
Mapping QTL for multiple traits using Bayesian statistics

CHENWU XU1, XUEFENG WANG1, ZHIKANG LI3,4 AND SHIZHONG XU2*
1 Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry
of Education, Yangzhou University, Yangzhou 225009, People’s Republic of China
2Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
3 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
4Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China

(Received 31 July 2008 and in revised form 23 October 2008)

Summary

The value of a new crop species is usually judged by the overall performance of multiple traits.
Therefore, in most quantitative trait locus (QTL) mapping experiments, researchers tend to collect
phenotypic records for multiple traits. Some traits may vary continuously and others may vary in
a discrete fashion. Although mapping QTLs jointly for multiple traits is more efficient than mapping
QTLs separately for individual traits, the latter is still commonly practised in QTL mapping.
This is primarily due to the lack of efficient statistical methods and computer software packages
to implement the methods. Mapping multiple QTLs simultaneously in a single multivariate model
has not been available, especially when categorical traits are involved. In the present study, we
developed a Bayesian method to map QTLs of the entire genome for multiple traits with continuous,
discrete or both types of phenotypic distribution. Instead of using the reversible jump Markov chain
Monte Carlo (MCMC) for model selection, we adopt a parameter shrinkage approach to estimate
the genetic effects of all marker intervals. We demonstrate the method by analysing a set of
simulated data with both continuous and discrete traits. We also apply the method to mapping
QTLs responsible for multiple disease resistances to the blast fungus of rice. A computer program
written in SAS/IML that implements the method is freely available, on request, to academic
researchers.

1. Introduction

Bayesian shrinkage mapping refers to a quantitative
trait locus (QTL) mapping procedure that estimates
QTL effects for all marker intervals simultaneously in
a single model without performing variable selection.
The method works through shrinking the estimated
effects of QTL misplaced in marker intervals that
contain no QTLs. When all markers are included in a
single model, the method is called genome selection
(Meuwissen et al., 2001). The original idea of genome
selection of Meuwissen et al. (2001) was developed for
random populations. Xu (2003) extended genome
selection to handle data for line crosses. Wang et al.
(2005) further extended the method to handle a single
binary or ordinal trait and allow QTL positions to

be searched uniformly within marker intervals. Wang
et al. (2005) showed that the shrinkage method out-
performed the multiple interval mapping (MIM)
procedure of Kao et al. (1999).

The theoretical basis of shrinkage mapping and the
derivation of the shrinkage estimates were given by
Xu (2007a). The basic idea was to treat each QTL
effect as a random variable so that the variance of the
QTL effect can be estimated from the data. This
variance is then used as a shrinkage factor to shrink
small effect QTLs to zero. The shrinkage method has
been applied to mapping QTLs responsible for vari-
ation of sexually dimorphic traits in Drosophila
melanogaster (Kopp et al., 2003). Recently, Xu & Jia
(2007) analysed seven quantitative traits of barley for
epistatic effects using the shrinkage method. They
detected many main effect QTLs and some QTLs with
epistatic effects. Huang et al. (2007) extended the
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shrinkage method to map QTLs for binary traits.
They identified several QTLs controlling the variation
of colorectal tumour development in mice.

The method is so simple to implement and yet it is
so powerful that a QTL even explaining as small as
1% of the phenotypic variance can be detected (Wang
et al., 2005; Huang et al., 2007; Xu, 2007b ; Xu & Jia,
2007). The method appears to have pointed to a new
direction for mapping multiple QTLs. Shrinkage
mapping for a single quantitative trait has been fully
developed. It is natural to extend the method to map
QTLs for multiple traits. So far there has been no
report of such an extension. Banerjee et al. (2008) re-
cently published a Bayesian multivariate mapping
procedure. They used the stochastic search variable
selection (SSVS) approach (Yi, 2004), also called
the composite model space approach, to search for the
locations of QTLs. This algorithm introduces ad-
ditional binary variables to indicate the states of
inclusion and exclusion of a locus, which is different
from the Bayesian shrinkage method. In addition, the
Bayesian method of Banerjee et al. (2008) has not
addressed the situation where a trait set contains both
continuous and categorical traits. Yang & Xu (2007)
recently explored the possibility of extending the
shrinkage method to map QTLs for dynamic traits,
traits that are measured repeatedly over time. Even
though dynamic traits can be treated as multivariate
traits, there are some important differences between
the models. The emphasis of dynamic trait mapping is
on modelling the covariance matrix structure of the
residual errors, whereas the multiple trait QTL map-
ping proposed here uses a fully unstructured residual
covariance matrix.

The proposed Bayesian mapping for multiple traits
also differ from the dynamic trait QTL mapping in
that we can handle a multiple trait set that contains
binary trait components. In fact, many traits in agri-
cultural species are measured in binary or ordered
category. For example, disease resistance traits are
commonly measured as presence or absence of disease
symptoms. These traits are not continuously distri-
buted and thus additional steps are required to link
the normal theory to categorical trait mapping. Once
categorical traits are involved in the multiple trait set,
the maximum likelihood method becomes less power-
ful, because the model will be so complicated that it
is beyond the capability of Maximum Likelihood
(ML) analysis. Therefore, Bayesian inference is one of
a few choices for modelling multiple traits with mixed
types of trait components. Korsgaard et al. (2003)
developed the multivariate Bayesian inference for a
trait set that contains both continuous and categorical
traits. However, the method is not for QTL mapping
but for classical quantitative trait analysis, aiming to
estimating heritability and genetic correlation. Xu
et al. (2005) developed an ML method for mapping

multiple trait sets with binary trait components, but
this method can only handle two traits without in-
volving Monte Carlo sampling. With more than two
traits, Monte Carlo sampling is required to generate
the liabilities of binary traits. In addition, the method
of Xu et al. (2005) is an interval mapping approach
where only a single QTL is included in a model.

