
1 Propagator and Resolvent

1.1 Introduction

The first chapter of this book is somewhat eclectic. It introduces concepts and tools
that will be important later, and it also develops subjects that are not emphasized in
many standard or more elementary courses of quantum mechanics.

We start by presenting the unitary time evolution operator and its integral kernel
in the space representation, also known as the quantum-mechanical propagator. This
important gadget reappears as the Moyal operator in the phase space formulation
of Chapter 3, and it will be the central object in the path integral formulation of
Chapter 4. The resolvent operator and Green’s functions are also closely related
to the quantum-mechanical propagator, and they play an important role in formal
developments and in scattering theory. Although we do not present the general theory
of scattering in this book, we dedicate a section to scattering in one-dimension,
which illustrates the theory of the resolvent with explicit constructions. Some of
the examples discussed in the section on one-dimensional scattering also provide our
first examples of resonances, which we will study in much more detail in Chapter 5.

1.2 The Quantum-Mechanical Propagator

In quantum mechanics, time evolution between an initial time t0 and a final time t f
is implemented by the unitary operator

U(t f , t0), (1.2.1)

which connects the quantum state of the system at time t = t0 with the state at t = t f :

U(t f , t0) |ψ(t0)〉 = |ψ(t f )〉. (1.2.2)

It obviously satisfies the convolution law,

U(t f , t0) = U(t f , t1)U(t1, t0). (1.2.3)

Let H be the Hamiltonian operator of the quantum system. By using Schrödinger’s
equation,

i�
d
dt
|ψ(t)〉 = H|ψ(t)〉, (1.2.4)
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2 Propagator and Resolvent

we deduce the evolution equation for the operator U(t, t0):

i�
∂U(t, t0)
∂t

= HU(t, t0), (1.2.5)

with initial condition

U(t0, t0) = 1. (1.2.6)

When the Hamiltonian H is time-independent (as we will assume most of the time in
this book), we can solve the evolution equation to give

U(t f , t0) = e−
i
�
H(t f −t0) . (1.2.7)

In this case, the evolution operator is invariant under time translation and only
depends on the difference

T = t f − t0. (1.2.8)

It is convenient to work in the position representation for the position operator.
The corresponding eigenstates will be denoted by |q〉, where q ∈Rd . The integral
kernel of the evolution operator in the position representation is called the quantum-
mechanical (QM) propagator:

K (q f , q0; t f , t0) = 〈q f |U(t f , t0) |q0〉. (1.2.9)

The QM propagator can be regarded as a wavefunction at time t = t f ,

ψ(q, t f ) = K (q, q0; t f , t0), (1.2.10)

which is obtained by evolving in time the state |q0〉 at t = t0. This initial state is
described by the wavefunction

ψ(q, t0) = δ(q − q0), (1.2.11)

and it is an eigenfunction of the position operator with eigenvalue q0. The QM
propagator has a direct physical interpretation: it gives the probability amplitude
that a particle located is at the point q f at time t f , given that it was at the point q0 at
time t0.

The evolution operator and the QM propagator contain detailed information about
the spectrum and eigenfunctions of the Hamiltonian. Indeed, let us assume that H has
a discrete and nondegenerate spectrum En, n ≥ 0, with orthonormal eigenfunctions
|φn〉. Then, we have the spectral decompositions,

U(t f , t0) =
∑
n≥0
|φn〉e−iEn (t f −t0)/�〈φn |, (1.2.12)

or, equivalently,

K (q f , q0; t f , t0) =
∑
n≥0

φn(q f )e−iEn (t f −t0)/�φ∗n(q0). (1.2.13)

Finally, let us note that the QM propagator is a solution of the time-dependent
Schrödinger equation. If we denote the quantum counterparts of the canonical
coordinates and momenta by the vectors of Heisenberg operators

q = (q1, . . . , qn), p = (p1, . . . , pn), (1.2.14)
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then the QM propagator satisfies

i�
∂

∂t f
K (q f , q0; t f , t0) = H

(
q f ,−i�

∂

∂q f

)
K (q f , q0; t f , t0), (1.2.15)

as well as

i�
∂

∂t f
K (q f , q0; t f , t0) = H

(
q0, i�

∂

∂q0

)
K (q f , q0; t f , t0). (1.2.16)

The evolution operator in quantum mechanics is closely related to other useful
quantities. The first one is the (unnormalized) density operator for the canonical
ensemble. This is defined by

ρ(β) = e−βH, (1.2.17)

and we recall that kBβ is the inverse temperature of the system. The density operator
can be obtained from the evolution operator by the so-called Euclidean continuation
or Wick rotation:

T = −iu, u = β�. (1.2.18)

Therefore, if we know the evolution operator, we know the density operator, and if
we know the QM propagator, we know the integral kernel of the density operator,
sometimes called the density matrix,

〈q |ρ(β) |q′〉 = ρ(q, q′; β). (1.2.19)

More precisely, for a theory with a time-independent Hamiltonian, we have

ρ(q, q′; β) = K (q, q′; −i�β, 0). (1.2.20)

Note that the unnormalized density matrix satisfies the differential equation

− ∂
∂β
ρ(q, q′; β) = H

(
q,−i�

∂

∂q

)
ρ(q, q′; β), (1.2.21)

which is sometimes called the Bloch equation. This is the counterpart of (1.2.15).
The initial condition is

ρ(β = 0) = 1. (1.2.22)

This is of course the analogue of (1.2.5). The canonical partition function is easily
obtained from the unnormalized density operator,

Z (β) = Tr ρ(β) =
∫
Rd

dq ρ(q, q; β). (1.2.23)

The density matrix is even more useful than the QM propagator when extracting the
spectral information, since it has the spectral decomposition

ρ(q, q′; β) =
∑
n≥0

φn(q)e−βEnφ∗n(q′). (1.2.24)

This means that we can extract the energies and eigenfunctions by performing a
low temperature expansion (i.e. by considering the limit β → ∞). The leading-order
term gives the energy and wavefunction of the ground state, the next-to-leading term
contains information about the first excited state, and so on.
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4 Propagator and Resolvent

Let us now present three important examples where the quantum-mechanical
propagator can be computed in closed form: the free particle, the harmonic oscillator,
and a particle in a linear potential.

Example 1.2.1 Propagator for the free particle. The QM propagator can easily be
computed for a free particle in one dimension, with Hamiltonian

H =
p2

2m
. (1.2.25)

Indeed, we have

K (qf , q0; t f , t0) = 〈qf | exp

[
−

i(t f − t0)p2

2m�

]
|q0〉

=

∫
R

〈qf |p〉〈p| exp

[
−

i(t f − t0)p2

2m�

]
|q0〉dp

=
1

2π�

∫
R

eip(q f −q0)/�e−
i(t f −t0 )p2

2m� dp

=

(
m

2πi�(t f − t0)

)1/2

exp

[
im

2�(t f − t0)
(qf − q0)2

]
,

(1.2.26)

where we have used the Gaussian integral formula (C.1) and the result for the plane
waves

〈q |p〉 = ψp (q) =
1
√

2π�
eipq/�. (1.2.27)

From (1.2.26), we can also deduce the canonical density matrix for a free particle:

ρ(q, q′; β) =

(
m

2πβ�2

)1/2

exp

[
− m

2β�2 (q − q′)2
]

. (1.2.28)

The generalization to D dimensions is straightforward. We have, for example,

K (q f , q0; t f , t0) =

(
m

2πi�(t f − t0)

)D/2

exp

[
im

2�(t f − t0)
(q f − q0)2

]
. (1.2.29)

In this way, one finds the well-known expression for the thermal partition function of
a free particle in D dimensions:

Z (β) =

(
m

2πβ�2

)D/2

VD , (1.2.30)

where VD is the volume where the particle lives. �

Example 1.2.2 Propagator for the harmonic oscillator. Let us consider a quantum
harmonic oscillator in one dimension, with Hamiltonian

H =
p2

2m
+

mω2q2

2
. (1.2.31)

