
7

Supersymmetry breaking

The fundamental relation

[Q, Pμ] = 0

of the supersymmetry algebra tells us that if supersymmetry is exact, every bosonic

state other than the vacuum state must have a corresponding fermionic partner with

exactly the same energy, assuming that we can identify P0 with the Hamiltonian.

To see this, we simply note that if |B〉 is a bosonic eigenstate of the Hamiltonian

with eigenvalue EB , we must have,

P0(Q|B〉) = Q P0|B〉 = EB Q|B〉,
so that |F〉 ≡ Q|B〉 is a fermionic eigenstate of this same Hamiltonian, with the

same energy EB . Thus the only bosonic states which are not paired with a fermionic

state are those that are annihilated by Q. States with non-vanishing four-momenta

transform non-trivially under supersymmetry (and so, are not annihilated by Q),

and the only candidate for an unpaired bosonic state is the vacuum state. For massive

single particle states in the rest frame, this implies that in a supersymmetric theory

bosons and fermions must come in mass-degenerate pairs.

This is, of course, experimentally excluded since we know, for instance, that there

is no integer spin charged particle with the same mass as that of the electron. Su-

persymmetry must, therefore, be a broken symmetry. While we cannot exclude the

possibility that SUSY is explicitly broken by soft terms, it is much more appealing

to consider that, like electroweak gauge symmetry, SUSY is broken spontaneously.

As with bosonic symmetries, if the generator Q of a supersymmetry transforma-

tion does not annihilate the vacuum, then supersymmetry is spontaneously broken.

In correspondence with Eq. (1.5), we then write the condition for supersymmetry

not to be spontaneously broken as

〈0|δO|0〉 ≡ i〈0|[ᾱQ,O]|0〉 = 0, (7.1)

105

https://doi.org/10.1017/9781009289801.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.008


106 Supersymmetry breaking

where, in field theory, the dynamical variable O is a field operator and δO is its

variation under a supersymmetry transformation with a Grassmann parameter α. If

we find a field operator such that its variation is non-zero in the ground state, then

supersymmetry will be spontaneously broken. Just as familiar gauge symmetries

may be broken by vacuum expectation values (VEVs) of either elementary or

composite field operators, O may be either elementary or composite. In order for

Poincaré invariance not to be spontaneously broken, δO must be a spinless operator.

Since SUSY connects fields whose spins differ by 1/2, O must thus be a spinorial

operator.

7.1 SUSY breaking by elementary fields

Up to this point, we have two classes of fields in a SUSY theory: the chiral scalar

superfield and the curl superfield (or equivalently the gauge potential superfield).

To identify potential order parameters for SUSY breaking, let us look at the trans-

formation of their spinor components.

The variation of the spinor component of the chiral scalar superfield is

δψL = −
√

2FαL +
√

2∂/SαR

while for that of a gauge superfield we have the variation of the spinor component

as

δλA = −iγ5αDA + 1

4
[γν, γμ]Fμν

A α,

(we may equivalently discuss the gauge potential superfield 	̂ � (V μ, λ,D) with

similar results). Since Poincaré invariance requires,

〈0|∂μS|0〉 = 〈0|Fμν |0〉 = 0,

the condition for SUSY to be spontaneously broken is,

〈0|Fi |0〉 �= 0 or 〈0|DA|0〉 �= 0 (7.2)

for some fields. We will refer to these two possibilities as F-type or D-type SUSY

breaking.

Since the auxiliary fields are given by (6.43a) and (6.43b) of the last chapter, we

conclude that supersymmetry is spontaneously broken if the system of equations,

(

∂ f̂

∂Si

)

Ŝ=S
= 0 (F-type) (7.3a)
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7.2 F-type SUSY breaking: the O’Raifeartaigh model 107

or

g
∑

i

S†
i tASi + ξA = 0 (D-type) (7.3b)

does not have any solutions. Otherwise, supersymmetry is unbroken. In this chapter

we will examine several toy models to illustrate both the F- and D-type SUSY

breaking mechanisms.

Two comments are in order.

� The master formula (6.44) for the Lagrangian for SUSY gauge theories contains

the terms,

L � −Vscalar ≡ −1

2

∑

A

DADA −
∑

i

|Fi |2.

Thus, if any of the auxiliary fields develop a VEV, then so will the scalar potential.
� If Q|0〉 �= 0, then the state has infinite norm. This is because

‖ Q|0〉 ‖2=
∫

d3x〈0| j0†(x)Q|0〉

(where jμ(x) is the spinorial Noether current corresponding to the super-charge

Q) diverges in a translationally invariant theory unless Q annihilates the vacuum.

This is exactly as for the case of spontaneous breaking of bosonic symmetries.

It is often loosely stated that spontaneous SUSY breaking is signalled by the

VEV of the Hamiltonian. This is not the case since if the Hamiltonian density

develops a constant VEV, its integral does not exist. In fact, just as in the familiar

case of ordinary symmetries where the charges do not exist when the symme-

try is spontaneously broken, the generators of the super-algebra do not exist if

supersymmetry is spontaneously broken; the charge and current densities are,

however, well defined and it is only these that we need for most manipulations in

field theory.