The primary goal of the present work is to develop
a multivariate version of the Bayesian shrinkage
methodology for joint mapping of QTLs underlying
multiple traits. The second objective is to construct a
unified Bayesian method that is capable of handling
joint mapping of a multiple trait set with binary trait
components but treating the conventional multiple
continuous traits joint mapping (Jiang & Zeng, 1995)
and multiple dichotomous traits joint mapping (Xu
et al., 2005) as special cases. We applied the method
to both simulated and real data set. Results of the real
data analysis can be directly interpreted by interested
biologists and made available to plant geneticists and
breeders for further investigation.

2. Methods

(i) Multivariable linear model

Let yj=[y1j … yqj]
T, for j=1, …, n, be a qr1 vector

for the phenotypic values of q quantitative traits
measured from the jth individual of an F2 mapping
population, where n is the sample size. The vector of
phenotypic values is described by the following multi-
variate linear model :

yj=m+ g
p

k=1

xjkak+ g
p

k=1

zjkbk+ej, (1)

where m=[m1 … mq]
T is an qr1 vector of population

means (or intercepts) for the q traits, ak=[a1k … aqk]
T

and bk=[b1k … bqk]
T are the additive and dominance

effects, respectively, for locus k (k=1, …, p) and p is
the number of loci included in the model. Both ak and
bk are qr1 vectors because there are q traits involved
in the model. The residual error ej=[e1j … eqj]

T is a
qr1 vector with an assumed multivariate normal
distributionN(0, S), where S is a qrq positive definite
variance–covariance matrix. The independent vari-
ables, xjk and zjk, are defined as follows. Let A1A1,
A1A2 and A2A2 be the three genotypes at locus k.
These two variables are

xjk=
+1
0

x1

8<
:

for A1A1,
for A1A2,
for A2A2,

and zjk=
0
1
0

8<
:

for A1A1,
for A1A2,
for A2A2:

(2)

The scales of these independent variables are arbi-
trary. Alternative scales have been used by other in-
vestigators, e.g. Yang et al. (2006).

C. Xu et al. 24

https://doi.org/10.1017/S0016672308009956 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009956


(ii) Likelihood function

Under the assumption of normal distribution for the
residual errors, the conditional probability density
of yj is

p(yj j m,a, b,S, xj)

=N yj j m+ g
p

k=1

xjkak+ g
p

k=1

zjkbk,S

� �
:

(3)

Given xj, the phenotypes and the markers are inde-
pendent. Therefore, the joint distribution of the data
{yj, mj} is

p(yj,mj j xj, l, m,a, b,S)

=p(yj j m,a, b,S, xj)p(mj j xj, l):
(4)

wheremj represents the marker variables and p(mj | xj,
l) is the joint distribution of marker genotypes given
the genotype of QTLs and the location of the QTLs
relative to the locations of markers (Jiang & Zeng,
1997). The likelihood function of the parameters is
proportional to

p(m, y j x, l, m,a, b,S)=
Yn
j=1

p(yj,mj j xj, l, m,a, b,S),

(5)

where m={mj}j
n and y={yj}j

n are collectively called
the data, denoted by d={m, y}, and h={l, m, a, b, S}
are the parameters. The QTL genotype array,
x={xj}j=1

n , are not parameters of interest but missing
values in QTL mapping. They are interesting quan-
tities when marker-assisted selection is considered
after QTL mapping. The likelihood function serves
as a link between the data, the parameters and the
missing values. Combined with the prior distribution
of the parameters, the likelihood function is used to
derive the posterior distribution of the parameters.
The number of QTLs is p, which is supposed to be a
parameter of interest in the classical QTL mapping
experiment, but in the Bayesian shrinkage analysis, it
is a preset constant. We set p as the number of marker
intervals. If an interval does not contain a QTL, the
QTL effects will be shrunk to zero. Therefore, a QTL
with effect of zero is equivalent to being excluded
from the model. With this shrinkage analysis, model
selection is not conducted explicitly but implicitly via
shrinkage.

(iii) Prior distribution

Each of the parameters is assigned a prior distri-
bution. The population mean m can be estimated ac-
curately from the data, and thus a flat prior is given to
m, i.e. p(m)=constant. Each of the QTL effect vectors
is assigned a normal prior, p(ak)=N(ak | 0, Ak) and
p(bk)=N(bk | 0, Bk), where Ak and Bk are unknown

variance–covariance matrices with dimension qrq.
The above notation for the probability distribution
is adopted from Gelman et al. (2004), which are
equivalently expressed as akyN(0, Ak) and bkyN(0,
Bk). The key difference between the shrinkage analysis
and the usually Bayesian regression analysis is that
these prior variance–covariance matrices are effect-
specific, i.e. they vary across different loci. Another
difference between the two is that the hyper-
parameters (parameters of the prior), Ak and Bk, are
not known a priori but estimated from the data. To do
this, we give each of them a prior distribution. Once
we assign a prior distribution to a hyper-parameter,
there will be multilevel prior assignment. This is called
hierarchical modelling (Lindley & Smith, 1972). We
assign the variance–covariance matrices with the
following inverse Wishart distributions : p(Ak)=Inv-
Wishart(Ak | t, C) and p(Bk)=Inv-Wishart(Bk | t, C),
where t>q and C>0 are the prior degree of freedom
and prior scale matrix. These hyper-parameters are
already remote from ak and bk, and thus they can be
preset with some convenient values (constant across
loci) without affecting the posterior inference of the
QTL effects. To reflect the lack of knowledge, t and
C are set with values as small as possible, e.g. t=q+1
and C=0.1rIq, where Iq is a qrq identity matrix.
The residual variance–covariance matrix is also as-
signed the same inverse Wishart distribution, p(S)=
Inv-Wishart(S | t, C). Although S is a parameter of
interest, data are usually sufficient to provide an ac-
curate estimate of S, and thus the hyper-parameters
t and C will have little influence on the estimated S.
Finally, a uniform prior distribution for lk is chosen.
Since we assume that each marker interval contains
one and only one QTL, the uniform distribution for
lk is p(lk)=U(lk | jkL, jkR)=1/(jk

