xx is the A x 6 matrix with \yx \ as /-th row.
The result (B.4), which is expressed in terms of the "local" set of smoothed

values zx, needs to be expressed in terms of the global set
z—[W(x\), ..., W(xm)]T corresponding to the whole set of observations
Y(XJ), i = 1, ..., m.

This is done by rewriting (B.4) as:

qx = Bx z , (B.6)
6x1 6xm m x l

where Bx is the 6 x m matrix containing the h columns of Ax placed so as to
reference h components of zx as components of z, and zeros elsewhere.

The required differences A^qW(x) can now be approximated by the cor-
responding differences of Qx(x), which are given by the first 3 components of qx.
The relevant part of (B.6) is therefore

qx = Bx z , (B.7)
3x1 3xm m x l

where the tilde indicates the operation "take the first 3 rows o f .
It is now possible to express S(x) from (3.5) as a quadratic form in qx:

S(x) = qT
xCqx (B.8)
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with

C = diag(l, 2, 1). (B.9)

By (B.7) and (B.8),

S(x) = zTBT
xCBxz, (B.10)

and finally, by (3.4),

(B.ll)
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