7.2 F-type SUSY breaking: the O’Raifeartaigh model

A simple supersymmetric model exhibiting spontaneous breaking of supersymme-

try was written down by O’Raifeartaigh in 1975.1 It contains three chiral scalar

superfields X̂ � (X, ψX ,FX ), Ŷ � (Y, ψY ,FY ), and Ẑ � (Z , ψZ ,FZ ) interacting

via the superpotential,

f̂ (X̂ , Ŷ , Ẑ ) = λ(X̂2 − μ2)Ŷ + m X̂ Ẑ , (7.4)

1 L. O’Raifeartaigh, Nucl. Phys. B96, 331 (1975).
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108 Supersymmetry breaking

with m and λ as real parameters. Since Fi = −i(∂ f̂ /∂Ŝi )
†
Ŝ=S , we have

iFX = 2λY †X † + m Z †, (7.5a)

iFY = λ(X †2 − μ2), and (7.5b)

iFZ = m X †. (7.5c)

Note that both 〈FY 〉 and 〈FZ 〉 cannot simultaneously be zero. Hence, supersym-

metry must be broken.

The scalar potential of this model is,

V (X, Y, Z ) =
∑

i

|Fi |2 = |2λXY + m Z |2 + λ2|X2 − μ2|2 + m2|X |2. (7.6)

Notice that the potential is a sum of non-negative terms. This is a general feature

of theories with global supersymmetry. Indeed, we see from the master formula

(6.44) that the D- and F-term contributions to the scalar potential are separately

non-negative.

To find the minimum of this potential, observe that the first term can be made

to be zero no matter what 〈X〉 and 〈Y 〉 are since 〈Z〉 is chosen to cancel it. The

vacuum state is, therefore, infinitely degenerate. The direction (in field space) along

which the first term vanishes is referred to as an F-flat direction (since the value

of the potential is flat along this direction). Flat directions frequently occur in

supersymmetric models. We should add here that the flatness of the (tree-level)

potential is generally removed when quantum corrections are taken into account.

Returning to the potential of the O’Raifeartaigh model, the minimum thus de-

pends only on the last two terms of (7.6) that define the self-couplings VX for the X
field. We break the complex field X into real and imaginary parts X = XR+iX I√

2
, so that

VX = λ2|X2 − μ2|2 + m2|X |2

= λ2

4
(X2

R + X2
I )2 + 1

2
(m2 − 2λ2μ2)X2

R

+1

2
(m2 + 2λ2μ2)X2

I + λ2μ4. (7.7)

We will examine two cases for VX , illustrated in Fig. 7.1.

Case A: If m2 > 2λ2μ2, the minimum of VX is clearly at 〈X〉 = 0. In this case,

〈Z〉 = 0 but 〈Y 〉 is undetermined, and Vmin = λ2μ4. Y is a flat direction of the scalar

potential.

Case B: If m2 < 2λ2μ2, 〈XR〉 �= 0 but 〈X I〉 = 0 since the coefficient of

X2
I is positive. The minimum will occur at 〈XR〉2 = 2μ2 − m2/λ2 and 〈Z〉 =

− 2λ
m

√

μ2 − m2

2λ2 〈Y 〉. At the minimum, Vmin = −λ2

4
(2μ2 − m2/λ2)2 + μ4λ2. Note

that the minimum does not occur at 〈X〉2 = μ2.
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7.2 F-type SUSY breaking: the O’Raifeartaigh model 109

Figure 7.1 Scalar potential in the O’Raifeartaigh model for case A with m/μ = 2
and λ = 1, and case B with m/μ = λ = 1. In both cases, X I = 0.

7.2.1 Mass spectrum: Case A

Next we will construct the mass matrix for the scalar fields of case A in the

O’Raifeartaigh model. As usual, we first shift the fields by their VEVs, and then

rewrite the scalar potential in terms of the shifted field YS = Y − 〈Y 〉 together with

X and Z to obtain,

V = |2λX (YS + 〈Y 〉) + m Z |2 + λ2|X2 − μ2|2 + m2|X |2. (7.8)

There are no bilinear terms in the field YS which must, therefore, be massless. Let

us write X = XR+iX I√
2

and Z = ZR+iZI√
2

. We can now work out the scalar mass squared

matrix for the four real fields. In the basis (XR, ZR, X I, ZI) it is given by,

⎛

⎜
⎜
⎝

m2 + 4λ2〈Y 〉2 − 2λ2μ2 2λm〈Y 〉 0 0

2λm〈Y 〉 m2 0 0

0 0 m2 + 4λ2〈Y 〉2 + 2λ2μ2 2λm〈Y 〉
0 0 2λm〈Y 〉 m2

⎞

⎟
⎟
⎠

(7.9)

where we have taken 〈Y 〉 to be real. If 〈Y 〉 �= 0, then X and Z mix. Regardless of

the mixing, however, the trace of the matrix gives,
∑

bosons

M2 = 2m2 + 2(m2 + 4λ2〈Y 〉2). (7.10)

To find the fermion masses, we must examine fermionic bilinear terms that can

be derived from the superpotential. These terms will arise from second derivatives

https://doi.org/10.1017/9781009289801.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.008


110 Supersymmetry breaking

of the superpotential, evaluated at the VEV of the scalar fields. Since only Y has

a VEV, it is clear that just ∂2 f̂ /∂ X̂2 or ∂2 f̂ /∂ X̂∂ Ẑ yield non-zero contributions.