R–jk
L). All these priors

are independent across loci. Therefore, the joint prior
distribution of the parameters is

p(l, m,a, b,S)=p(m)p(S)
Yp
k=1

p(lk)p(ak)p(bk): (6)

The distribution of QTL genotype array is

p(x j l)=
Yn
j=1

p(xj j l): (7)

(iv) Posterior distribution

The joint distribution of the data, the parameters
(including the hyper-parameters) and the missing
values (QTL genotype array) is

p(d, h, x)=p(m, y j x, l, m,a, b,S)p(l, m,a, b,S)p(x j l):
(8)

The posterior distribution of {h, x} is

p(h, x j d) / p(d, h, x): (9)
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Although, in Bayesian analysis, we are interested in
the posterior distribution of the parameters, p(h j d)=
g

x2Xp(h, x j d), this distribution is hard to derive.
Therefore, we use the MCMC sampling to draw
samples from the distribution given by p(h, x | d). The
MCMC samples will provide an empirical distribution
of p(h, x | d), from which p(h | d) can be inferred.

To simplify the sampling process, it is easier to
sample one variable at a time conditional on values
of all other variables. The single variable defined here
means a vector of variables with the same type. For
example, ak is defined as a variable, but it is a vector
containing the additive effects for all traits. The con-
ditional posterior distribution for one variable usually
has an explicit form of the distribution, makingMonte
Carlo simulation easy. We now provide the posterior
distribution for each of the parameters.

The conditional posterior distribution of m is multi-
variate normal with mean and variance given by

E(m j . . . )= 1

n
g
n

j=1
yjx g

p

k=1

xjkakx g
p

k=1

zjkbk

� �
(10)

and

var(m j . . . )= 1

n
S, (11)

respectively, where the special notation (m|…) means
conditional on all other variables.

The conditional posterior for ak is multivariate
normal with the following mean and variance:

E(ak j . . . )= g
n

j=1
x2
jkS

x1+Ax1
k

 !x1

r g
n

j=1
xjkS

x1 yjxmx g
p

kklk

xjkkakkx g
p

k=1

zjkbk

 ! (12)

and

var(ak j . . . )= g
n

j=1
x2
jkS

x1+Ax1
k

 !x1

: (13)

Similarly, the conditional posterior for bk is also
multivariate normal with mean and variance of

E(bk j . . . )= g
n

j=1
z2jkS

x1+Bx1
k

 !x1

r g
n

j=1
zjkS

x1 yjxmx g
p

k=1

xjkakx g
p

kklk

zjkkbkk

 ! (14)

and

var(bk j . . . )= g
n

j=1
z2jkS

x1+Bx1
k

 !x1

, (15)

respectively. The conditional posterior means of ak

and bk are called the shrinkage estimates. Derivation
of the shrinkage estimates can be found in a recent
paper by Xu (2007a).

The hierarchical model also requires sampling ofAk

and Bk from their conditional posterior distribution.
The inverse Wishart prior is conjugate and thus the
conditional posteriors of Ak and Bk are also inverse
Wishart,

p(Ak j . . . )=Inv-Wishart(Ak j t+1,C+aka
T
k ) (16)

and

p(Bk j . . . )=Inv-Wishart(Bk j t+1,C+bkb
T
k ): (17)

The conditional posterior for the residual vari-
ance–covariance matrix is inverse Wishart due to the
conjugate nature of the prior,

p(S j . . . )=Inv-Wishart S j t+n,C+SSð Þ, (18)

where

SS= g
n

j=1
yjxmx g

p

k=1

xjkakx g
p

k=1

zjkbk

� �

r yjxmx g
p

k=1

xjkakx g
p

k=1

zjkbk

� �T

:

(19)

The distribution of xjk is discrete, and thus the
conditional posterior distribution can be obtained
from Bayes’ theorem. Let

g=[g1 g2 g3]
T=[+1 0 x1]T

be the three genotype indicators for the variable xjk
and

h=[h1 h2 h3]
T=[0 1 0]T

be the three genotype indicators for the variable zjk.
Assume that mjk

L=gu (u=1, 2, 3) and mjk
R=gv (v=1,

2, 3) are the observed genotypes for the two flanking
markers. The conditional posterior probability for
xjk=gw (w=1, 2, 3) is calculated using the following
Bayes’ theorem:

p(xjk=gw j . . . )=
p(xjk=gw)HkmL(w, u)HkmR (w, v)N(y*j j gwak+hwbk,S)

g3
wk=1p(xjk=gwk)HkmL (wk, u)HkmR (wk, v)N(y*j j gwkak+hwkbk,S)

, (20)
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where

p(xjk=g1)=p(xjk=g3)=1
2
p(xjk=g2)=1=4

is the Mendelian segregation ratio. Other items in the
above Bayes’ theorem are defined as follows:

y*j=yjxmx g
p

kklk

xjkkakkx g
p

kklk

zjkkbkk (21)

is the adjusted phenotypic value of individual j by re-
moving effects of all other QTLs except k. The vari-
able HkmL is the transition matrix between QTL k and
marker mL. The variable HkmR is the transition matrix
between QTL k and marker mR.

The conditional posterior distribution of the pos-
ition of QTL k, p(lk |…), has no explicit form due to
the complexity of the model. Therefore, lk must be
sampled from a Metropolis–Hastings (Metropolis
et al., 1953; Hastings, 1970) algorithm. The algorithm
presented by Wang et al. (2005) for univariate QTL
mapping can be directly adopted here for multivariate
QTL mapping.

Finally, when a marker genotype is missing, it must
be sampled from its conditional posterior distribution,
which is calculated from the followingBayes’ theorem:

p(m=gw j . . . )

=
p(m=gw)Hm(kx1)(w, u)Hmk(w, v)

g3
wk=1p(m=gwk)Hm(kx1)(wk, u)Hmk(wk, v)

,
(22)

where the marker is located between QTL kx1 and k.
The prior probability of marker genotype, p(m=gw),
takes the Mendelian segregation ratio, i.e.

p(m=g1)=p(m=g3)=1
2
p(m=g2)=1=4,

Hm(kx1) and Hmk are the transition matrices between
the marker and the two flanking QTLs, assuming that
the QTL on the left has a genotype of gu and the QTL
on the right has a genotype of gv.

