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LIFTING THE COMMUTANT OF A SUBNORMAL 
OPERATOR 

ROBERT F. OLIN AND JAMES E. THOMSON 

I n t r o d u c t i o n . Let 5 be a subnormal operator on a Hilbert space ffl and 
let N be its minimal normal extension on the Hilbert space J ^ . (We refer the 
reader to [5, 15] for the basic material on subnormal operators.) Denote the 
commutan t and double c o m m u t a n t of an operator T by {T}' and {T}", 

respectively. 

One of the questions J. Bram considered in [5] is the following: does the 
commutan t of S lift to the c o m m u t a n t of TV? T h a t is, if an operator A belongs 
to {S}\ does there exist an operator A 0 in {N}' such t ha t A0 leaves 34? invar iant 
and the restriction of A0 to34?, denoted Ao\#>, equals A? His answer appeared 
as follows: 

T H E O R E M (Bram) . Let S be a subnormal operator on 3?. Then necessary and 
sufficient conditions that an operator A on 3#? have an extension A0 on 3rf? such that 
A o commutes with N are that 

a) A commutes with S, and 
b) There exists a positive constant c such that for every finite set x0, X\, . . . xT in 

^? we have 
r r 

/ J (o Axn, o Axm) ^ c 2^t w %ni ù xm). 
m,n=0 m,n=0 

In the remark immediately after this theorem Bram sta tes (without giving 
a proof) t h a t condition (a) does not imply condition (b) . [Later, Yoshino 
[23] did show t h a t (b) does imply (a).] Based on the remark of Bram one 
deduces t ha t the c o m m u t a n t of a subnormal operator does not always lift to 
t ha t of its minimal normal extension. (The first example of this behaviour 
appears in [13]. Others have considered related lifting questions and we refer 
the reader to the l i terature [1, 2, 3, 13, 16, 17, 21 , 22].) 

In the first pa r t of the paper we shall show t h a t this phenomenon occurs 
frequently. More specifically, let N be a normal operator and denote the col
lection of subnormal operators t h a t have N as their minimal normal extension 
by Sf(N). We shall characterize (up to uni tary equivalence) those normal 
operators which have the proper ty t h a t every 5 inS^(N) has a c o m m u t a n t t h a t 
lifts to the c o m m u t a n t of N. This class of normals is small. 

T o do this we s tudy the problem of when the linear manifold of polynomials 
and their conjugates are dense in L°°(/x), for a finite measure JU. This problem 

Received September 2, 1977 and in revised form November 16, 1977. This research was 
supported in part by the National Science Foundation. 

148 

https://doi.org/10.4153/CJM-1979-016-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-016-9


LIFTING 149 

has been studied extensively in [11, 12]. The solution and technique of proof 
obtained here are different than those in [11, 12]. 

In the second par t of the paper we exhibit an irreducible subnormal operator 
5 t ha t has a commutat ive commutan t (therefore {S}' = {S}") t ha t does not 
lift. This answers two questions by Abrahamse [2]. 

Lift ing t h e c o m m u t a n t of every S in 5f(N). If N is a normal operator 
with scalar spectral measure /x then we say N is antisymmetric if the only 
projections in the weakly closed algebra generated by N and the identi ty are 
zero and one. Equivalently, if P°° (M) denotes the weak-star closure of the 
polynomials in Lœ(fji), then the constants are the only real-valued functions 
in P"G*). 

In [8] there is a canonical decomposition of any normal operator TV as a 
direct sum of a reductive normal operator and ant isymmetr ic ones. Fur ther
more the weakly closed algebra generated by N splits with this decomposition. 
Every S in ff (N) has a decomposition related to t ha t of N and the ultraweakly 
closed algebra generated by S splits with this decomposition. 

If T is an operator such tha t T = T0 © 1\ andW(T) = IV(J\) ®W{1\) 
then {T)f = {To}' 0 {Ti}' . (Here ^ ( r ) denotes the weakly closed algebra 
generated by T and the identity. See [9] for related results.) Hence, by the 
above discussion, if we want to classify those normal operators TV for which 
every 5 Ç ff' (N) has a commutan t t ha t lifts we can assume N is an ant isym
metric normal operator. 

Before we proceed we need to develop some function theory results about 
Pœ(jLt). The notat ion and terminology is consistent with the work of [8]. 