In particular, ψY is a massless fermion. For the remaining fermions, in the basis of

(ψX , ψZ ), we have the mass matrix,

Mfermion =
(

2λ〈Y 〉 m
m 0

)

(7.11)

so that

MfermionM†
fermion =

(
4λ2〈Y 〉2 + m2 2λ〈Y 〉m

2λ〈Y 〉m m2

)

. (7.12)

We thus see that,
∑

fermions

M2 = m2 + (m2 + 4λ2〈Y 〉2). (7.13)

The supertrace is defined as

ST rM2 =
∑

particles

(−1)2J (2J + 1)m2
J , (7.14)

where the sum is over all particles in the theory, J is the spin and m J is the mass.

In any model where supersymmetry is unbroken, the degeneracy of the fermion

and boson masses, together with the equality of bosonic and fermionic degrees of

freedom obviously means that the supertrace must vanish. In the case under study,

summing over all bosons and fermions, we obtain

ST rM2 = 0 (7.15)

even though supersymmetry is spontaneously broken. We will shortly see that (at tree

level) the supertrace is always zero for theories with only chiral scalar superfields,

even if supersymmetry is spontaneously broken.

Exercise Work out the mass spectrum of the model. Show that aside from the
complex massless boson field Y and the massless fermion ψY , the remaining boson
squared masses are,

m2 + 2λ2〈Y 〉2 − λ2μ2 ± [
(m2 + 2λ2〈Y 〉2 − λ2μ2)2 − m2(m2 − 2λ2μ2)

] 1
2 ,

m2 + 2λ2〈Y 〉2 + λ2μ2 ± [
(m2 + 2λ2〈Y 〉2 + λ2μ2)2 − m2(m2 + 2λ2μ2)

] 1
2 ,

while the remaining fermion masses are,
√

λ2〈Y 〉2 + m2 ± λ〈Y 〉.
You can now confirm that the supertrace formula is satisfied. Notice also that if
Vmin = λ2μ4 vanishes, supersymmetry is restored in the spectrum.
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7.2 F-type SUSY breaking: the O’Raifeartaigh model 111

The fact that there is a massless fermion in the spectrum is a general feature

in theories with spontaneous supersymmetry breaking. This fermion is called the

goldstino. It is the analogue of the Goldstone boson that arises when global bosonic

symmetries are spontaneously broken. We will not present a general argument that

shows that spontaneous SUSY breaking always results in a goldstino. The proof

parallels that given by Goldstone, Salam, and Weinberg for the Goldstone theorem.2

The goldstino is a spin 1
2

fermion because the SUSY generator itself carries spin
1
2
. It is the fermionic partner of the auxiliary field that develops a SUSY breaking

VEV.

Notice that aside from the ±2λ2μ2 terms in the diagonal XR and X I entries in the

mass matrix for scalars, the mass matrices look supersymmetric. In other words,

but for these terms, the mass matrices (7.9) and (7.12) would be those of a theory

with unbroken SUSY. This should not be surprising because, at tree level, the order

parameter FY for SUSY breaking (and hence also the goldstino) couples to only

the X field, as is evident from the form of the superpotential.

It is easy to see from the result of the exercise above that the heaviest boson is

heavier than the heaviest fermionic state. But because the sums over the squared

masses of the bosons and fermions are the same, this also means that the lightest

of the massive bosons must be lighter than the lightest of the massive fermions. In

other words, the spontaneous breaking of supersymmetry results in fermion masses

that are bracketed between the boson masses. The “SUSY breaking” 2λ2μ2 contri-

bution does not enter the fermion masses, but splits the boson masses about their

would-be value (equal to the fermion masses) in the absence of SUSY breaking.3

Since this pattern of mass splittings has its origin in the vanishing of the supertrace –

a general feature in models with global supersymmetry broken spontaneously by

F-terms – it is very difficult to use this mechanism to get realistic models with

global supersymmetry broken at the TeV scale: these models typically give a

spin zero superpartner lighter than all the fermions, and so run into conflict with

experiment.

7.2.2 Mass spectrum: Case B

We can now similarly work out the mass spectrum for Case B, where the min-

imum occurs at 〈XR〉2 = 2μ2 − m2/λ2, 〈X I〉 = 0, with a flat direction along

〈Z〉 = − 2λ
m

√

μ2 − m2

2λ2 〈Y 〉. For the most part, we will leave it to the reader to work

out the details for this case. From the scalar potential, it is straightforward to work

2 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962), Sec. III.
3 It is reasonable that spontaneous SUSY breaking yields new contributions to boson masses but not to fermions.

We saw in Chapter 3 that a SUSY breaking mass for a fermion in a chiral scalar multiplet would have been a
hard breaking of supersymmetry.
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112 Supersymmetry breaking

out the scalar mass matrix. The bosonic contribution to the supertrace is as given

in the exercise below.

Exercise For case B, calculate the bilinear terms in the scalar potential of the
shifted fields and show that

∑

bosons

M2 = 4λ2(〈XR〉2 + 〈YR〉2 + 〈YI〉2 + 2μ2). (7.16)

(Remember that 〈XR〉 �= 0, while 〈X I〉 = 0.)