If a marker is located in one end of a chromosome,
the conditional probabilities can only be calculated
based on one QTL that is proximate to the marker. In
this case, the conditional posterior probability is

p(m=gw j . . . )=
p(m=gw)Hmk(w, u)

g3
wk=1p(m=gwk)Hmk(wk, u)

, (23)

where the QTL proximate to the marker is denoted by
locus k, where k=1 means that the marker is located
in the left end and k=p means that the marker is in
the other end of the chromosome.

(v) MCMC sampling

The MCMC sampling process is summarized as
follows:

(1) Initialize all variables, including parameters and
missing values, with some values in their legal
domains.

(2) Sample m from its conditional posterior distri-
bution (multivariate normal).

(3) Sample ak and bk from their conditional posterior
distributions (multivariate normal).

(4) Sample Ak and Bk from their conditional pos-
terior distributions (inverse Wishart).

(5) Sample S from its conditional posterior distri-
bution (inverse Wishart).

(6) Sample QTL genotypes from their conditional
posterior distributions (derived from Bayes’ the-
orem).

(7) Sample genotypes of missing markers from their
conditional posterior distributions (derived from
Bayes’ theorem).

(8) Sample QTL positions from their conditional pos-
terior distribution using the Metropolis–Hastings
algorithm.

(9) Repeat steps (2)–(8) until the Markov chain is
sufficiently long. Steps (2)–(7) are called the Gibbs
sampler steps, while step (8) is called the M–H
step.

How long is sufficiently long for the Markov chain?
We used the algorithm of Gelman et al. (2004) to
check the convergence of the chain. Once the chain is
converged, one sampled observation of all variables is
saved for every 50 iterations, producing a sufficiently
large posterior sample for presentation.

(vi) Post-MCMC analysis

The product of MCMC sampling is a realized sample
of all unknown variables from the joint posterior
distribution. The MCMC does not result in a sig-
nificance test but serves as a process of creating the
empirical posterior distributions of parameters, from
which all the information about the QTL is inferred.
The most important parameters are the locations
and the effects of the QTL, while the covariance
matrices are not of immediate interest but assist in
the estimation of the effects. In the conventional
Bayesian mapping analysis (Sillanpaa & Arjas, 1998;
Xu, 2002), the marginal posterior distribution of QTL
position was graphically summarized by plotting the
number of hits by a QTL in a short region against
the location where that short region occurs in the
genome. The curve produced is called the QTL inten-
sity profile. In the present study, we assume that each
marker interval is associated with a QTL, and thus all
intervals are hit by a QTL the same number of times.
If an interval contains a real QTL, the QTL intensity
profile within the interval is expected to show a
peak. Otherwise, the intensity profile will be flat
(uniform). Such a QTL intensity profile is denoted by
f (l), where l now denotes a particular location of the
genome.

The QTL intensity profile itself is not the best
indicator of the QTL location under the Bayesian
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shrinkage analysis. We propose to weigh the intensity
profile by the QTL effects and use the weighted QTL
intensity profile to indicate the locations of the QTL.
The majority of the genome segments have negligible
QTL effects and thus only the areas with nontrivial
QTL effects will show clear peaks. Let a(l) and b(l)
be qr1 vectors of additive and dominance effects,
respectively, of QTL collected at position l of the
genome. There are many ways to present the QTL
effects as functions of genome location. However,
we choose the following profile to present the QTL
effects :

g(l)=1
2
aT(l)a(l)+1

4
bT(l)b(l): (24)

The coefficients 1
2
and 1

4
in front of the quadratic

terms are the expected variances of xjk and zjk across
individuals within the F2 population (assuming no
segregation distortion). This QTL effect profile g(l)
reduces to g(l)=1

2
a2(l)+1

4
b2(l) in the special case

of single trait analysis, which is the QTL variance
at location l. If desired, one can also draw the
QTL effect profile for each trait or each effect of the
trait (additive or dominance). The QTL effect profile
presented here is the overall effect on the entire
genome.

The weighted QTL intensity profile is defined as

w(l)=f(l)g(l): (25)

The intensity profile f(l) does not tell much about
QTL across marker intervals because each interval is
hit by the same number of QTLs, but if an interval
contains a QTL, f(l) is able to show a peak within that
interval. The QTL effect profile g(l), on the other
hand, can pick up the intervals with large effect QTL,
but it is not sensitive to the change of location within
an interval. Therefore, the weighted intensity profile
w(l) can pick up the intervals with QTL and also
show sharp peaks within intervals.

In practice, not all traits are measured in the same
scale. The profile of the overall QTL effect may be
dominated by the traits with large variances. Two
approaches may be taken to eliminate this problem.
One is to standardize all traits before the analysis so
that they all have roughly the same variance. Alterna-
tively, g(l) may be modified by

g(l)=1
2
aT(l)Sx1a(l)+1

4
bT(l)Sx1b(l), (26)

where S is the residual covariance matrix.
Pleiotropic effects can be visualized by comparing

the weighted QTL intensity profiles for individual
traits. Let a(l)=[a1(l) … aq(l)]

T be the additive ef-
fects of QTL at location l, where ai (l) is the effect for
the ith trait for (i=1, …, q). Pleiotropic effect occurs
at position l if more than one component of a(l) is
noticeably large.