We will set t0 = 0, which we can always do when H is time independent. Let us recall
that the time-dependent Heisenberg operators associated to q, p are given by

qH (t) = eiHt/� q e−iHt/�, pH (t) = eiHt/� p e−iHt/�. (1.2.32)
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They satisfy the Heisenberg equation of motion (EOM), which reads in this case as

q̇H (t) =
1
m
pH (t), ṗH (t) = −mω2qH (t), (1.2.33)

and can be integrated to give

qH (t) = cos(ωt)qH (0) +
1

mω
sin(ωt)pH (0),

pH (t) = −mω sin(ωt)qH (0) + cos(ωt)pH (0).
(1.2.34)

We also recall that qH (0) = q, pH (0) = p are the operators in the Schrödinger
representation. Let us also denote

|q0(t)〉 = e−iHt/� |q0〉. (1.2.35)

We want to calculate

K (qf , q0; t, 0) = 〈qf |q0(t)〉. (1.2.36)

We first note that

〈qf |qH (−t) |q0(t)〉 = 〈qf |e−iHt/� q eiHt/�e−iHt/� |q0〉 = q0K (qf , q0; t, 0). (1.2.37)

On the other hand, by using the explicit solution of qH (−t), we find

〈qf |qH (−t) |q0(t)〉 = cos(ωt)〈qf |qH (0) |q0(t)〉 − 1
mω

sin(ωt)〈qf |pH (0) |q0(t)〉

= cos(ωt)qf K (qf , q0; t, 0) +
i�

mω
sin(ωt)

∂

∂qf
K (qf , q0; t, 0).

(1.2.38)

Putting both results together, we obtain the following differential equation for the
propagator:

∂

∂qf
K (qf , q0; t, 0) =

mω
i� sin(ωt)

(
q0 − qf cos(ωt)

)
K (qf , q0; t, 0), (1.2.39)

whose solution is

K (qf , q0; t, 0) = N(t) exp

[
imω
� sin(ωt)

(
1
2

q2
f cos(ωt) − qf q0

)]
. (1.2.40)

Here, N(t) is an undetermined function of t. To find this function, we use that

i�
∂

∂t
K (qf , q0; t, 0) = 〈qf |H|q0(t)〉 = ��− �

2

2m
∂2

∂q2
f

+
mω2

2
q2
f
�� K (qf , q0; t, 0).

(1.2.41)

Plugging (1.2.40) into this equation, we obtain

∂N
∂t
=

(
−ω

2
cot(ωt) − imω2

2� sin2(ωt)
q2

0

)
N(t), (1.2.42)

which is easily integrated to

N(t) =
C

√
sin(ωt)

exp

(
imω
2�

cot(ωt)q2
0

)
. (1.2.43)
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The quantum propagator can then be expressed as,

K (qf , q0; t, 0) =
C

√
sin(ωt)

exp

[
imω

2� sin(ωt)

((
q2
f + q2

0

)
cos(ωt) − 2qf q0

)]
.

(1.2.44)

The constant C can be determined by considering the free particle limit ω → 0. In
this limit, we should recover the result (1.2.26). This fixes

C =

√
mω
2πi�

, (1.2.45)

and we finally obtain

K (qf , q0; t f , t0) =

√
mω

2πi� sin(ωT )
exp

[
imω

2� sin(ωT )

((
q2
f + q2

0

)
cos(ωT ) − 2qf q0

)]
,

(1.2.46)

where we used time translation invariance, and T is given in (1.2.8). �

Example 1.2.3 Propagator for the linear potential. Let us consider now the quantum
Hamiltonian

H =
p2

2m
− Fq, (1.2.47)

which corresponds to a linear potential in one dimension. We can compute the QM
propagator by using a method similar to that in the previous example. The Heisenberg
EOM are

q̇(t) =
p(t)
m

, ṗ(t) = F, (1.2.48)

which can be integrated immediately to

q(t) =
Ft2

2m
+

t
m
p + q,

p(t) = Ft + p,
(1.2.49)

where q = q(0), p = p(0). Using this explicit solution we obtain

〈qf |q(−t) |q0(t)〉 =
(

Ft2

2m
+

i�t
m
∂

∂qf
+ qf

)
K (qf , q0; t, 0), (1.2.50)

and we find the equation

∂

∂qf
log K (qf , q0; t, 0) =

im
t�

(
qf − q0 +

Ft2

2m

)
. (1.2.51)

This can be integrated as

K (qf , q0; t, 0) = N(t) exp
⎡⎢⎢⎢⎢⎣ im

t�
��

q2
f

2
− qf q0�� +

iFqf t

2�

⎤⎥⎥⎥⎥⎦ . (1.2.52)
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To determine N(t), we again use the analogue of (1.2.41), which reads in this case as

i�
∂

∂t
K (qf , q0; t, 0) = 〈qf |H|q0(t)〉 = ��− �

2

2m
∂2

∂q2
f

− Fqf
�� K (qf , q0; t, 0). (1.2.53)

Plugging (1.2.52) into this equation, we find

∂

∂t
logN(t) = − 1

2t
+

iFq0

2�
−

imq2
0

2�t2 −
iF2t2

8m�
, (1.2.54)

so that

N(t) =
C
√

t
exp ��

imq2
0

2�t
+

iFq0t
2�

− iF2t3

24m�
�� . (1.2.55)

Again, the integration constant can be obtained by comparing the full result to the
free particle limit, when F → 0. Finally, one finds that,

K (qf , q0; t, 0) =

√
m

2πi�t
exp

[
im
2t�

(
qf − q0

)2
+

iFt
2�

(qf + q0) − iF2t3

24m�

]
. (1.2.56)

�

An interesting aspect of the examples we have just considered is that both the
exponent and the prefactor of the QM propagator are related to quantities in classical
mechanics. Let us consider a classical path of trajectory, q(t), satisfying the boundary
conditions

q(t0) = q0, q(t f ) = q f . (1.2.57)

The classical action is a functional of the trajectory obtained by integrating the
Lagrangian,

S(q(t)) =
∫ t f

t0

L(q(t), q̇(t))dt. (1.2.58)

As is well known from classical mechanics, this functional has an extremum when
the trajectory q(t) solves the classical EOM. Indeed, if we perform a variation δq(t)
preserving the boundary conditions (1.2.57), one has

δS
δq(t)

= − d
dt

(
∂L
∂ q̇

)
+
∂L
∂q

. (1.2.59)

Let us denote by qc (t) the solution to the Lagrange EOM with the boundary
conditions (1.2.57) (which we assume to exist and to be unique, for simplicity). Then,
we have

δS
δq(t)

����q (t)=qc (t)
= 0. (1.2.60)

In the following, we will denote by Sc the value of the classical action on the classical
trajectory:

Sc = S(qc (t)). (1.2.61)

It is a function of the boundary data q f , q0, t f , and t0.
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8 Propagator and Resolvent

In the case of the free particle in one dimension, the action reads

S(q(t)) =
m
2

∫ t f

t0

(
q̇(t)

)2 dt. (1.2.62)

The classical trajectory has constant velocity, equal to

q̇c (t) =
qf − q0

t f − t0
. (1.2.63)

The classical action is in this case,

Sc =
m
2

(qf − q0)2

t f − t0
. (1.2.64)

We can then write (1.2.26) as

K (qf , q0; t f , t0) =
1

√
2πi�

(
− ∂

2Sc
∂qf ∂q0

)1/2

eiSc /�. (1.2.65)

This result also holds for the harmonic oscillator and for the particle in a linear
potential. Let us verify it for the harmonic oscillator. The solution to the classical
EOM that satisfies the boundary conditions is

qc (t) = q0 cos (ω(t − t0)) +
qf − q0 cos(ωT )

sin (ωT )
sin (ω(t − t0)) . (1.2.66)

The classical action evaluated at this path is:

Sc =
∫ t f

t0

(
mq̇2

c

2
−

mω2q2
c

2

)
dt =

m
2

q̇c (t)qc (t)���t ft0 − m
2

∫ t f

t0

qc
(
q̈c + ω

2qc
)

dt

=
m
2

(
q̇c (t f )qc (t f ) − q̇c (t0)qc (t0)

)
=

mω
2 sin(ωT )

((
q2
f + q2

0

)
cos(ωT ) − 2qf q0

)
.

(1.2.67)

It is now easy to verify that the quantum propagator (1.2.46) also has the structure
(1.2.65).

In the conventional formulation of quantum mechanics, the result (1.2.65) is
somewhat surprising and far from obvious. Why does the calculation of a quantum-
mechanical propagator involve the classical action of Lagrangian mechanics? We
will find an a priori explanation of this structure in Chapter 4, in the context of the
path integral formulation of quantum mechanics.