To identify the goldstino, we recall that the auxiliary fields obtain VEVs

i〈FX 〉 = 0, (7.17a)

i〈FY 〉 = λ(
1

2
〈XR〉2 − μ2), (7.17b)

i〈FZ 〉 = m
〈XR〉√

2
. (7.17c)

We can then work with orthogonal linear combinations of the superfields Ŷ and Ẑ ,

so that the auxiliary component of just one of the linear combinations develops a

VEV:

P̂ =
m〈XR〉√

2
Ŷ − λ( 1

2
〈XR〉2 − μ2)Ẑ

√
1
2
m2〈XR〉2 + λ2( 1

2
〈XR〉2 − μ2)2

≡ Ŷ cos θ − Ẑ sin θ (7.18a)

and

Q̂ =
λ( 1

2
〈XR〉2 − μ2)Ŷ + m〈XR〉√

2
Ẑ

√
1
2
m2〈XR〉2 + λ2( 1

2
〈XR〉2 − μ2)2

≡ Ŷ sin θ + Ẑ cos θ. (7.18b)

In this case, we have 〈FP〉 = 0 and 〈FQ〉 �= 0. We then expect that ψQ , the fermionic

component of Q̂, will be the massless goldstino field. To establish this, as well as

to obtain the fermionic contribution to the supertrace, we write the superpotential

in terms of X̂ , P̂ , and Q̂,

f̂ (X̂ , P̂, Q̂) = λ(X̂2 − μ2)(P̂ cos θ + Q̂ sin θ ) + m X̂ (Q̂ cos θ − P̂ sin θ ).

(7.19)

We see from (6.44) that ψQ is massless since there is neither a diagonal mass for it

(no Q̂2 term in the superpotential) nor a bilinear mixing with either ψP or ψX .
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Exercise That there is no mixing of ψQ with ψP is obvious from the superpotential.
Verify that the ψX –ψQ mixing term also vanishes.

In the (ψX , ψP ) basis, the non-vanishing fermion mass submatrix can be written

as,

Mfermion = M1 − γ5

2
+ M† 1 + γ5

2
, (7.20a)

with,

M =
(

2λ
〈YR〉+i〈YI〉√

2

√
2λ cos θ〈XR〉 − m sin θ√

2λ cos θ〈XR〉 − m sin θ 0

)

. (7.20b)

Except when 〈YI〉 = 0, the fermion “mass matrix” is γ5-dependent. The reader who

is not familiar with how to deal with this is referred to the technical note at the end

of this chapter.4 There, we show that the squared masses of the fermions are given

by the eigenvalues of the matrix M†M.

Exercise By explicitly computing the sum of the squared masses for the fermions
in case B, verify that the supertrace once again vanishes.

7.3 D-type SUSY breaking

As an illustration of SUSY breaking by D-terms, we consider a simple model

with just one chiral superfield coupled to a U (1) gauge field. We include a Fayet–

Iliopoulos (FI) D-term. Gauge symmetry precludes any superpotential interactions.

The scalar potential for this model is just

V = 1

2
D2 = 1

2
(gS†S + ξ )2. (7.21)

The minimum of the potential occurs at

(a) 〈S†S〉 = 0 if ξ > 0,

(b) 〈S†S〉 = −ξ

g
= |ξ |

g
if ξ < 0.

In case (a), SUSY is spontaneously broken because the D-term acquires a vacuum

expectation value. The gauge symmetry remains unbroken because 〈S†S〉 = 0. In

case (b), the U (1) gauge symmetry is spontaneously broken but SUSY remains

intact.

4 The matrices M and N of the note can be identified as M+M†
2 = M and M†−M

2 = iN .
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7.3.1 Case A

In this case, the auxiliary field D = gS†S + ξ acquires a VEV 〈D〉 = ξ . Because

there is no superpotential, the chiral fermion ψ remains massless. The FI term

causes a mass splitting with the scalar S, which acquires a mass
√

gξ .

The U (1) gauge boson and gaugino are massless at tree level. The gaugino, which

is the partner of the D field that acquires a VEV, plays the role of the goldstino.

In this toy theory, since the complex field S is the only state to acquire mass, the

supertrace is just

ST rM2 = 2gξ

in accord with the general sum rule Eq. (7.35) discussed later in this chapter. Notice

that, unlike the O’Raifeartaigh model, this model does not suffer from the problem

of “scalars lighter than fermions.”

7.3.2 Case B

In this case, gauge symmetry is spontaneously broken because S acquires a VEV,

but SUSY remains intact. Let us work out the spectrum of the model to see explicitly

how this works.

Bosons

The relevant piece of the Lagrangian for vector bosons is

L � [
(∂μS)† − igVμS†] [∂μS + igV μS] − 1

4
Fμν Fμν. (7.22)

We note that by redefining the phase of S, 〈S〉 can be chosen to be real without loss

of generality. As usual, we then shiftS → S + 〈S〉 and then re-write the Lagrangian

in terms of S = SR+iSI√
2

(here, SR and SI are fluctuations about the vacuum) to obtain

L � 1

2
(∂μSR)2 + 1

2
(∂μSI)

2 +
√

2g〈S〉Vμ∂μSI + g2〈S〉2VμV μ − 1

4
Fμν Fμν.

The field SI can be absorbed by a local gauge transformation by an amount −SI√
2g〈S〉 .

This piece of the Lagrangian becomes

L � 1

2
(∂μSR)2 + g2〈S〉2VμV μ − 1

4
Fμν Fμν. (7.23)

The vector boson has developed a mass m2
V = 2g2〈S〉2 = 2g|ξ |, while the SI field

has disappeared, being eaten by the vector boson field. This is, of course, the

familiar Higgs mechanism. A real scalar SR remains. Its mass can be obtained from

the scalar potential (7.21).
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Exercise Show that the Higgs field SR of our toy model has the same mass as the
vector boson.