(vii) Extension to binary traits

With little effort, the method can be extended to
handle binary traits. A binary trait is a categorical
trait with two states : presence and absence. Recall
that yj=[y1j … yqj]

T is a vector of phenotypic values
for q quantitative traits. If the ith trait is binary, the
phenotype is denoted by wij={0, 1} with 0 represent-
ing absence and 1 representing presence. Under the
threshold model for a binary trait (Xu et al., 2005), we
propose that trait i is still a quantitative trait, but
we cannot observe yij. This latent quantitative trait,
however, determines the observed binary phenotype.
We propose a hypothetical threshold ti=0 so that
wij=0 for yijfti and wij=1 for yij>ti. The latent
variable is still described by the usual linear model
with normal residual error except that the residual
error variance is set to 1 because it is not estimable.
Under this threshold model, we can derive the con-
ditional posterior distribution of yij given wij, the
phenotypic values of all other traits and the current
parameter values. This conditional posterior distri-
bution happens to be a truncated normal distribution,
from which yij is sampled. Detailed algorithm for
sampling yij has been given by Xu et al. (2005).
Korsgaard et al. (2003) provided a general method for
sampling the liability for ordered categorical traits.
Again, their method is not for QTL mapping but
for classical quantitative trait analysis. Once yij is
sampled, yj becomes a full vector of quantitative trait
values. The MCMC sampling schemes described
earlier applies. Therefore,mappingmultiple traits with
one or more binary trait components requires only
one more step of sampling the missing phenotype of
an underlying quantitative trait.

3. Results

(i) Simulated data

To investigate the applicability of the proposed
method, two simulation experiments were conducted.
In the first experiment, a single chromosome of length
100 cM with 11 evenly spaced markers was simulated.
The experimental population was an F2 containing
500 individuals. Three pleiotropic QTLs with different
levels of heritability (the proportions of variance ex-
plained by the simulated QTL) were simulated on the
chromosome to jointly control the expression of three
different traits. The detailed settings of their locations,
the genetic effects and heritability are given in Table 1.
The overall mean vector and the residual covariance
matrix were set at

m=
0
0
0

2
4
3
5 and S=

1 0�25 0�5
0�25 1 x0�3
0�5 x0�3 1

2
4

3
5,
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respectively. In order to demonstrate the joint
mapping procedure for different combinations of
phenotypes, we analysed three data sets : multiple
quantitative traits, multiple binary traits and multiple
traits with some binary components. Data one was
simulated for three quantitative traits. Data two was
generated by truncating each continuous phenotype
in the first data set into a binary phenotype using a
threshold value of ti=0 for i=1, 2, 3. Data three
contains one ordinal trait and two continuous traits,
which was obtained through truncating only the third
liability into an ordinal of three categories using
truncation points of t1=0 and t2=1.0 but left the first
two traits intact. Note that for three categories, there
are two truncation points. The hyper-parameter
values in the inverse Wishart distribution were chosen
as t=q+1 and C=Iq.

The second simulation experiment was designed to
evaluate the performance of the proposed method in
the scenario when the number of model effects is very
large. In this experiment, we simulated a genome of
1500 cM with 151 markers for an F2 population of
500 individuals. For convenience of programming, we
arranged all markers in a single large chromosome
with a 10 cM distance between consecutive markers.
We put ten QTLs along the genome controlling the
expression of two traits. The location, effect and heri-
tability of each simulated QTL are listed in Table 2.

The total proportions of phenotypic variance ex-
plained by all QTLs for the two traits were 67 and
63%, respectively. The true values of the intercepts
and the residual variance–covariance matrix were

m= 0
0

� �
and S= 1 0�25

0�25 1

� �
:

We first simulated the liabilities of two traits and
then artificially converted both liabilities into binary
phenotypes using a threshold of zero. Only the binary
responses were analysed in the present study. In this
experiment, we have a total of 602 regression coef-
ficients (one QTL per marker interval) plus a residual
covariance matrix included in the model. The prior
distributions given in the first experiment were also
used here for the second experiment.

Each data sample was analysed using the multi-
variate Bayesian method developed in the present
study. For all analyses, the proposed MCMC sampler
was run for 52 000 sweeps and the first 2000 sweeps
were discarded for the burn-in period (convergence
was confirmed). The chain was trimmed by saving one
observation in every 50 sweeps to reduce serial corre-
lation. The total number of samples collected for the
post-MCMC analysis was therefore 1000. The stored
samples were used to infer the parameters of interest,
including the locations and genetic effects of QTL

Table 2. Locations and effects of simulated QTL in the second simulation experiment

QTL
Position
(cM)

Trait 1 Trait 2

Heritability
(%)

Additive
effect

Dominance
effect

Heritability
(%)

Additive
effect

Dominance
effect

qtl1 35 15 0.5 0.45 15 0.5 0.45
qtl2 55 10 0.4714 0 0 0 0
qtl3 140 0 0 0 5 0 0.4588
qtl4 365 10 x0.4 x0.35 10 x0.4 x0.35
qtl5 400 5 0.2 0.36 0 0 0
qtl6 650 0 0 0 14 x0.4588 x0.4588
qtl7 892 10 0 0.6667 10 0.4714 0
qtl8 1068 4 0 x0.404 4 0 x0.404
qtl9 1340 5 0.3244 0 5 0 x0.4588
qtl10 1405 8 x0.417 0 0 0 0

Table 1. Locations and effects of simulated QTL in the first simulation experiment

QTL
Heritability
(%)

Position
(cM)

Trait 1 Trait 2 Trait 3

Additive
effect

Dominance
effect

Additive
effect

Dominance
effect

Additive
effect

Dominance
effect

qtl1 15 25 x0.5 0.45 x0.5 0.45 x0.5 0.45
qtl2 10 55 0 x0.667 0 x0.667 0 x0.667
qtl3 5 90 0.324 0 0.324 0 0.324 0
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as well as the means and the residual variance–
covariance matrix.