LEMMA 1. Let G be a bounded, simply connected open set in the plane. There 
exists a measure /x in the plane such that G equals a component of hit K if and only 
if the conformai map of the unit disk onto G is a weak-star generator of Hœ. 

Mere K is the set used in [20] to describe Pœ(n). Hœ denotes the usual Î la rdy 
space of bounded analytic functions on the unit disk (or viewed on the unit 
circle in the usual way) . To say tha t <p is a weak-star generator of Hœ means 
tha t the polynomials in cp are weak-star dense in Hœ. 

Proof of Lemma 1. Suppose G is a component of int K, for some measure /x. 
Wi thout loss of generality we may assume K = G and G = int K, i.e., Pœ(p) 
is ant isymmetr ic . (See [8], Theorems 4.11 and 4.12.) Let {Ka} denote the 
collection of sets defined in section seven of [20] and a0 the least ordinal for 
which the transfinite induction stops. T h a t is, KaQ = K. Now let B be a domain 
which contains G so t ha t 

(*) s u p | / ( * ) | = s u p | / ( z ) | 

for e v e r y / bounded and analytic on B. Note t ha t these suprema are equal to 
the Lœ(n) norm of/ because K = G, 
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Suppose B\G is nonempty . (This will lead to a contradict ion. Corollary 2 
of [19] then shows t ha t the conformai map of the disk to G is a weak-star 
generator.) Since B\G is nonempty there exists a first countable ordinal fi such 
t h a t B\ int K$ is nonempty . I t follows from the definition of the sets Ka t ha t /3 
is not a limit ordinal. Let z belong to i? \ in t K$. Then there exists a function 
/ bounded and analyt ic on int K$ such tha t 

(**) 1/(̂ )1 > ll/IL-

Since fi was chosen to be the first ordinal for which i^\ int Kp is nonempty , / is 
analyt ic on B. Inequal i ty (**) then contradicts equali ty (*). 

Now suppose G is a bounded, simply connected open set in the plane t ha t 
has the proper ty t h a t the conformai map , p, of the disk to G is a weak-star 
generator of H00. Let n be planar measure restricted to G. Since cp is a weak-star 
generator of Hco

1 Corollary 2 of [19] implies t ha t there is no domain B con
taining G properly such t ha t 

SUp | / ( z ) | = SUp | / (2 ) | 

for every func t ion / bounded and analytic in B. Therefore, by definition of the 
sets Ka with respect to n, K = G. Corollary 3 of [19] implies G = int K. 

T h e following lemma is due to de B ranges ([11], Theorem 18). T h e proof 
here is different. 

LEMMA 2. Suppose P ° ° ( M ) = Hœ(G, /x) is antisymmetric. Then the linear 

manifold s/ = {p(z) + q(z) : p, q polynomials] is weak-star dense in Lœ(ju) 
if and only if M(G) = 0. That is, se is weak-star dense in Lœ(ju) if and only if \x 
and harmonic measure on dG are mutually absolutely continuous. Here dG 
denotes the boundary of G. 

Proof. W e first note t ha t for every function / in Lœ(dG) the function / 
defined on G via 

f(z)-\ffdX, 2 ( E G 

(where X2 is harmonic measure a t z) has the proper ty t ha t / is harmonic in G, 
[10]. Let H = {/ : / G L°°(dG)}. Using the same reasoning as in L e m m a 6.2 
of [20] it follows tha t H is weak-star closed in Lœ(ii). Observe tha t H con
tains sé. 

Now if M(G) 3^ 0 we can find a compact set K inside G such t h a t IJL(K) ^ 0. 
Clearly the characterist ic function of K does not belong to H, sos/ is not dense 
in L°°0u). 

T o see the other direction suppose M ( G ) = 0. T h a t is, ju and harmonic mea-
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sure are mutual ly absolutely continuous. Then by Lemma 4.4 of [20] it suffices 

to show 

& = {pM + Q(<P) : P> Q polynomials and <p a 
conformai map from the disk to G} 

is weak-star dense in L œ ( ra ) , where m is normalized Lebesque measure on the 
unit circle. This now follows because cp is a weak-star generator of Hœ(m^) and 
Hœ + Hœ is dense in U°(m). 