Fermions

Since there is no superpotential, bilinear terms for fermions come only from gaug-

ino chiral fermion mixing induced by a VEV of the scalar field. The relevant

term is,

L � −
√

2〈S〉gλ̄
1 − γ5

2
ψ + h.c.

We see that there are two degenerate Majorana fermions that can be combined into

a single Dirac fermion χD = 1−γ5

2
ψ + 1+γ5

2
λ, with a mass again equal to that of the

bosons.

Thus, in case B, the physical particles are one massive spin 1 boson and a

spin 0 boson, each with mass
√

2g|ξ | and one Dirac fermion with the same

mass. The spectrum is clearly supersymmetric, but the original gauge symmetry is

hidden.5

7.4 Composite goldstinos

We have considered examples where the goldstino is an elementary field that occurs

in the Lagrangian. This need not always be the case. The goldstino may be a

composite fermion just as the composite pion may be regarded as a (pseudo)-

Goldstone boson.

This is realized if chiral fermions condense. If Ŝ and Ŝ ′ are two left-chiral

superfields,

Ŝ = S(x̂) + i
√

2θ̄ψL + iθ̄ θLF(x̂) and

Ŝ ′ = S ′(x̂) + i
√

2θ̄ψ ′
L + iθ̄ θLF ′(x̂),

then the composite field ŜŜ ′ is given by,

ŜŜ ′ = SS ′(x̂) + i
√

2θ̄ (S ′ψL + Sψ ′
L)(x̂) − 2θ̄ψLθ̄ψ ′

L(x̂) + iθ̄ θL(FS ′ + SF ′)(x̂).

Using the fact that −2θ̄ψLθ̄ψ ′
L = θ̄ θLψ̄ ′ψL, we have

ŜŜ ′ = SS ′ + i
√

2θ̄ (Sψ ′
L + S ′ψL) + iθ̄ θL(SF ′ + FS ′ − iψ̄ ′ψL). (7.24)

5 This spectrum corresponds to that of the j = 1/2 supermultiplet discussed toward the end of Section 4.4.
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Thus, the auxiliary component of the composite superfield contains the product of

the fermion components of the elementary superfields.

This led theorists in the 1980s to consider SUSY technicolor-like models where

Ŝ and Ŝ ′ were taken to be n and n∗ representations of a confining group SU (n).6

It was assumed that the chiral fermions would condense forming an SU (n) singlet

condensate. If such a condensate forms, then SUSY is dynamically broken by the

F-term of the composite superfield. The goldstino field would then be a composite

object, the fermionic component (S ′ψL + Sψ ′
L) of a composite superfield. Whether

or not such a condensate forms is a dynamical question, and is more difficult to

address.

7.5 Gaugino condensation

If we allow non-renormalizable interactions (as we must if we want to include

gravity in our effective low energy theory), some of our considerations have to be

suitably generalized. Of importance to us here is the fact that instead of starting

with just Ŵ c
AŴA whose θ̄ θL component led to the kinetic term for gauge fields and

gauginos, we could have started with

f AB(ŜLi )Ŵ c
AŴB

whose θ̄ θL component also leads to a SUSY invariant action. To maintain gauge

invariance, we must require that the dimensionless function f AB transform as a

representation contained in the symmetric product of two adjoints. The function

f AB is known as the gauge kinetic function. For a renormalizable gauge theory, we

must have f AB = δAB , but otherwise more general forms are possible.

We will explore some important implications of a non-trivial gauge kinetic func-

tion in later chapters. For the present purposes, we only note that in supergravity

models the expression (6.43a) for the auxiliary component of chiral superfields is

modified: in particular, it picks up a term proportional to,

∂ f AB

∂ŜLi

∣
∣
∣
∣
Ŝ =S

λ̄AλB .

Thus if there are new strong gauge interactions that result in a non-vanishing con-

densate 〈λ̄AλA〉 of gauginos, supersymmetry may be dynamically broken.7 Gaugino

condensation is considered by many authors as a promising way of breaking super-

symmmetry.

6 M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 575 (1981); S. Dimopoulos and S. Raby, Nucl. Phys.
B192, 353 (1981).

7 S. Ferrara, L. Girardello and H. P. Nilles, Phys. Lett. B125, 457 (1983).
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7.6 Goldstino interactions

It is well known that at low energy, the couplings of Goldstone bosons to other

particles are fixed only by symmetry considerations, and do not depend on the

details of the model. One might similarly expect that the low energy interactions of

the goldstino with other multiplets are similarly model-independent. To understand

how this comes about, we begin by recalling that (3.13b) tells us that each chiral

multiplet contributes

jμ = ∂/ (−iAγ5 − B)γ μψ + (Gγ5 + iF)γ μψ,

to the supercurrent. We may thus write the supercurrent as,

jμ = ∂/ (−iAgγ5 − Bg)γ μψg + (Ggγ5 + iFg)γ μψg + jμ,rest, (7.25a)

where the subscript g refers to the fields in the goldstino multiplet, and jμ,rest

includes contributions to the supercurrent from all other supermultiplets. If SUSY

is spontaneously broken by the vacuum expectation value of the complex auxiliary

field

〈F〉 =
〈

Fg + iGg√
2

〉

,

that we take to be real, the supercurrent acquires a term linear in the goldstino field,

and can be written as,

jμ = i
√

2〈F〉γ μψg + ∂/ (−iAgγ5 − Bg)γ μψg + (Ggγ5 + iFg)γ μψg + jμ,rest,

(7.25b)

where Fg and Gg now denote the shifted fields.