1.3 Resolvent and Green’s Functions

The evolution operator U(t, t ′) is closely related to the Green’s functions of the time-
dependent Schrödinger operator

i�
∂

∂t
− H. (1.3.68)

Let us define

G±(t − t ′) = ±θ (±(t − t ′)
)
U(t, t ′). (1.3.69)
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9 Resolvent and Green’s Functions

The functions G±(t) are called retarded (respectively, advanced) Green’s functions.
Obviously,

U(t, t ′) = G+(t − t ′) − G−(t − t ′). (1.3.70)

From (1.2.5) it follows that G± satisfy the Schrödinger equation with a delta function,(
i�
∂

∂t
− H

)
G±(t − t ′) = i�δ(t − t ′), (1.3.71)

which is the defining equation for a Green’s function.
After a Fourier transform w.r.t. t, this equation will become algebraic. We then

introduce the Fourier transforms of the Green’s functions:

G±(E) =
1
i�

∫
R

eiEt/�G±(t)dt, (1.3.72)

with inverses,

G±(t) =
i

2π

∫
R

e−iEt/�G±(E)dE. (1.3.73)

Let us first consider G+(E). Since G+(t) = 0 for t < 0, we find

G+(E) =
1
i�

∫ ∞

0
eiEt/�G+(t)dt. (1.3.74)

In order to evaluate the integral over t, one introduces as a regularization the damping
factor e−εt/�, where ε > 0 and small. This is equivalent to shifting the energy:

E → E + iε. (1.3.75)

In this way, one finds

G+(E) = lim
ε→0+

1
i�

∫ ∞

0
ei(E+iε)t/�e−iHt/�dt = lim

ε→0+
1

E + iε − H . (1.3.76)

Note that, with the above regularization, the poles of G+(E) are in the lower half-
plane Im(E) < 0. Therefore, when t < 0, the integral (1.3.73) can be computed
by closing the contour in the upper half plane, and no contributions will appear,
guaranteeing that G+(t) vanishes. A similar calculation shows that

G−(E) = lim
ε→0+

1
E − iε − H . (1.3.77)

These results suggest we introduce of the resolvent operator, defined by

G(E) =
1

E − H . (1.3.78)

Here, E is in general complex, so the resolvent is an operator-valued function on the
complex plane. It follows from the above discussion that the operators G±(E) are the
limits of G(E) when E approaches the real axis from above or from below in the
complex plane, respectively:

G±(E) = lim
ε→0+

G(E ± iε). (1.3.79)

This indicates that, as a function on the complex E plane, the resolvent has a branch
cut on the real axis. We will see in a moment that this is the case already for the free
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particle in one dimension, and in Section 1.4 we will determine the analytic structure
of the resolvent.

The resolvent is an operator, and in order to explore it in detail it is more useful to
consider functions associated to it, such as its integral kernel or its trace. Its integral
kernel is

G(x, y; E) = 〈x |(E − H)−1 |y〉, (1.3.80)

and its trace will simply be denoted by

G(E) = TrG(E). (1.3.81)

It follows from (1.3.78) that the resolvent satisfies

(E − H)G(E) = 1, (1.3.82)

which is a time-independent Schrödinger equation with a delta source. If we consider
a standard one-dimensional Hamiltonian of the form

H =
p2

2m
+ V (q), (1.3.83)

we find that the integral kernel of the resolvent satisfies(
�

2

2m
d2

dx2 − V (x) + E

)
G(x, y; E) = δ(x − y). (1.3.84)

Example 1.3.1 Resolvent for the free particle in one dimension. For a free particle,

H =
p2

2m
, (1.3.85)

and the resolvent is given by

G(x, y; E) =

〈
x
������
(
E − p2

2m

)−1������ y
〉

. (1.3.86)

By introducing the resolution of identity,∫
R

dp|p〉〈p| = 1, (1.3.87)

we find

G(x, y; E) =
∫
R

〈x |p〉 1
E − p2/(2m)

〈p|y〉dp =
1

2π�

∫
R

eip(x−y)/�

E − p2

2m

dp. (1.3.88)

Since the answer only depends on the difference x − y (which is expected, due to
translation invariance), we will denote

G(x − y; E) ≡ G(x, y; E). (1.3.89)

The integral in (1.3.88) depends on the value of E. If E is not on the positive real axis,
the integral is well defined and can be computed by using the residue theorem. Let us
suppose, for example, that E < 0. In this case, there are two poles on the imaginary
axis at

±ip0 = ±i
√

2m |E | (1.3.90)
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ip0

p

p−

Figure 1.1 (Left) When E < 0, the poles are on the imaginary axis, and their position does not depend on the ε
prescription. (Right) When E > 0, the poles for G+(x;E) are as shown in the figure.

(see Figure 1.1 [left]). Depending on whether x > 0 or x < 0, we can close the contour
on the upper (respectively, lower) half plane and use Jordan’s lemma. We obtain,

G(x; E) = −1
�

√
m
−2E

e−
√
−2mE |x |/�, E < 0. (1.3.91)

Let us now suppose that E > 0. In this case, there are singularities in the integration
contour and it is crucial to shift E → E±iε, as expected from the previous discussion.
We then consider,

G±(x, y; E) = lim
ε→0+

1
2π�

∫
R

eip(x−y)/�

E ± iε − p2

2m

. (1.3.92)

Let us first consider G+(x, y; E). The poles are no longer on the real axis, but at

p±ε = ±
√

2mE ± iε (1.3.93)

(see Figure 1.1 [right]). When x > 0, we close the contour integral in the upper half
plane, and we pick up the residue of the pole with + sign. When x < 0, we close the
contour on the lower half plane. We find,

G+(x; E) = − i
�

√
m
2E

ei
√

2mE |x |/�, E > 0. (1.3.94)

If we compute G−(x; E), the poles will be at

±
√

2mE ∓ iε, (1.3.95)

and

G−(x; E) =
i
�

√
m
2E

e−i
√

2mE |x |/�, E > 0. (1.3.96)

We conclude that the integral kernel of the resolvent is the following function on the
complex plane E:

G(x; E) = − i
�

√
m
2E

ei
√

2mE |x |/�, (1.3.97)

where
√

E has a branch cut along [0,∞). In particular, we have

lim
ε→0+

√
E ± iε = ±

√
E, E > 0, (1.3.98)
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12 Propagator and Resolvent

so that we recover the functions G±(x; E) as the limits of G(x; E) as we approach
the positive real axis. In addition,

√
E = i

√
−E, E < 0, (1.3.99)

and we recover our previous result (1.3.91). A useful way to write down the resolvent
is to introduce a complex variable k such that

E =
�

2k2

2m
=
�

2 |k |2e2iα

2m
. (1.3.100)

This parametrization is such that the complex plane of E is covered as α ∈ [0, π],
i.e. as Im(k) > 0. This is called the physical sheet. When the complex energy is of
the form E + iε, with E > 0, we take k real and positive:

k =

√
2mE
�

. (1.3.101)

As we rotate in the E plane towards the negative axis, we have that α = π/2, so that
E = −|E | is negative. In this case, k is chosen to be

k = |k |eiπ/2 = i|k | = i

√
2m |E |
�

. (1.3.102)

Finally, as α = π, the complex energy is of the form E − iε, with E > 0, and

k = −
√

2mE
�

. (1.3.103)

With these conventions for k, the resolvent can be written as

G(x; E) = − im

�2k
eik |x | . (1.3.104)

�

1.4 Analytic Properties of the Resolvent

In Section 1.3 we saw that the resolvent has a nontrivial analytic structure, as a
function on the complex E plane. We will now obtain general information about
this analytic structure, in terms of spectral information of the Hamiltonian H.