These last two lemmas will provide enough information concerning P ° ° ( M ) 
for the theorem. However we need two more elementary facts. 

Definition. Let JJL be a measure in the plane with compact support . Let H2(fx) 
denote the closure of the polynomials in L2(n). We define the operators T, 
and M» on H2(n) and L2(II), respectively, as follows: 

r M ( / ) = s / f o r / e H2(»), and M,(f) = . / f o r / Ç L2^). 

If jit and v are mutual ly singular measures then there does not exist a nonzero 
bounded operator which intertwines the operators MMand Mv ( [13] ,Theorem3) . 
Wi th this fact we leave it to the reader to show the following lemma. 

LEMMA 3. Let \x and v be mutually singular measures. The following statements 
are equivalent: 

(a) The commutant of T^ © Tv on H2(ix) © H2(v) lifts to the commutant of 

(b) {z;© Tvy = {T,y © {Tvy 
(c) The only bounded operators A and B that satisfy the equations 

AT, = TVA 
BTV = J\B 

are the zero operators. 

Remark. If /x and v are mutual ly singular there may be a nonzero operator 
tha t intertwines T, and Tv. In fact the proof of our theorem shows how to 
construct many of them. 

A point X in the plane is called a bounded point evaluation for H2(JJL) if there 
exists a constant C such tha t for all polynomials p it follows tha t 

\PM\ é c\\p\U 

where | |^ | |2 denotes the L2(II) norm of p. If X is a point evaluation then the 
smallest such C is called the norm of the point evaluation. The construction 
mentioned above will depend on the following lemma. This fact is well-known 
but the authors do not know if it appears in the li terature. 

LEMMA 4. Let U be a bounded component of the complement of the support of 
a, measure \i. Suppose every point in U is a bounded point evaluation for if2(/x). 
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Then the norms of the point evaluations are uniformly bounded on compact subsets 

ofU. 

Proof. Fix X0 G U. Since the spectrum of TM contains U it follows t ha t 
l / ( z - Xo) G L 2 ( M ) W 2 ( M ) , [5]. Choose g G L 2 ( M ) such t ha t J/gd/i = 0 for all 
/ G H2(11) and / ( g / ( 2 — A0))d/x = 1. Let £> be a polynomial. Then 

/ (P -Pfa))g/(z- XoW 

implies 

PM = J pg/(z - XoHu. 

Therefore 

|p(Ao)| ^ \\pU\g/{z- X0)||2. 

For X sufficiently close to X0 clearly 

0 

1 1 

z - X& 2 - Xo 

But for such X we also have 

< 

/ 
p(\) 

z - X 

which implies 

gdfi = 0, 

£(X) = 

Therefore, 

. / : 

\PW\ è'2\\p\ 

• djJL 

z - X 

/ ^ 
• J/z. 

1 
^2| |p | | 2 y + s — Xo 

A compactness a rgument finishes the proof. 

We are now ready to solve the problem mentioned in the introduct ion. 

T H E O R E M . Let N be an antisymmetric normal operator and S^ (N) denote the 
collection of subnormal operators that have AT as their minimal normal extension. 
Let ju be a scalar spectral measure for N. The following statements are equivalent. 

1. Every S G S^(N) has a commutant that lifts to the commutant of N. 
2. The linear manifold St? = [p -f- q : p and q are polynomials] is weak-star 

dense in Lœ(ju). 
3. N is unitarily equivalent to <p(U) where <p is a weak-star generator of the 

Hardy space H°° and U is a unitary operator. 

https://doi.org/10.4153/CJM-1979-016-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-016-9


LIFTING 153 

(This uni tary operator U must contain a direct sum of some bilateral shift 
because of the assumption of ant isymmetry. ) 

Proof. An argument based on Lemma 2, the spectral mapping theorem for 
normal operators, and Lemmas 8.6 and 8.7 in [8], shows the equivalence of (2) 
and (3). We leave the details to the reader. 