Conservation of the supercurrent then implies that

0 = ∂μ jμ = i
√

2〈F〉∂/ ψg + ∂μ jμ,rest + · · · (7.26)

where the ellipsis denotes bilinear (or higher, after the auxiliary fields Fg and Gg are

eliminated) terms in fields from the goldstino supermultiplet. This is the equation of

motion for the goldstino. It may be obtained from the phenomenological Lagrangian

density,

Lgoldstino = i

2
ψ̄g∂/ ψg +

[
1

2
√

2〈F〉 ψ̄g∂μ jμ,rest + h.c.

]

+ · · ·

= i

2
ψ̄g∂/ ψg +

[ −1

2
√

2〈F〉
(
∂μψ̄g

)
jμ,rest + h.c.

]

+ · · · , (7.27)

where in the last step, we have omitted a term that is a total derivative. Again, the

ellipsis denotes couplings of the goldstino to its superpartner which are not relevant

to our discussion. By using the explicit form of the supercurrent (3.13b) it is now
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straightforward to work out the couplings of the goldstino with fields in other
supermultiplets. The first term in the supercurrent that originates in the kinetic

energy piece of the Lagrangian gives rise to a model-independent interaction of

the goldstino with the scalar and fermion members of the chiral multiplet with

components (S, ψ). We will leave it to the reader to work out that

Lgoldstino = i

2
ψ̄g∂/ ψg − i

〈F〉
(
∂μψ̄g

)
[

∂/Sγ μ 1 + γ5

2
ψ − ∂μS†γ μ 1 − γ5

2
ψ

]

+ · · · ,

(7.28)

where the ellipsis denotes other interactions of the goldstino. There is one such term

for each chiral multiplet. In a gauge theory, gauginos and gauge bosons also con-

tribute to the supercurrent, and there will be an analogous gauge boson–gaugino–

goldstino interaction. We will return to these goldstino couplings when we consider

decays of supersymmetric particles into gravitinos (the superpartners of the gravi-

ton) in Chapter 13.

7.7 A mass sum rule

In previous sections, we alluded to the fact that the superparticle spectrum is sig-

nificantly constrained even when SUSY is spontaneously broken. For instance,

for F-type breaking, we saw that ST rM2 = 0, which implied that at least one of

the scalar components of chiral scalar superfields must be lighter than any of the

fermions. For D-type breaking, we saw that this was not always the case. These

features are not particular to the specific model that we considered. To see this, we

can compute the squared masses of each particle using the Lagrangian density in

(6.44), and hence the respective contributions to the supertrace.

Tree-level masses are defined by the coefficients of bilinear terms in fields ex-

panded about the minimum of the scalar potential. The mass sum rule we obtain

holds somewhat more generally, in that it holds for “masses” defined about any

scalar field configuration, not just a local extremum. These “masses” are, of course,

field-dependent. The immediate payoff is that we can immediately infer that our

ST r formula is also valid for the special case of spontaneously broken gauge sym-

metries where we are computing the coefficients of field bilinears about a non-trivial

classical minimum.

7.7.1 Scalar contributions

The scalar potential of a supersymmetric theory has the form,

V (S,S∗) =
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ =S
+ 1

2

∑

A

(
∑

i

S†
i gtASi + ξA

)2

, (7.29)

where we suppress the index α in (6.44).
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Potential mass terms include terms like S†S as well as terms like S2 + h.c.

We will let the reader check (see exercise below) that while the latter terms may

affect the individual masses, they never contribute to the trace of the scalar mass

matrix. Hence the scalar boson contribution to the supertrace can be obtained

from,

m2
i j = ∂2V

∂S†
i ∂S j

.

We can then write this as,

ST rM2
scalars = 2

∑

i, j

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ =S

(

∂2 f̂

∂Ŝi∂Ŝ j

)∗

Ŝ =S

+ 2
∑

A

DAT r (gtA) + 2
∑

i,A

g2S†
i tAtASi , (7.30)

where the 2 comes from the fact that each complex scalar is really two degrees of

freedom, and DA is a shorthand for
∑

i S
†
i gtASi + ξA.

7.7.2 Vector contributions

The vector boson mass matrix arises from the kinetic energy terms for scalars:

L � (DμSi )
†DμSi = (∂μSi + igtAVμASi )

†(∂μSi + igtB V μ

B Si ).

Here i labels different chiral scalar multiplets. Every multiplet that transforms

non-trivially under the gauge group contributes to the “field-dependent” vector

mass matrix. Of course, the tree-level physical masses will get contributions from

only those multiplets that develop a gauge symmetry breaking VEV. The vector

contribution to the supertrace is,

ST rM2
vectors = 2 × 3 × g2

∑

A,i

(S†
i tA)(tASi ), (7.31)

where the factor of 2 arises because the vector fields are real, and the 3 comes from

the three degrees of freedom for each massive spin 1 field (the factor 2J + 1 in the

definition of the ST r ).

7.7.3 Fermion contributions

The technical note on γ5-dependent fermion mass matrices at the end of this chapter

shows that if the fermion bilinears in the Lagrangian density for Majorana fermions
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is given by,

L � −1

2
χ̄aMab

1 − γ5

2
χb + h.c.