In general, the Hamiltonian H will have both a discrete spectrum, with eigenvalues
En and eigenvectors |φn〉, and a continuous spectrum with generalized eigenvectors
|λ〉 and eigenvalues E(λ). Here, λ is a label for these continuous states (it could be,
for example, the momentum). The resolution of the identity for these states gives

1 =
∑
n

|φn〉〈φn | +
∫

dλ
N (λ)

|λ〉〈λ |, (1.4.105)

where

〈λ |λ′〉 = N (λ)δ(λ − λ′). (1.4.106)
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13 Analytic Properties of the Resolvent

Note that the factor of 1/N (λ) guarantees that(∫
dλ

N (λ)
|λ〉〈λ |

)
|λ′〉 = |λ′〉. (1.4.107)

Let us now multiply the above identity by (z − H)−1. We obtain,

G(z) =
∑
n

|φn〉〈φn |
z − En

+

∫
dλ

N (λ)
|λ〉〈λ |

z − E(λ)
. (1.4.108)

Let us introduce the following projector of the continuous states onto those with
energy E,

PE =

∫
dλ

N (λ)
|λ〉δ(E − E(λ))〈λ |. (1.4.109)

In terms of this projector, we can write

G(z) =
∑
n

|φn〉〈φn |
z − En

+

∫
dE

PE

z − E
. (1.4.110)

In order to write an equation for complex functions of z (instead of operator-valued
functions of z), we consider averages of the resolvent over an arbitrary unit norm
state |u〉:

Gu (z) = 〈u|G(z) |u〉. (1.4.111)

We then obtain the spectral decomposition,

Gu (z) =
∑
n

|〈u|φn〉|2

z − En
+

∫
dE
〈u|PE |u〉

z − E
. (1.4.112)

Note that

〈u|PE |u〉 =
∫

dλ
N (λ)

δ(E − E(λ)) |〈u|λ〉|2 . (1.4.113)

Let z be a point in the complex plane at a nonzero distance δ from the real axis. It is
clear that ����� 1

z − E

����� ≤ 1
δ

, (1.4.114)

for any real E, and we find the upper bound

|Gu (z) | ≤ 1
δ

⎧⎪⎨⎪⎩
∑
n

���〈u|φn〉���2 + ∫
dE〈u|PE |u〉

⎫⎪⎬⎪⎭ ≤ 1
δ

, (1.4.115)

since the term inside the brackets is just the norm of u, which is one by assumption.
We conclude that Gu (z) is bounded away from the real axis. Similarly, one finds
that G′u (z) is bounded. Since Gu (z) is given by a convergent infinite sum of analytic
functions, it is an analytic function of z away from the real axis. A similar argument
shows that Gu (z) is analytic for any real value of z that is not an eigenvalue and does
not belong to the continuous spectrum.

It is also clear that, for a generic u such that 〈u|φn〉� 0, the point z = En

corresponding to the discrete spectrum is a simple pole of the resolvent. Let us now
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14 Propagator and Resolvent

study what happens when z approaches a value of E in the continuous spectrum. We
set z = E ± iε and we calculate

lim
ε→0

Gu (E ± iε) =
∑
n

���〈u|φn〉���2
E ± iε − En

+

∫
dE ′

〈u|PE′ |u〉
E ± iε − E ′

. (1.4.116)

We now use the following equality of distributions,

lim
ε→0

1
x ± iε

= P
1
x
∓ πiδ(x), (1.4.117)

where P denotes the principal part. We find,

lim
ε→0

Gu (E ± iε) =
∑
n

���〈u|φn〉���2
E − En

+ P
∫

dE ′
〈u|PE′ |u〉

E − E ′
∓ πi〈u|PE |u〉. (1.4.118)

There is a discontinuity in the function when we approach a continuous eigenvalue
from above or from below the real axis. We conclude that Gu (E) has a branch cut
along the continuous spectrum, and the discontinuity is given by

Gu (E + iε) − Gu (E − iε) = −2πi〈u|PE |u〉, (1.4.119)

or, equivalently,

Im (Gu (E + iε)) = −π〈u|PE |u〉. (1.4.120)

Plugging this result back into (1.4.112), we obtain

Gu (z) =
∑
n

���〈u|φn〉���2
z − En

− 1
π

∫
C

Im (Gu (E + iε))
z − E

dE, (1.4.121)

where the integral is along the branch cut C of the function.
This equality is simply a manifestation of Cauchy’s theorem. Indeed, let us

consider a counter-clockwise contour C in the complex plane, as shown in Figure 1.2,

z

CR

CC

C

Figure 1.2 The contour C used in the integral (1.4.122).
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15 Analytic Properties of the Resolvent

and enclosing a point z ∈ C\R. For simplicity, we will assume that the branch cut of
Gu (E) starts at E = 0. Let us consider the integral∮

C

f (z′)dz′, (1.4.122)

where the function

f (z′) =
Gu (z′)
z′ − z

, (1.4.123)

is analytic along the contour. The integral can be written as,∮
C

f (z′)dz′ =
∫
CR

f (z′)dz′ +
∫
Cε

f (z′)dz′ +
∫ ∞

ε
( f (x + iε) − f (x − iε))dx,

(1.4.124)

where Cε is small contour of radius ε around z′ = 0, and CR is a large contour of
radius R. On the other hand, we can evaluate the integral by using Cauchy’s residue
theorem. There is a pole at z′ = z, with residue Gu (z). In addition, Gu (z) has poles
at z = En, n ≥ 0, due to bound states, with residues Rn, and we have∮

C

f (z′)dz′ = 2πi ��Gu (z) +
N∑
n=0

Rn

En − z
�� , (1.4.125)

where E0, . . . , EN are the poles contained in the contour. Let us assume that the
integrals around CR and Cε vanish as R → ∞ and ε → 0 (this can be proved rigor-
ously in some cases, such as in the one-dimensional situation considered below). We
conclude that

Gu (z) =
∞∑
n=0

Rn

z − En
+

1
π

∫ ∞

0

Im(Gu (x + iε))
x − z

dx. (1.4.126)

This is precisely (1.4.121).
Although we have focused on the quantity Gu (z), similar conclusions hold for

other quantities, such as the integral kernel of the resolvent G(x, y; E) or its trace
G(E). In the case of the integral kernel, we have the spectral decomposition

G(x, y; z) =
∑
n

φn(x)φ∗n(y)

z − En
+

∫
dE
〈x |PE |y〉

z − E
. (1.4.127)

Note that the simple poles of the integral kernel give information about the bound
state spectrum, while their residues give information about the corresponding
eigenfunctions. For the continuous spectrum, we have that

〈x |PE |y〉 =
∫

dλ
N (λ)

〈x |λ〉〈λ |y〉δ(E − E(λ)). (1.4.128)

Let us suppose that, for each value of E, there is a finite set of values of λ, λE , such
that E(λE ) = E. Then, this integral can be evaluated by using that

δ(E − E(λ)) =
∑
λE

1
E ′(λE )

δ(λ − λE ). (1.4.129)

Let us denote by

〈x |λ〉 = ψλ (x), (1.4.130)
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16 Propagator and Resolvent

the wavefunction corresponding to the state |λ〉. Then, we obtain

〈x |PE |y〉 =
∑
λE

1
N (λE ) |E ′(λE ) |ψλE (x)ψ∗λE

(y). (1.4.131)

As before, this function gives the discontinuity of the integral kernel of the resolvent
across the cut:

G(x, y; E + iε) − G(x, y; E − iε) = −2πi〈x |PE |y〉. (1.4.132)

In the following two examples, we verify this general result in two cases where the
resolvent can be computed explicitly.