T o show tha t (1 ) implies (2) wTe consider the case where the normal operator 
N is equal to AfM, i.e., N has multiplicity one. The arbi t rary case is a slight 
modification of this one and we leave the details to the reader. We show (1) 
implies (2) by proving the contrapositive. If Pœ(n) = Hœ(G, /z) then the 
negation of (2) implies ix(G) 9^ 0 via Lemma 2. Choose open disks B\ and B2 

such t ha t n(Bi) ^ 0, Bi C_ B2, and B2 C G. Let v be the measure obtained 
by restricting \x to G\B2. By the maximum-modulus principal for analytic 
functions, Kv = K, = G so tha t Hœ(intKv) = Hœ(mt K») = Hœ(G). 

Fix w G B2. Using Proposition 3.8 of [4] there exists a representing measure, 
(3, for evaluation of the polynomials a t w, such tha t ft and v are mutual ly 
absolutely continuous. I t is easy to verify t ha t H2((3) has a bounded point 
evaluation a t w\ hence, it mus t have bounded point evaluations a t every point 
in B2, since the spectrum of T$ contains B2 (see [6]). By Lemma 4, there exists 
a constant C such tha t for all polynomials p 

|P(*)I ^ C\\p\\i 

for all s G -Si. (The superscript means the norm is taken in L2(/3).) 
Let 7 = ii\Bl and let /3f = /3 + H\B2\BI- We now have, for any polynomial p, 

f \p(z)\2dy Ï CVCBiKlbll/)2-

Therefore the map A which sends a polynomial p in H2(fif) to the polynomial p 
in H2(y) is bounded, so we extend it to all of H2(fi'). Clearly A intertwines the 
operators T$> and Ty. Since fir and y are mutual ly singular, Lemma 3 implies 
the commutan t of Tp 0 Ty does not lift to the commutan t of Mp+y. The 
proof t ha t (1) implies (2) (for the case N has multiplicity 1) is done by ob
serving /3' + 7 and ju are mutual ly absolutely continuous and therefore the 
operators Mp>+y and M^ are unitarily equivalent. 

Remark. If Pco(ii\Bl) is ant isymmetr ic then Ty can be constructed to be a 
pure subnormal operator so tha t the operator T^ 0 Ty on H2($') 0 H2(y) is 
also pure. (A pure subnormal operator is one tha t is nonnormal on every nonzero 
invariant subspace.) 

The proof of the theorem is finished if we show (3) implies (1). Suppose 
N = <p(U) where U is a uni tary and (p is a weak-star generator of Hœ. Let 
S £ y* (N) act on the space ffl and let T commute with S. Then T commutes 
with every operator in the ultraweakly closed algebra generated by S\ and 
since <p is a weak * generator of Hœ, this implies T commutes with U\#>. (See 
[8], Theorem 2.1 and Theorem 4.9.) 
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But U\#> is an isometry and its minimal normal extension is U. ([8], Theorem 
6.1.) Therefore T lifts to an operator T0 commuting with U. ([13]) But T0 

commutes with every operator in the weakly closed algebra generated by U, 
so T0 commutes with <p{U) = N. 

An irreducible subnormal operator S with a commutative commutant that does 
not lift to the commutant of its minimal normal extension. J. Bram in [5] showed 
that every operator in the weakly closed algebra generated by a subnormal S 
lifts to an operator in the von Neuman algebra generated by its minimal 
normal extension. In general, the commutant of S does not lift. It is natural then 
to ask if every operator in the double commutant of S lifts to an operator in the 
von Neuman algebra generated by the minimal normal extension (see [2].) 
The answer is no as shown below. Furthermore, at least to the authors' 
knowledge, in each example where a lifting phenomenon fails for a subnormal 
operator, the example entails a reducible subnormal operator. (This also is the 
case in the proof of the theorem.) The operator given in this section is irre
ducible. This example, and other evidence, suggests many possible conjectures 
concerning these lifting questions. 

Our example will proceed in a series of steps. First, some notation: 

Definitions. Define the sets D, II, T, and I by D = {\z\ < 1}, II = {\z\ = 1}, 
r = {\z - 3/2| = i)and/ = D n r . 

Let the measures mi, m2 and v be defined as follows: mx is normalized 
Lebesque measure on II; m2 is normalized Lebesque measure on F; and 
v = m\ + m2|/. F o r / £ H2(mi), the usual Flardy space, / denotes the exten
sion of/ to the disk in the obvious way. 

Step A. Observe v\j is a Carleson measure. Therefore, there exists a constant 
c> 0 such that \\f\\p ^ c\\f\\lfor each f in H2(v). (Consult [14] pp. 156-158 
for the appropriate definitions and facts.) 