= −1

2
χ̄RMχL − 1

2
χ̄LM†χR, (7.32)

then the squared masses of the fermions are given by the eigenvalues of the matrix

MM†.
In our master formula (6.44), fermion bilinears arise from the superpotential

interactions in the last line, or from mixing between gauginos and chiral fermions

in line 2. The relevant terms can be written as,

L � −1

2

(
λ̄A ψ̄i

)
(

0
√

2g(S†tA) j√
2g(S†tB)i

(
∂2 f̂

∂Ŝi ∂Ŝ j

)

Ŝ =S

)

1 − γ5

2

(
λB

ψ j

)

+ h.c. (7.33)

We can now easily obtain the fermionic contribution to the supertrace,

ST rM2
fermions = (−1) × 2 ×

[
∑

i,A

4g2(S†tA)i (tAS)i

+
∑

i, j

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ =S

(

∂2 f̂

∂Ŝi∂Ŝ j

)∗

Ŝ =S

]

, (7.34)

where the 2 comes from the two spin degrees of freedom for the Majorana fermions.

We can now combine the contributions (7.30), (7.31), and (7.34) to obtain the

tree-level mass sum rule for globally supersymmetric models with spontaneously

broken supersymmetry,

ST rM2 = 2
∑

A

DATr(gtA). (7.35)

Here, the trace refers to a sum over complex fields in the chiral supermultiplets.

Nowhere in its derivation did we assume that we are at an extremum of the scalar

potential. If we now evaluate this at a non-trivial classical minimum, the masses

entering on the left-hand side are simply the tree-level masses in the theory, while

the right-hand side is the D term whose VEV is one of the order parameters for

SUSY breaking.

We now understand why the supertrace vanished for both cases in the

O’Raifeartaigh model but not for the model with D-type SUSY breaking. We also

note that the right-hand side of (7.35) vanishes if the gauge group is simple. For a

model such as the MSSM, with a U (1) hypercharge symmetry, the right-hand side

will vanish since the representations are chosen to be anomaly free, i.e. the sum of
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all the U (1)Y charges cancels. The problem of light scalars then re-surfaces even

in models with D-type SUSY breaking.8

Exercise By decomposing the complex scalar fields into their real and imaginary
parts, show that terms such as m

′2
i jSiS j + h.c. cannot contribute to the supertrace.

Hint: Aside from “off-diagonal” terms involving products of real and imagi-
nary parts of fields which cannot contribute to the trace, show that these terms
can be written as 1

2
(m

′2
i j + m

′2∗
i j )(SRiSR j − SIiSI j ), so that the real and imaginary

components make equal and opposite contributions to the trace.

7.8 Explicit supersymmetry breaking

There is as yet no compelling theory of SUSY breaking. We have alluded to potential

phenomenological problems that arise if global supersymmetry is spontaneously

broken at the TeV scale. Indeed, the strategy most common to model-building today

is to assume that supersymmetry is broken in a sector of a theory that is essentially

decoupled from our world of quarks, leptons, and gauge and Higgs bosons (and their

superpartners). The effects of SUSY breaking in this “hidden sector” are then com-

municated to our world by messenger interactions. The low energy phenomenology

that results is qualitatively dependent on what these messenger interactions are, but

we will return to this in later chapters.

It is fair to say that we have not yet discovered the dynamics which causes the

breaking of supersymmetry. Hopefully, when this dynamics is discovered, we will

find that supersymmetry, like gauge symmetry, is spontaneously broken. The spon-

taneous breaking of supersymmetry does not alter the supersymmetry relationship

between various (tree level) dimensionless couplings in the Lagrangian density in

Eq. (6.44).9 For instance, (tree level) chiral fermion–scalar–gaugino interactions

are fixed by the usual gauge coupling. As we saw in Chapter 3, altering these would

be a hard breaking of supersymmetry in that it would result in a re-appearance

of quadratic divergences that we have worked so hard to eliminate. Spontaneous

breaking of supersymmetry does not lead to new quadratic divergences.

In the absence of knowledge about SUSY breaking dynamics, the best that we can

do is to parametrize the effects of SUSY breaking by adding to the Lagrangian all

possible SUSY breaking terms, consistent with all desired (unbroken) symmetries

at the SUSY breaking scale, that do not lead to the re-appearance of quadratic

8 In realistic models because electric charge is strictly conserved and particles with different charges cannot mix,
the supertrace vanishes separately in each charge sector. In other words, there should be an up-type scalar quark
lighter than the up quark, a down-type scalar quark lighter than the down quark, and an integrally charged
scalar lighter than an electron!

9 Spontaneous SUSY breaking means 〈F〉 or 〈D〉 �= 0, but the dimensionless (gauge or superpotential) couplings
come from the unshifted parts of F and D.
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divergences. In Chapter 3, we referred to such operators as soft SUSY breaking

operators, and gave examples of these in the context of the Wess–Zumino model.

Girardello and Grisaru have classified the forms of the soft breaking operators

in a general theory.10 They have shown that to all orders in perturbation theory,

� linear terms in the scalar field Si (relevant only for singlets of all symmetries),
� scalar masses,
� and bilinear or trilinear operators of the form SiS j or SiS jSk (where Ŝi Ŝ j and

Ŝi Ŝ j Ŝk occur in the superpotential),
� and finally, in gauge theories, gaugino masses, one for each factor of the gauge

group,

break supersymmetry softly. In general, masses of fermions in chiral supermulti-

plets, chiral fermion–gaugino mixing masses (these are relevant only if there are

chiral supermultiplets in the adjoint representation of the gauge group), and trilinear

scalar interactions involving Si and S†
j are hard. Finally, all dimension four SUSY

breaking couplings are hard.