Example 1.4.1 The one-dimensional free particle. In Example 1.3.1 we computed the
resolvents G±(x; E) explicitly in the case of a one-dimensional free particle. The
discontinuity is given by

G+(x; E) − G−(x; E) = − i
�

√
m
2E

ei
√

2mE |x |/� − i
�

√
m
2E

e−i
√

2mE |x |/�

= − i
�

√
2m
E

cos ��
√

2mE
�

x�� .
(1.4.133)

Let us now evaluate the r.h.s. of (1.4.132), by using (1.4.131). We label the continuum
spectrum by the momentum λ = p. Given an energy E, there are two momenta
corresponding to it,

pE = ±
√

2mE. (1.4.134)

The associated wavefunctions are given in (1.2.27), and they are normalized in such
a way that N (p) = 1. Finally, we note that

E(p) =
p2

2m
, E ′(p) =

p
m

. (1.4.135)

We then obtain from (1.4.131) (we set y = 0 by exploiting translation invariance)

−2πi〈x |PE |0〉 = −2πi
m
|pE |

1
2π�

(
ei |pE |x/� + e−i |pE |x/�

)
, (1.4.136)

which is precisely (1.4.133). �

Example 1.4.2 Let us consider the following one-dimensional Hamiltonian,

H = 2 cosh
( ap
�

)
, a ∈ R>0, (1.4.137)

which acts on wavefunctions as a difference operator

(Hψ)(x) = ψ(x + ia) + ψ(x − ia). (1.4.138)

The parameter a has dimensions of length. The Hamiltonian (1.4.137) is a defor-
mation of the standard free particle Hamiltonian, in the sense that for ap � � one
finds

H ≈ 2 +
a2p2

2�2 . (1.4.139)
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17 Analytic Properties of the Resolvent

This Hamiltonian appears in various contexts in mathematical physics. It is clear that
the plane waves ψp (x) in (1.2.27) are eigenfunctions of H, with eigenvalue

E = 2 cosh
( ap
�

)
. (1.4.140)

We will now calculate explicitly the resolvent of H. Clearly, H is diagonal in the
momentum basis,

〈p|(E − H)−1 |p′〉 = 1
E − 2 cosh(ap/�)

δ(p − p′), (1.4.141)

so we can write

G(x − y; E) = 〈x |(E − H)−1 |y〉 =
∫
R

dp
2π�

eip(x−y)/�

E − 2 cosh(ap/�)
. (1.4.142)

This integral can be computed using Cauchy’s residue theorem. First, we change
variables to ξ = ap/�, so that

G(x; E) =
∫
R

dξ
2πa

eiξx/a

E − 2 cosh ξ
. (1.4.143)

In addition, we parametrize E ∈ C\[2,∞) as

E = 2 cosh k, 0 < Im(k) ≤ π. (1.4.144)

In this parametrization, the cut [2,∞) is covered twice as the variable k runs along
the real line. We consider the contour CR in the ξ plane shown in Figure 1.3. There
are two poles inside the contour: ξ = k and ξ = 2πi − k. Then, we have

lim
R→∞

∮
CR

dz
2πa

eizx/a

E − 2 cosh z
=

(
1 − e−2πx/a

)
G(x; E)

=
i
a

(
Resz=k

eizx/a

E − 2 cosh z
+ Resz=2πi−k

eizx/a

E − 2 cosh z

)

= − i
2a sinh k

(
eikx/a − e−ikx/a−2πx/a

)
,

(1.4.145)

and we conclude that

G(x; E) = − i
2a sinh k

(
eikx/a

1 − e−2πx/a +
e−ikx/a

1 − e2πx/a

)
. (1.4.146)

−R R

2 i

k

2 i − k

Figure 1.3 The contour CR used in the integral (1.4.145).

https://doi.org/10.1017/9781108863384.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863384.002


18 Propagator and Resolvent

The discontinuity is easily calculated: since

E − 2 ≈ k2, (1.4.147)

we see that E ± iε, E > 2, correspond to k positive and negative, as in Example 1.3.1
for the free particle. We then find

G(x; E + iε) − G(x; E − iε) = − i
a sinh k

cos(k x/a). (1.4.148)

This is again in precise agreement with the general formulae (1.4.131), (1.4.132),
since in this case

〈x |PE |0〉 =
1

2πa sinh k
cos(k x/a). (1.4.149)

�

1.5 Scattering and Resolvent in One Dimension

In the case of standard Hamiltonians in one dimension, we can often construct the
resolvent explicitly by considering special solutions to the Schrödinger equation. We
will now present some fundamental results on this topic.

Let us consider a one-dimensional potential, V (x), that has compact support or
decreases rapidly at infinity, i.e.

V (x) → 0, |x | → ∞. (1.5.150)

Then, we have a continuous spectrum of positive energies and we can consider
scattering states. We will write the energy of a state in the continuum as

E =
�

2k2

2m
, (1.5.151)

where k defines the wave vector of the state. In this section we will set m = 1/2,
� = 1 to simplify our notation. Let us now introduce the two Jost functions, denoted
by f1(x, k), f2(x, k). They are solutions to the Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x), (1.5.152)

for real k, and they are uniquely characterized by their asymptotic behavior at infinity,

f1(x, k) = eikx + · · · , x → ∞,

f2(x, k) = e−ikx + · · · , x → −∞.
(1.5.153)

They can, however, be extended analytically to complex k, provided that

Im(k) > 0, (1.5.154)

i.e. as long as k belongs to the physical sheet (we recall that the concept of physical
sheet was introduced in Example 1.3.1).

Let us now assume that k is real and nonzero. Uniqueness of the solutions implies
that

f1(x, k) = f1(x,−k), f2(x, k) = f2(x,−k), (1.5.155)

https://doi.org/10.1017/9781108863384.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863384.002


19 Scattering and Resolvent in One Dimension

since both solve the Schrödinger equation with asymptotics exp(∓ik x) as x → ±∞.
The pairs f1(x, k) and f1(x,−k), as well as f2(x, k) and f2(x,−k), are bases of
solutions to the Schrödinger equation. One way to check this is to consider their
Wronskians. We recall that the Wronskian of two functions is given by

W ( f , g) = f (x)g′(x) − g(x) f ′(x). (1.5.156)

The Wronskian of two solutions to the Schrödinger equation is a constant, and
it vanishes if and only if the two solutions are linearly dependent. A simple
computation indeed shows that

W ( f1,2(x, k), f1,2(x,−k)) = ∓2ik, (1.5.157)

therefore justifying our previous statement. Since f1(x, k) and f1(x,−k) are a basis,
we can express f2(x, k) as a linear combination of them:

f2(x, k) = a(k) f1(x,−k) + b(k) f1(x, k). (1.5.158)

The coefficients a(k) and b(k) are sometimes called transition coefficients. They can
be written in terms of Wronskians as follows:

a(k) =
i

2k
W ( f1(x, k), f2(x, k)), b(k) =

i
2k

W ( f2(x, k), f1(x,−k)).

(1.5.159)

In addition, when k is real they satisfy

a(k) = a(−k), b(k) = b(−k). (1.5.160)

We can also write,

f1(x, k) = a(k) f2(x,−k) − b(−k) f2(x, k), (1.5.161)

which follows from the Wronskian relations. Plugging (1.5.158) in here, we find the
normalization condition

|a(k) |2 − |b(k) |2 = 1. (1.5.162)

From (1.5.158) and (1.5.161) we also deduce the asymptotic behavior of the Jost
functions. For f1(x, k), we have

f1(x, k) ≈
⎧⎪⎪⎨⎪⎪⎩

eikx , x → ∞,

a(k)eikx − b(−k)e−ikx , x → −∞,
(1.5.163)

while for f2(x, k) we find,

f2(x, k) ≈
⎧⎪⎪⎨⎪⎪⎩

a(k)e−ikx + b(k)eikx , x → ∞,

e−ikx , x → −∞.
(1.5.164)

We can also extend the coefficients a(k), b(k) to the complex k-plane. In order
to do that, we consider Jost functions for complex values of k. In this more general
setting, they satisfy

f1(x, k) = f1(x,−k), f2(x, k) = f2(x,−k). (1.5.165)
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20 Propagator and Resolvent

Although a(k) cannot vanish along the real line, due to the normalization condition
(1.5.162), it can vanish if Im(k) � 0. Let k0 be a zero of a(k) with a positive
imaginary part:

a(k0) = 0, Im(k0) > 0. (1.5.166)

In this case, the Wronskian in (1.5.159) vanishes, therefore f1(x, k0), f2(x, k0) are
linearly dependent:

f1(x, k0) = c0 f2(x, k0). (1.5.167)

On the other hand, if Im(k0) > 0, f1(x, k) decays exponentially as x→∞, and
f2(x, k) decays exponentially as x → −∞. Since they are proportional to each
other, f1(x, k) is a solution to the Schrödinger equation that decays exponentially
as |x | → ∞, and in particular it is square integrable. We conclude that, if k0 is a zero
of a(k) with Im(k0) > 0, we have a bound state with energy E = k2

0 . However, since
energies are real, we must have

k0 = iκ0, κ0 > 0. (1.5.168)

It follows from (1.5.165) that the Jost functions are real.
The integral kernel of the resolvent can be written in terms of Jost functions,

through the formula:

G(x, y; k) =
1

2ika(k)
( f1(x, k) f2(y, k)θ(x − y) + f1(y, k) f2(x, k)θ(y − x)) .