Step B. H2(v) and H2(m2) are non-orthogonal invariant subspaces inside 
L2(mi) © L2(m2) such that H2(v) + H2(m2) is closed. (Invariant, of course, 
means with respect to the operator Mmi © Mm2.) 

Proof. (We identify H2(v) inside L2(mi) © L2(m2) by letting these functions 
be zero on T\I.) Clearly H2(v) and H2(m2) have a zero intersection and are not 
orthogonal. To show H2(v) + H2(m2) is closed suppose fn + gn converges in 
L2(m0 © L2{m2) where {fn) C H2(v) and {gn) Q H2{m2). Clearly then {fn\ 
is a Cauchy sequence in H2(mi). Therefore, by Step A, the sequence \fn] con
verges in H2(v) and then it follows \gn) converges in H2(m2). 

Definition. Let H = H2 (y) + H2(m2). H is a closed invariant subspace for 
N= Mmi © Mm2 = Mmi+m2. 

The equality follows because mi and m2 are mutually singular. Let 5 = N\H 

and observed G Sf(N). 
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Step C. Let Si = Tmi © Tm2. Si is similar to S. 

Proof. Let T : H2{mi) © H2(m2) —> H be defined by the following: If 
/ Ç H2(mi) and g Ç H2{m2) then 

^ ( / + g) = / on II, / + g on J, and g on T 

I t is easy to show T induces the similarity. 

Step D. {S,}' = \e(Tmi) © tf(rBJ) : » G i r ° ( W l ) , 4> 6 ^ " ( w 2 ) } . 

Proof. By Lemma 3 it suffices to show there is no nonzero bounded operator 
A from H2(mi) to H2(m2) which intertwines the operators Tmi and Tm2. (That 
there is no nonzero operator intertwining Tmi and Tm2 follows by a similar 
argument . ) 

Suppose such an A exists. Then since A intertwines Tmi and Tm2 and A is 
bounded there exists a constant C such tha t for all polynomials p, 

(*) I \p\2\Al\2dm2 g C I |^|2dwi. 

Let / = m ( R e z > 3 /2} . By Runge's Theorem [7, p. 198], there exists a 
sequence of polynomials {pn} t ha t converges uniformly to 0 on II and 1 on J. 
Clearly such a sequence of polynomials contradicts the inequality (*) unless 
A\ = 0, in which case ^ 4 = 0 . 

Step E. {S}f is commutative. 

Proof. T h a t {S}' is commutat ive follows by Steps D and C. 

Step F. [S]' does not lift to {TV}'. 

Proof. Observe the natural idempotent Q : H —> H2(v) (via Q(f + g) = f 
fo r / G H2 (v) and g £ H2(m2)) commutes with S a n d is not a projection because 
of Step B. We shall show Q does not lift to an operator commuting with TV. 

If Q did lift, say to Ço, then Ço = P(Mmi+nl2) on L2(m\ + m 2) , a multiplica
tion operator where /3 G L œ (mi + m2). By the Fuglede Theorem 
[18, Cor. 1.18], Ço must also commute with TV* so tha t for all Xj G H, 

QÀJ: N*'X) = f, N*iQ\j = Ç O ( Ê N*'x) . 

Therefore Ço is an idempotent because the vectors 

are dense in L2(m\ + m2). Hence /32 = /3 which implies Ço is a projection. 
Because QoH Q H and Ço is self adjoint, this implies H reduces Co- Therefore 
Q = (?o|jy is a projection, which is a contradiction. 

Step G: S is irreducible. 
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Proof. Suppose there exists a projection P ^ 0 , 1 such that PS = SP. Then 
T~lPT commutes with Si. (Si and T are as in Step C.) Clearly R = T~lPT 
is an idempotent, so by Step D, R is a projection. The fact that R ^ 0, 1 
implies R = 0 © 1 or i£ = 1 0 0. Therefore, via the operator T, P is the 
idempotent onto H2(v) or ir/2(m2), neither of which is a projection. 

The operator S, via steps E, F, and G, satisfies the conditions promised. 

Addendum. A. Lubin has independently discovered an example of an 
irreducible subnormal whose double commutant does not lift to its minimal 
normal extension. 
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