The QTL intensity profiles for the three data sets
in the first experiment are shown in the left panels of
Fig. 1. All the plots show three major peaks within
the third, the sixth and the ninth marker intervals,
respectively, where the three true QTLs were located.
The profiles for other intervals are almost uniform

around the value of 100, as 1000 posterior samples are
supposed to be distributed equally into ten shorter
regions. However, as we can see from the figure, the
QTL intensity profiles are not the best indicators for
QTL locations. Taking the third simulated QTL for
example (the QTL near a marker with a small herita-
bility), the intensity profile for this QTL does not
show clear peaks. The weighted QTL intensities (in
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Fig. 1. The QTL intensity profiles (left) and the weighted QTL intensity profile (right) for the three data sets in the first
simulation experiment. From top to bottom are the results of data sets one, two and three, respectively.
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the right panels of Fig. 1), however, show three very
clear peaks, indicating precisely the positions of the
simulated QTL. The weighted QTL intensity profiles
are flat in regions with no simulated QTL because the
estimated effects are very small using the proposed
shrinkage method. As expected, there is a tendency
that the first and second loci can be better detected for
their larger effects. Comparing the weighted QTL in-
tensity profiles of the three data sets, we find that the
resulting peaks from data set one are generally higher
than the other two data sets, while those from data
set three are better than data set two. This can be
explained by the numbers of continuous phenotypes
included. Obviously, data sets with more continuous
traits in the multiple trait set contain more infor-
mation than the multiple trait set containing less
number of continuous traits. The posterior means and
posterior standard deviations of QTL effects are sum-
marized in Table 3. The posterior means and pos-
terior standard deviations of the population means
and residual covariance matrix are given in Table 4.
Overall, the parameter estimates are fairly close to the
true parametric values (Table 1) except that the domi-
nance effects of qtl1 are underestimated. No obvious
difference is found among the three data sets with re-
spect to the estimates of QTL effects. The precisions
of the estimates from the first data set are slightly
higher than those of the other two data sets.

The second simulation experiment was to investi-
gate the efficacy of the method when applied to a
large genome with more QTLs. Figure 2 shows the
weighted QTL intensity profile for a random sample
of the experiment. Nine clear peaks have been shown
and their positions are very close to those of the true
positions simulated (Table 2). The QTL located at
position 1340 cM failed to be detected due to its small
effects. As expected, the signal of the largest QTL (at
location 35) is extremely clear, while those of QTLs

at locations 140 and 650 cM are relatively weak. We
can see that the method has a high resolution to sep-
arate the two closely linked QTLs (qtl1 and qtl2). The
estimated QTL locations and effects for the simulated
genome data are given in Table 5. Compared with
Table 2 where the true effects are listed, we see that
most of the effects are estimated accurately and pre-
cisely. This experiment demonstrated that the pro-
posed Bayesian method can detect QTLs effectively
when handling a large genome.

(ii) Rice data analysis

Blast resistance is one of the major objectives in rice
(Oryza sativa L.) breeding in both tropical and tem-
perate countries. The causal blast fungus, Pyricularia
grisea, is known for its genetic instability, allowing it
to overcome the genetic resistance of host plants. A
framework linkage map was developed using 284 F10

recombinant inbred lines (RILs) from a ‘Lemont’r
‘Teqing’ rice cultivar cross. Evaluation of a subset of
260 of these RILs with five races of the fungus, IC17,
IB49, IB54, IG1 and IE1, was used to map resistant
QTLs. In practice, biologists are usually more in-
terested in loci with a wide spectrum of resistance than
identifying resistance loci to individual races. Details
of the design and the measurements of phenotypes
and genotypes can be found in the original paper by
Tabien et al. (2000). The original scores of the plant
response were measured from grades 0–5. The aver-
age score of three replicates for each line was recorded
as the observed raw data. However, we were only pro-
vided with the binary output because the investigators
were more interested in QTLs responsible for the
binary phenotypes. The binary phenotype of each trait
was defined as w=0 if the average score was within
the range 0–3 and w=1 when the score was 4–5. Each
race-specific phenotype is treated as one trait here.

Table 3. Bayesian estimates (posterior means and posterior standard deviations) of locations and genetic
effects of QTL in the first simulation experiment

Data
set QTL

Position
(cM)

Trait 1 Trait 2 Trait 3

Additive
effect

Dominance
effect

Additive
effect

Dominance
effect

Additive
effect

Dominance
effect

One qtl1 27 x0.59 (0.08) 0.28 (0.12) x0.49 (0.06) 0.28 (0.14) x0.56 (0.07) 0.42 (0.12)
qtl2 55 0.00 (0.01) x0.60 (0.11) 0.00 (0.01) x0.61 (0.13) 0.00 (0.01) x0.55 (0.11)
qtl3 89 0.27 (0.07) 0.00 (0.01) 0.17 (0.06) 0.00 (0.01) 0.39 (0.07) 0.00 (0.01)

Two qtl1 25 x0.51 (0.09) 0.15 (0.16) x0.57 (0.08) 0.16 (0.17) x0.44 (0.11) 0.11 (0.12)
qtl2 54 0.00 (0.01) x0.53 (0.10) 0.00 (0.01) x0.46 (0.09) 0.00 (0.01) x0.61 (0.09)
qtl3 89 0.36 (0.06) 0.00 (0.01) 0.39 (0.06) 0.00 (0.01) 0.24 (0.05) 0.00 (0.01)

Three qtl1 26 x0.49 (0.14) 0.15 (0.16) x0.44 (0.13) 0.20 (0.17) x0.42 (0.13) 0.30 (0.24)
qtl2 55 0.00 (0.01) x0.58 (0.13) 0.00 (0.01) x0.68 (0.12) 0.00 (0.01) x0.74 (0.14)
qtl3 90 0.35 (0.09) x0.00 (0.01) 0.32 (0.10) 0.00 (0.01) 0.40 (0.11) 0.00 (0.01)

Data set one: all traits are continuous; data set two: all traits are binary; data set three : the last trait is ordinal.
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Therefore, we have five binary traits for the multi-
variate Bayesian analysis. Since the mapping popu-
lation was a RIL population, we need to replace the
4r4 probability transition matrix of F2 by that of a
2r2 transition matrix applied to F10 in the calculation
of conditional probability of QTL genotype (Jiang &
Zeng, 1997).