(1.5.169)

In this equation, θ(x) is the Heaviside function. To prove this, we first note that

∂2
xG(x, y; k) =

1
2ika(k)

(
f ′′1 (x, k) f2(y, k)θ(x − y) + f1(y, k) f ′′2 (x, k)θ(y − x)

)
+

1
2ika(k)

(
f ′1(x, k) f2(y, k) − f1(y, k) f ′2(x, k)

)
δ(x − y),

(1.5.170)

where we have used that

f (x)δ′(x) = − f ′(0)δ(x) + f (0)δ′(x). (1.5.171)

The last term in (1.5.170) can be written as

− 1
2ika(k)

W ( f1(x, k), f2(x, k))δ(x − y) = δ(x − y), (1.5.172)

where we have used the first equation in (1.5.159). Since f1(x, k), f2(x, k) solve the
Schrödinger equation with energy k2, we conclude that(

k2 +
∂2

∂x2 − V (x)

)
G(x, y; k) = δ(x − y). (1.5.173)

It is instructive to verify in the explicit expression (1.5.169) the general analytic
properties of the resolvent discussed in Section 1.4. First of all, the discrete spectrum
should lead to poles in the resolvent, and the residue at this pole should be given by

Resλ=k2
0
G(x, y; k) = ψ∗k0

(x)ψk0 (y), (1.5.174)
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21 Scattering and Resolvent in One Dimension

where ψk0 (x) is the normalized wavefunction with energy E = k2
0 . As required, the

expression (1.5.169) has poles at the zeros of a(k), which as we have just seen,
correspond to bound states. We also have (we assume for simplicity that x ≥ y)

Resλ=k2
0
G(x, y; k) = lim

k→k0
(k2 − k2

0 )G(x, y; k) =
1

ia′(k0)
f1(x, k0) f2(y, k0),

(1.5.175)

where we used (1.5.167) and we expanded a(k) near k = k0:

a(k) = a′(k0)(k − k0) + · · · . (1.5.176)

This assumes that k0 is a simple zero of a(k), as we will justify shortly. The
normalized wavefunction ψk0 (x) can be written as

ψk0 (x) =
f2(x, k0)
‖ f2(·, k0)‖ , (1.5.177)

where ‖ · ‖ is the standard L2 norm. Consistency between (1.5.174) and (1.5.175)
requires that

a′(k0) = −ic0‖ f2(·, k0)‖2, (1.5.178)

where c0 is the constant in (1.5.167). We will now show that the property (1.5.178)
follows from a detailed analysis of the Jost solutions. Let y be a solution to the
Schrödinger equation,

−y′′ + V (x)y = k2y. (1.5.179)

Taking a derivative w.r.t. k, which we denote by ,̇ we find

−ẏ′′ + V (x) ẏ = 2ky + k2 ẏ. (1.5.180)

Jost functions satisfy these two equations, so we can write

(− f ′′1 + V (x) f1 − k2 f1) ḟ2 = 0,

(− ḟ ′′2 + V (x) ḟ2 − 2k f2 − k2 ḟ2) f1 = 0.
(1.5.181)

Subtracting both equations, we find

f1 ḟ ′′2 − f ′′1 ḟ2 = −2k f1 f2, (1.5.182)

or,

d
dx

W ( f1, ḟ2) = −2k f1 f2. (1.5.183)

Exchanging the indices, we find

d
dx

W ( ḟ1, f2) = 2k f1 f2. (1.5.184)

These relations can be integrated to obtain,

W ( f1, ḟ2)
����x−A = −2k

∫ x

−A
f1(y, k) f2(y, k)dy,

W ( ḟ1, f2)
����Ax = 2k

∫ A

x

f1(y, k) f2(y, k)dy,
(1.5.185)
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22 Propagator and Resolvent

and after subtracting the second equation from the first, we obtain

W ( ḟ1, f2)(x) +W ( f1, ḟ2)(x) = −2k
∫ A

−A
f1(y, k) f2(y, k)dk

+W ( ḟ1, f2)(A) +W ( f1, ḟ2)(−A).
(1.5.186)

The l.h.s. of this equation can be evaluated by taking a derivative w.r.t. k in the first
equality of (1.5.159):

W ( ḟ1, f2)(x) +W ( f1, ḟ2)(x) = −2ia(k) − 2ika′(k). (1.5.187)

The r.h.s. of (1.5.186) must be independent of A, therefore we can evaluate it in the
limit A→ ∞. To compute W ( ḟ1, f2)(A) in this limit, we note that, when x → ∞,

ḟ1(x, k) ≈ ix eikx , (1.5.188)

while from (1.5.158) we have

f2(x, k) ≈ a(k)e−ikx + b(k)eikx . (1.5.189)

Finally we obtain

W ( ḟ1, f2)(x) = ḟ1 f ′2 − ḟ ′1 f2 ≈ 2k xa(k) − ia(k) − ib(k)e2ikx , x → ∞.
(1.5.190)

A similar calculation gives

W ( f1, ḟ2)(x) = f1 ḟ ′2 − f ′1 ḟ2 ≈ −2k xa(k) − ia(k) + ib(−k)e−2ikx , x → −∞,
(1.5.191)

which can be used to evaluate W ( f1, ḟ2)(−A) for A → ∞. If we now set k = k0,
a(k0) = 0, and k = iκ0 with κ0 > 0, so the exponentials appearing in (1.5.190),
(1.5.191) vanish asymptotically. Therefore, the r.h.s. of (1.5.186), for k = k0 and in
the limit A→ ∞, simply gives

−2k0

∫
R

f1(y, k0) f2(y, k0)dy. (1.5.192)

On the other hand, by evaluating (1.5.187) at k = k0, we obtain

W ( ḟ1(x, k0), f2(x, k0)) +W ( f1(x, k0), ḟ2(x, k0)) = −2ik0a′(k0). (1.5.193)

We conclude that

a′(k0) = −i
∫
R

f1(x, k0) f2(x, k0)dx, (1.5.194)

which can be written as (1.5.178). As a consequence of this formula we verify that
the zeros of a(k) are simple, since the r.h.s. of (1.5.178) is nonzero.

We can also compute the discontinuity of the resolvent explicitly in the continuous
part of the spectrum and verify the general result (1.4.132). The branch cut
corresponds to the two determinations of

√
k2 = ± k, as in the free particle case

studied in Example 1.3.1. We find,

G(x, y; E + iε) − G(x, y; E − iε) =
f1(x, k) f2(y, k)

2ika(k)
+

f1(x,−k) f2(y,−k)
2ika(−k)

,

(1.5.195)
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23 Scattering and Resolvent in One Dimension

where k > 0 and we have assumed for simplicity that x ≥ y. We now use

f1(x,−k) =
1

a(k)
f2(x, k) − b(k)

a(k)
f1(x, k), (1.5.196)

which follows from (1.5.158), as well as

f2(y, k) =
1

a(−k)
f1(y,−k) +

b(k)
a(−k)

f2(y,−k), (1.5.197)

which follows from (1.5.161). By applying this, the r.h.s. of (1.5.195) reads,

f1(x, k)
2ika(k)

(
1

a(−k)
f1(y,−k) +

b(k)
a(−k)

f2(y,−k)

)

+
f2(y,−k)
2ika(−k)

(
1

a(k)
f2(x, k) − b(k)

a(k)
f1(x, k)

)

=
1

2ik |a(k) |2
(

f1(x, k) f1(y, k) + f2(x, k) f2(y, k)
)

.

(1.5.198)

We now introduce the functions

ψi (x, k) =
1

a(k)
f i (x, k), i = 1, 2, k > 0, (1.5.199)

which correspond in this example to the wavefunctions appearing in (1.4.131). The
labels i = 1, 2 correspond to the two choices ±k associated to E = k2. We can write
(1.5.195) as

G(x, y; E + iε) − G(x, y; E − iε) =
1

2ik

2∑
i=1

ψi (x, k)ψi (y, k). (1.5.200)

The functions ψi (x, k) satisfy the orthogonality property∫
R

ψi (x, k)ψ j (x, p)dx = N (k)δi jδ(k − p), i = 1, 2, (1.5.201)

with

N (k) = 2π. (1.5.202)

The property (1.5.201) can be proved by using that,

d
dx

W
(
ψi (x, k),ψ j (x, p)

)
= (k2 − p2)ψi (x, k)ψ j (x, p), (1.5.203)

which follows from the fact that ψi (x, k), ψ j (x, p) satisfy the Schrödinger equation
with energies k2, p2, respectively. Let us check (1.5.201) for i = j = 1. We find,∫ A

−A
ψi (x, k)ψ j (x, p)dx

=
1

(k2 − p2)a(k)a(p)

{
W

(
f1(A, k), f1(A, p)

)
−W

(
f1(−A, k), f1(−A, p)

)}
.

(1.5.204)
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24 Propagator and Resolvent

To evaluate the Wronskian at ±A, with A very large, we can use the asymptotic form
of the Jost function in (1.5.163). One finds, after using (1.5.160),

1
(k2 − p2)

{
W

(
f1(A, k), f1(A, p)

)
−W

(
f1(−A, k), f1(−A, p)

)}
=

i
k − p

{
−ei(k−p)A + a(k)a(p)e−i(k−p)A − b(p)b(k)ei(k−p)A

}
+

i
k + p

{
−a(k)b(p)e−i(k+p)A + a(p)b(k)ei(k+p)A

}
.

(1.5.205)

As A → ∞, this becomes a distribution. To determine it, we use the Riemann–
Lebesgue theorem, which says that

lim
k→∞

∫
R

f (x)eikxdx = 0 (1.5.206)

for any square-integrable function f (x). Since k, p> 0, the last line of (1.5.205)
leads to a zero distribution as A → ∞, while the second line leads to a distribution
supported on the locus where k = p. We can therefore replace a(p), b(p) by a(k),
b(k) and use (1.5.162) to conclude that

lim
A→∞

1
(k2 − p2)a(k)a(p)

{
W

(
f1(A, k), f1(A, p)

)
−W

(
f1(−A, k), f1(−A, p)

)}
= lim

A→∞
2

sin ((k − p)A)
k − p

= 2πδ(k − p).

(1.5.207)

We conclude that (1.4.132) is satisfied, since in this case

−2πi〈x |PE |y〉 = −
i

2k

2∑
i=1
ψi (x, k)ψi (y, k). (1.5.208)

The functions ψi (x, k) play an important role in scattering theory in one dimen-
sion, and they are sometimes called scattering solutions. Note that they are Jost
functions but with a different normalization. It follows from (1.5.163) and (1.5.164)
that these solutions have the following asymptotic behavior:

ψ1(x, k) ≈
⎧⎪⎪⎨⎪⎪⎩

s11eikx , x → ∞,

eikx + s21e−ikx , x → −∞,
(1.5.209)

where

s11 =
1

a(k)
, s21 = −

b(−k)
a(k)

, (1.5.210)

while

ψ2(x, k) ≈
⎧⎪⎪⎨⎪⎪⎩

e−ikx + s12eikx , x → ∞,

s22e−ikx , x → −∞,
(1.5.211)

where

s12 =
b(k)
a(k)

, s22 =
1

a(k)
. (1.5.212)

https://doi.org/10.1017/9781108863384.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863384.002


25 Scattering and Resolvent in One Dimension

The coefficients si j , i, j = 1, 2 have a very clear scattering interpretation. The solu-
tion ψ1(x, k) describes a particle coming from −∞ (where it is free), moving to
the right, and interacting with the potential. s11 and s21 are the amplitudes s of the
transmitted and reflected waves, respectively. Similarly, ψ2(x, k) describes a particle
coming from∞ (where is free), moving to the left, and interacting with the potential.
s12 and s22 are the amplitudes of the reflected and transmitted waves, respectively.
The transmission and reflection coefficients are given by

T (k) = |s11 |2 = |s22 |2, R(k) = |s21 |2 = |s12 |2, (1.5.213)

where we used the second relation in (1.5.160). Note that the relation (1.5.162)
implies that

T (k) + R(k) = 1, (1.5.214)

which expresses the conservation of probability for the Schrödinger equation. The
coefficients si j , i, j = 1, 2 can be put inside a two by two matrix, called the S-matrix,

S =

(
s11 s12

s21 s22

)
. (1.5.215)

This matrix satisfies

SS† =
1

|a(k) |2

(
1 b(k)

−b(k) 1

) (
1 −b(k)

b(k) 1

)
= 1, (1.5.216)

where we used (1.5.160) and (1.5.162), i.e. it is unitary. The unitarity property of the
S-matrix expresses the conservation of probability (1.5.214). Note that zeros of a(k)
become poles of S.

Example 1.5.1 The single delta potential. Perhaps the simplest solvable scattering
problem in one dimension is the delta function potential,

V (x) = gδ(x). (1.5.217)

The wavefunctions are continuous but their derivatives jump at the origin. The
discontinuity in the derivative can be easily obtained by integrating the Schrödinger
equation. Take 0 < ε � 1. Then,

ψ′(ε) − ψ′(−ε) =
∫ ε

−ε
ψ′′(x)dx =

∫ ε

−ε

(
−k2 + gδ(x)

)
ψ(x)dx = gψ(0) +O(ε).

(1.5.218)

We will distinguish two regions in this problem, region I with x < 0, and region II
with x > 0. Let us obtain the Jost function f1(x, k). The asymptotic formula (1.5.163)
now describes the Jost function exactly, and we have

f1(x, k) =
⎧⎪⎨⎪⎩

eikx , x > 0,
a(k)eikx − b(−k)e−ikx , x < 0.

(1.5.219)

Imposing continuity of f1(x, k) one finds,

a(k) − b(−k) = 1, (1.5.220)
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26 Propagator and Resolvent

while the discontinuity of the first derivative, (1.5.218), gives

a(k) + b(−k) = 1 − g

ik
. (1.5.221)

These two equations determine the transition coefficients,

a(k) = 1 − g

2ik
, b(k) =

g

2ik
. (1.5.222)

As a check, note that they verify the conjugation conditions (1.5.160) and the
normalization condition (1.5.162). Similarly, the second Jost function agrees with
its asymptotic expression (1.5.164):

f2(x, k) =
⎧⎪⎨⎪⎩

a(k)e−ikx + b(k)eikx , x > 0,
e−ikx , x < 0.

(1.5.223)

As an application of this result, let us suppose that g = −λ, λ > 0, so the potential
supports bound states. The coefficient a(k) vanishes precisely for

k0 =
iλ
2

, (1.5.224)

which has Im(k0) > 0. This corresponds to a bound state with energy

E0 = −
λ2

4
, (1.5.225)

and with a normalizable wavefunction

ψk0 (x) ∝ e−λ |x |/2. (1.5.226)

�

Example 1.5.2 The double delta potential. Our second example is the double delta
potential,

V (x) = B (δ(x − a) + δ(x + a)) . (1.5.227)

As in the previous example, the wavefunction is continuous, but its first derivative
has discontinuities at x = ±a. The Jost function f1(x, k) has the form,

f1(x, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eikx , x ≥ a,
A1eikx + A2e−ikx , −a ≤ x ≤ a,
a(k)eikx − b(−k)e−ikx , x ≤ a.

(1.5.228)

Imposing the continuity of the function and the discontinuity of its first derivative at
x = ±a, we obtain the values of A1, A2, a(k), and b(k). To write down the result for
a(k), it is useful to introduce the following functions:

φ0(μ) =
1
μ

(
μ + iβeiμ cos μ

)
, φ1(μ) =

1
μ

(
μ + βeiμ sin μ

)
, (1.5.229)

where

μ = ka, β = Ba. (1.5.230)
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27 Scattering and Resolvent in One Dimension

In terms of these functions, one finds

a(k) = 2
φ0(μ)φ1(μ)

φ0(μ)φ1(−μ) + φ0(−μ)φ1(μ)
. (1.5.231)

We can use this result to determine, for example, the bound states of this potential.
The zeros of a(k) are given by zeros of φ0(μ) or of φ1(μ) with k = iκ, κ > 0. Zeros
of φ0(μ) with μ = iγ0 satisfy the equation

1 + e−2γ0 = −
2γ0

β
. (1.5.232)

A simple graphical analysis of this equation shows the result is that, when β < 0,
there is one single root with γ0 > 0. This is a first bound state in this potential. Let
us now look for zeros of φ1(μ) with μ = iγ1. They satisfy

1 − e−2γ1 = −
2γ1

β
. (1.5.233)

This again has one solution with γ1 > 0 provided β < −1. We conclude that in the
double delta potential there is a bound state for −1 ≤ β < 0, and two bound states
when β < −1. �

Example 1.5.3 The Pöschl–Teller potential. The Pöschl–Teller potential is given by

V (x) = − �
2

2m
α2λ(λ − 1)

cosh2(αx)
. (1.5.234)

We will consider three different situations:

1. When λ > 1 we have a potential well.
2. When 1/2 ≤ λ < 1, we have a low barrier.
3. When

λ =
1
2
+ i�, � > 0, (1.5.235)

we have a high barrier.