The setup of the MCMC sampler was exactly the
same as that of the simulation study. The mapping
profiles are portrayed in Fig. 3, which shows that
there are a total of eight resistant QTLs on chromo-
somes 2, 3, 11 and 12, respectively. The Bayesian esti-
mates of locations and genetic effects of resistant
QTLs are summarized in Table 6 and the estimates
of model means and residual variance–covariance
matrix are shown in Table 7. It is interesting to find
that the same resistant QTL may have quite different
responses to different races. For example, qtl2-2 was
resistant to race IB54 but susceptible to the other four
races. A similar pattern can be found for qtl11-2. The
biological mechanisms under these results deserve
further investigation.

For each component (binary) trait, we calculated
the total genetic contribution (proportion of the
liability variance contributed by the detected QTL).
Since the experimental material is RIL, we expected to
see no heterozygote. However, a small percentage
(<5%) of the markers (also the QTL) are of hetero-
zygote. We were able to modify the program to take
into account the heterozygote in the model. Assume
that the proportion of heterozygote for a QTL is
5%, which leads to 47.5% for each homozygote. The
variance of x (coefficient for the additive effect) and
the variance for z (the coefficient for the dominance
effect) are 0.95 and 0.0475, respectively. The total
genetic variance for a single trait is

s2
G=g0�95a2

k+g0�0475b2
k,

where ak and bk are the additive and dominance ef-
fects, respectively, for the trait in question. Since the
residual error variance of the liability for each trait isT
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Fig. 2. The weighted QTL intensity profile for the second
simulation experiment.
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set to 1, the proportion of the liability variance con-
tributed by all the detected QTLs is

H2=
s2
G

s2
G+1

=
g0�95a2

k+g0�0475b2
k

s2
G+1

=h2
a+h2

b:

We call H2 the heritability of the trait, which is par-
titioned into ha

2 (the additive component) and hb
2 (the

dominance component). These values are listed in
Table 7 (the bottom line) for all the five traits. We can
see that the dominance component is negligible for all

Table 5. Bayesian estimates (posterior means and posterior standard deviations) of locations and genetic
effects of QTLs in the second simulation experiment

QTL
Position
(cM)

Trait 1 Trait 2

Additive
effect

Dominance
effect

Additive
effect

Dominance
effect

qtl1 35 0.46 (0.24) 0.58 (0.17) 0.31 (0.15) 0.46 (0.14)
qtl2 54 0.45 (0.28) 0.00 (0.01) 0.12 (0.16) 0.00 (0.01)
qtl3 126 0.06 (0.09) 0.00 (0.01) 0.06 (0.10) 0.00 (0.01)
qtl4 364 x0.19 (0.13) x0.02 (0.09) x0.36 (0.21) x0.01 (0.06)
qtl5 406 0.00 (0.01) 0.19 (0.22) 0.00 (0.01) 0.00 (0.07)
qtl6 646 x0.05 (0.08) 0.00 (0.02) x0.33 (0.20) 0.00 (0.02)
qtl7 890 0.02 (0.07) 0.25 (0.29) 0.10 (0.13) 0.05 (0.07)
qtl8 1065 0.00 (0.01) x0.17 (0.16) 0.00 (0.01) x0.29 (0.24)
qtl10 1400 x0.27 (0.19) 0.00 (0.01) x0.03 (0.07) 0.00 (0.03)
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Fig. 3. The weighted QTL intensity profiles in the ‘Lemont’r‘Teqing’ RIL rice population for chromosomes 1, 2, 11
and 12. Other chromosomes show no QTL effects.

Mapping QTL for multiple traits 33

https://doi.org/10.1017/S0016672308009956 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009956


traits. For the additive component, the first trait
(IC17) and the last trait (IE1) have the highest heri-
tability, i.e. these two traits are largely contributed by
the additive genetic variance.

4. Discussion

In QTL mapping experiments, quantification of
phenotypes generally includes use of multiple com-
ponent traits, which could be different indicator traits
for the evaluation of one complex agricultural charac-
ter. For example, multiple physiological traits are
associated with water-logging tolerance in plants, re-
actions to specific pathogenic races or strains in the
study of rice blast resistance as discussed in the pres-
ent study. Multiple traits may also be defined as
several measurements of the same character under
various environments or developmental stages (Zeng,
2005). Facilitated with the well-developed methods
and software tools, investigators have a tendency to
perform mapping on each trait separately and then
report the results in a summary format. A more ap-
pealing approach, however, is to jointly analyse the
whole suite of traits. The advantages of using the
joint mapping methods over the single-trait ones have
been recognized and appreciated by many researchers
(Jiang & Zeng, 1995; Ronin et al., 1999; Knott &
Haley, 2000; Korol et al., 2001; Cui & Wu, 2005; Xu
et al., 2005; Zeng, 2005). Here, we briefly review some
of them. First, since most of these traits are correlated
genetically or environmentally, taking into account
the correlation structure into the analysis can signifi-
cantly increase the detection power. Second, the aug-
mentation of observations in joint mapping method
may cause reduced effect of error variance, making
the estimation more precise. Third, the joint method
offers an opportunity to test a series of biologically
interesting hypotheses underlying the correlations
between the traits. The role of genetic correlations in
driving or constraining phenotypic evolution is of
major interest in evolutionary genetics. Finally, and
probably more meaningfully, it provides a frame-
work within which we can understand the genetic
architecture of a trait complex. However, current
methods for joint mapping have only focused on the
single-QTL model or the background control model
(covariate markers that are in the model to control
the genetic background). It is now known that when
multiple QTLs are present in the same linkage group,
the single-QTL model can lead to biased estimates
of QTL positions and their effects. Although the
composite interval mapping method for multiple
traits joint analysis developed by Jiang & Zeng (1995)
can reduce the biases by using multiple regression
on markers outside the tested interval to absorb ef-
fects of other QTLs, the main problem of compositeT
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interval mapping in practice is how many and which
markers should be chosen as covariates in the fitted
model.