As we will see, the low and high barriers have different physical properties. The
Schrödinger equation in the presence of the potential (1.5.234) reads

ψ′′(x) +

(
k2 +

α2λ(λ − 1)

cosh2(αx)

)
ψ(x) = 0, (1.5.236)

where we have set � = 2m = 1. Let us perform the change of variables

y = tanh(αx), (1.5.237)

and let us write the wavefunction as

ψ(x) = (1 + y)ik̄/2(1 − y)−ik̄/2φ(y), k̄ =
k
α

. (1.5.238)

Then, the Schrödinger equation reads

(1 − y2)φ′′(y) + 2(ik̄ − y)φ′(y) + λ(λ − 1)φ(y) = 0. (1.5.239)
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28 Propagator and Resolvent

Performing the further change

z =
1 + y

2
, (1.5.240)

we find a hypergeometric equation

z(1 − z)φ′′(z) +
(
ik̄ − 2z + 1

)
φ′(z) + λ(λ − 1)φ(z) = 0. (1.5.241)

By using the general theory of these equations, we obtain two independent solutions.
The first one

z−ik̄
2F1

(
λ − ik̄, 1 − λ − ik̄; 1 − ik̄; z

)
, (1.5.242)

is appropriate near z = 0, which corresponds to x → −∞. The second solution

z−ik̄
2F1

(
λ − ik̄, 1 − λ − ik̄; 1 − ik̄; 1 − z

)
, (1.5.243)

is appropriate near z = 1, which corresponds to x → ∞. Since

1 − tanh2(αx) ≈ 4e−2α |x | , |x | → ∞, (1.5.244)

we conclude that the Jost functions of the problem are

f1(x, k) = 2ik̄ (1 − tanh2(αx))−ik̄/2
2F1

(
λ − ik̄, 1 − λ − ik̄; 1 − ik̄;

1 − tanh(ax)
2

)
,

f2(x, k) = 2ik̄ (1 − tanh2(αx))−ik̄/2
2F1

(
λ − ik̄, 1 − λ − ik̄; 1 − ik̄;

1 + tanh(ax)
2

)
.

(1.5.245)

Let us now calculate the coefficients a(k) and b(k). To do this, we can for example
determine the asymptotics of f1(x, k) as x → −∞. This can be done by using the
transformation properties of the hypergeometric functions, which imply in particular
that (see eq. (9.5.7) of Lebedev (1972)):

2F1
(
λ − ik̄, 1 − λ − ik̄; 1 − ik̄; 1 − z

)
=
Γ(1 − ik̄)Γ(ik̄)
Γ(1 − λ)Γ(λ) 2F1

(
λ − ik̄, 1 − λ − ik̄; 1 − ik̄; z

)
+ zik̄ Γ(1 − ik̄)Γ(−ik̄)

Γ(λ − ik̄)Γ(1 − λ − ik̄)
2F1

(
1 − λ, λ; 1 + ik̄; z

)
. (1.5.246)

We then have that, when x → −∞,

f1(x, k) ≈ Γ(1 − ik̄)Γ(ik̄)
Γ(1 − λ)Γ(λ)

e−ikx +
Γ(1 − ik̄)Γ(−ik̄)

Γ(λ − ik̄)Γ(1 − λ − ik̄)
eikx , (1.5.247)

and we conclude that

a(k) =
Γ(1 − ik̄)Γ(−ik̄)

Γ(λ − ik̄)Γ(1 − λ − ik̄)
, b(k) = −Γ(1 + ik̄)Γ(−ik̄)

Γ(1 − λ)Γ(λ)
. (1.5.248)

From here one calculates the transmission coefficient T (k) as

T (k) =
sinh2(πk/α)

sinh2(πk/α) + sin2(πλ)
. (1.5.249)
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29 Scattering and Resolvent in One Dimension

The bound states for the potential well can also be found from the above explicit
formula for a(k). The zeros occur at the poles of the denominator. There are two
types of poles, given by

k1(n) = −iα(n + λ), n ∈ Z≥0,
k2(n) = iα(λ − 1 − n), n ∈ Z≥0.

(1.5.250)

Bound states require Im(k) > 0. It is easy to see that this only happens when we have
a well (i.e. λ > 1) and is due to the poles at k = k2(n). In addition, there is a maximal
possible value of n:

nmax =
⎧⎪⎨⎪⎩

[λ − 1], if λ � Z,
λ − 2, if λ ∈ Z,

(1.5.251)

where [·] denotes the integer part. Therefore, there are only a finite number of bound
states. For example, if λ = 2, we have exactly one bound state with n = 0. Note
that in both the well and the low barrier case we have poles in which k is purely
imaginary and Im(k) < 0. The corresponding states are called antibound states. They
are eigenfunctions of the Schrödinger equation with a real eigenvalue, but they do not
belong to L2(R) (on the contrary, they increase exponentially at infinity). Finally, in
the case of a high barrier, the poles lead to eigenfunctions with complex eigenvalues.
These states are called resonances and we will discuss them in detail in Chapter 5.

�

Another interesting result that follows from the analysis of Jost functions is an
explicit expression for the trace of the resolvent in terms of the function a(k), when
E ∈ C\[0,∞] in the physical sheet (i.e. Im(k) > 0). The trace of the resolvent is
itself divergent, but it can be regularized by subtracting the result for the free particle,
i.e. the case in which the potential vanishes. Quantities for the free particle will be
denoted by a 0 subindex. Since for the free particle one has

f1(x, k) = eikx , f2(x, k) = e−ikx = f1(x,−k), (1.5.252)

we have that

a0(k) = 1, b0(k) = 0, (1.5.253)

and

Tr (G(k) − G0(k)) =
1

2ika(k)

∫
R

( f1(x, k) f2(x, k) − a(k)) dx. (1.5.254)

The integral can be evaluated using the results (1.5.186), (1.5.187), (1.5.190), and
(1.5.191). We obtain, for A large,∫ A

−A
f1(x, k) f2(x, k)dx ≈ 2Aa(k) + iȧ(k). (1.5.255)

In this calculation, we have used the fact that, for Im(k) > 0, the exponentials
appearing in (1.5.190), (1.5.191) vanish as A→ ∞. We then obtain,

Tr (G(k) − G0(k)) =
1

2k
d

dk
log a(k). (1.5.256)
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1.6 Bibliographical Notes

In this book we assume some previous knowledge of quantum mechanics. There are
many excellent textbooks that provide the appropriate background. My favourite,
recent introduction is the book by Konishi and Paffuti (2009), which contains a
fantastic collection of solved exercises and touches on many different (and modern)
topics. In my view, the best references for an advanced treatment of the subject are the
two-volume set by Galindo and Pascual (1990), and the book by Takhtajan (2008).
They provide careful treatments of all the subjects they cover, and they are rigorous
without being pedantic.

The quantum-mechanical propagator is introduced in most advanced textbooks
of quantum mechanics, such as, for example, Galindo and Pascual (1990). The
examples discussed in Section 1.2 of this chapter are based on Galitski et al. (2013).
A useful introduction to resolvent operators is presented in Cohen-Tannoudji et al.
(2012) and Konishi and Paffuti (2009). Example 1.4.2 is based on Faddeev and
Takhtajan (2014). The presentation of scattering theory in one dimension closely
follows Galindo and Pascual (1990) and, in particular, Takhtajan (2008). The double
delta potential is analyzed in detail in Galindo and Pascual (1990), and useful
references for the Pöschl–Teller potential are Galindo and Pascual (1990) and Çevik
et al. (2016).
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