Most methods described above are designed for
normally distributed traits. Many important traits
show a binary or ordinary phenotype such as the re-
sistance to plant disease in our example. These traits
are usually explained by the threshold model, in
which a fixed threshold is used to link the discrete
phenotype and the latent continuous variable or
liability (Lynch & Walsh, 1998; Yi & Xu, 2000). In
practice, multiple discrete traits are often collected in
QTL mapping experiments. Some authors (Williams
et al., 1999; Huang & Jiang, 2003) incorporated this
situation in the context of human genetic mapping
under the Identical-By-Descent (IBD)-based random
model. Xu et al. (2005) first used this idea in exper-
imental populations by developing a joint mapping
method for multiple binary characters under the ML
framework. The work of Xu et al. (2005), however,
was derived in the context of interval mapping. The
results from fitting the single-QTL model may result
in inconsistent results as all QTL effects outside the
interval are totally ignored. The extension to multiple-
QTL is difficult using the conventional method, due to
the large number of unobservable parameters to be
estimated. The method becomes more complicated
when each trait involves more than one threshold. In
the present paper, we have successfully demonstrated
that the proposed Bayesian mapping method can be
implemented to handle the complexity of multiple
ordinal traits based on the multiple-QTL model. The
posterior intensity profile provides very clear signal at
the simulated position of QTL, in which even a small
QTL can produce a noticeable peak and closely linked
loci can be well separated. Satisfactory results have
also been shown in the estimation of all other par-
ameters including QTL effects and trait correlations.
The posterior variances and credibility intervals for
the estimates of QTL locations and effects can also be
easily obtained upon the implementation. We have
further made the method applicable to multiple trait
sets that contain binary trait components.

The prototype of the Bayesian shrinkage mapping
was actually developed in the marker analysis of Xu
(2003), who used the prior knowledge that most
markers have negligible effects and further provided a
method of discriminating the effects across markers.
Similarly, in our Bayesian framework, each QTL
effect vector within marker interval was assigned a
multivariate normal prior distribution with mean
vector zero and a unique covariance matrix. The
effect-specific prior covariance matrix was further as-
signed an inverse-Wishart prior so that the covariance
matrix can be estimated from the data. It is worth
noting that the key to our success is how to choose the
real positive-definite matrix C of the inverse-Wishart
prior distribution for each QTL effect vector. We
found that a diagonal matrix with an identical but
large element, say 105, as the pre-specified C, can
ensure that the true QTL is picked up in either the
simulated data analysis or the real data analysis.

Similar to the univariate Bayesian shrinkage analy-
sis of Xu (2003) and Wang et al. (2005), our model is
based on the assumption that every marker interval
contains a QTL. All potential effects are included in a
single model but those negligible effects are forced to
shrink towards zero. One major criticism of such an
approach is that it is unnecessary and unreasonable
to cover such a large number of covariates, because
most intervals do not include QTLs, and genotypic
indicator variables of flanking short intervals are
usually highly correlated. One solution is to fix these
effect intervals at certain length, regardless of the num-
ber of markers contained. We have implemented this
feature into our SAS program and reanalysed the data
generated in the first simulation experiment with a
fixed interval of 45 cM. The results are fairly similar to
what we presented above but the computing time has
been greatly reduced. Wang et al. (2005), however,
warned in their study that scanning intervals with
larger distance may fail to detect some QTLs that can
be detected by the original method. The full inclusion
of the potential effects leads to another drawback of
the current method that it is hard to incorporate prior
knowledge about the number and the positions of

Table 7. Bayesian estimates (posterior means and posterior standard
deviations) of the intercepts and the residual variance–covariance matrix
in the ‘Lemont ’r‘Teqing ’ RIL rice population

Trait Model mean

Residual variance–covariance

IB49 IB54 IG1 IE1

IC17 x1.05 (0.19) 0.43 (0.08) 0.34 (0.09) 0.39 (0.09) 0.49 (0.07)
IB49 x1.10 (0.18) 0.32 (0.09) 0.35 (0.09) 0.43 (0.07)
IB54 x1.19 (0.17) 0.33 (0.09) 0.33 (0.09)
IG1 x1.17 (0.17) 0.39 (0.09)
IE1 x0.70 (0.15)
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QTL. The reversible-jump MCMC-based method
may serve for this purpose (Sillanpaa & Arjas, 1998).
Nevertheless, the proposed method is still expected to
have a wide application in multi-trait analysis as it is
quite straightforward and much easier to implement.

The Bayesian shrinkage analysis has been shown to
be able to handle oversaturated models where the
number of the model coefficients is much greater than
the sample size. The special way of updating the pos-
terior mean and posterior variances of QTL effects
allows the method to selectively shrink those negli-
gible effects. The regularization can actually be inter-
preted as ridge regression (Hoerl & Kennard, 1970)
where the penalty added to the diagonal of the coef-
ficient matrix is replaced by the ratio of residual
variance to the variance parameters of the QTL effects.
While both the proposed Bayesian method and the
ridge regression achieve better prediction by shrinking
the model coefficients, they cannot produce a parsi-
monious model as they naturally keep all predictors.
Since every potential interval along the genome must
be updated in each round of the iterations, our ap-
proach is more computationally intensive than the
model selection methods such as the reversible-jump
MCMC. Therefore, our next step is to explore a pro-
cedure in which some putative QTLs can be excluded
from the model based on certain criteria. For in-
stance, those loci constantly drawn with small effects
after some consecutive cycles of iterations can be de-
leted from the model. A more feasible solution is to
introduce the ideas of least absolute shrinkage and
selection operator (LASSO) regression, which penal-
izes a least squares regression by the sum of the ab-
solute values (L1-norm) of the coefficients (Tibshirani,
1996). This technique actually does both shrinkage
and variable selection due to the nature of the con-
straint region, which often results in many coefficients
becoming exactly zero. The LASSO estimate for
linear regression parameters can be interpreted as a
Bayesian posterior mode estimate when the priors on
the regression parameters are independent double-
exponential (Laplace) distributions. This posterior
can also be accessed through a Gibbs sampler using
conjugate normal priors for the regression coeffi-
cients, with independent exponential hyper-priors on
their variances (Park & Casella, 2005).
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