It is not hard to understand why the dimensionful mass terms and trilinear in-

teractions listed above lead to softly broken supersymmetry. If SUSY is explicitly

broken by an operator with a coupling MSUSY with dimension of mass, a quadratic

divergence in any operator would have a coefficient proportional to MSUSY
2,

where 
 is the ultra-violet cut-off. Only dimension one operators (i.e. operators

linear in a spin-zero field) can have such a coefficient. Thus, in a theory in which

there are no scalars that are singlets of all the symmetries, all dimensionful, renor-

malizable SUSY breaking operators are soft. In theories with singlets, we get further

restrictions by studying the quadratic divergences in tadpole graphs, and the further

restrictions listed by Girardello and Grisaru apply.

Spontaneous breaking of supersymmetry leads to soft SUSY breaking operators.

We illustrate this with examples of scalar and gaugino mass terms, as well as

trilinear SUSY breaking scalar interactions. These operators, as we will see, play

an important role in realistic model building. If there is a left-chiral superfield Û
whose F-term develops a SUSY breaking VEV, then the terms,

1

M2

∫

d4θÛÛ †ŜLŜ†
L = |〈F〉|2

M2
S†S + · · · , (7.36a)

1

M

∫

d2θLÛ Ŵ c
AŴA = 〈F〉

M
λ̄AλA + · · · , (7.36b)

and

1

M

∫

d2θLÛ Ŝi Ŝ j Ŝk = 〈F〉
M

SiS jSk + · · · (7.36c)

10 L. Girardello and M. Grisaru, Nucl. Phys. B194, 65 (1982).
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are, respectively, mass terms for chiral supermultiplet scalars, gauginos, and trilinear

interactions of chiral supermultiplet scalars in an effective theory (below the scale

M) with spontaneously broken supersymmetry.

In the literature one sometimes sees soft terms of an explicitly broken SUSY

theory written in this way. Then Û , which has only a non-vanishing F-component

(equal to the SUSY breaking parameter), is not a dynamical superfield. This is then

a technical device, and Û is referred to as a spurion.

We summarize this section by listing all SUSY breaking operators consistent

with the absence of quadratic divergences in any renormalizable theory. These are:

1. Linear, bilinear, and trilinear scalar self-interactions analytic in the complex

scalar field, consistent with gauge and other symmetries. Linear terms are ob-

viously absent if there are no singlet superfields. It is customary to write the

bilinear and trilinear soft breaking interactions as

Bi jμi jSiS j and Ai jk fi jkSiS jSk

where the terms μi j Ŝi Ŝ j and fi jkŜi Ŝ j Ŝk occur in the superpotential. It should,

however, be kept in mind that such soft SUSY breaking terms are possible even

if the corresponding terms have been set to zero in the superpotential.

2. Scalar mass terms, and

3. gaugino mass terms.

The soft SUSY breaking Lagrangian may thus be written as

Lsoft =
∑

i

CiSi +
∑

i, j

Bi jμi jSiS j +
∑

i, j,k

Ai jk fi jkSiS jSk + h.c.

−
∑

i, j

S†
i m2

i jS j − 1

2

∑

A,α

MAαλ̄AαλAα − i

2

∑

A,α

M ′
Aαλ̄Aαγ5λAα, (7.37)

where α runs over the different factors of the gauge group. We note that there

are two types of gaugino bilinears that we have introduced above. The first of

these is what the reader will recognize as a usual mass term for gauginos. The

second term is a C P-odd “mass term” that is not precluded unless we further as-

sume that the SUSY breaking sector does not contain additional sources of C P
violation. In models without gauge singlet superfields (of which the MSSM, dis-

cussed in the next chapter, is an example), additional terms may be allowed. These

include,

4. mixing mass terms between gauginos and fermion members of chiral supermul-

tiplets in an adjoint representation, and

5. trilinear scalar interactions of the form SiS jS∗
k .
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Mass terms for fermions in a chiral supermultiplet are redundant since these can be

reabsorbed into the bilinear terms in the superpotential, together with appropriate

redefinition of soft SUSY breaking masses and couplings in the scalar sector.

It is important to stress that the introduction of explicit SUSY breaking terms into

the Lagrangian is a parametrization of our ignorance about the dynamics of SUSY

breaking. An understanding of SUSY breaking (which will hopefully be obtained in

the future) should lead to Lsoft, but with the various soft SUSY breaking parameters

being determined in terms of the (presumably much fewer) fundamental parameters

of a more complete theory.

7.9 A technical aside: γ5-dependent fermion mass matrices

We see from the last line of the master formula (6.44) that the bilinear terms

in (Majorana) fermion fields will, in general, be γ5-dependent. This is what we

encountered in our discussion of Case B of the O’Raifeartaigh model. Similar terms

can also arise from mixing between the gauginos and “matter” fermions when the

scalar fields on the second line of (6.44) acquire complex VEVs. We thus have

to understand how to obtain the fermion mass spectrum from these γ5-dependent

fermion mass matrices.

We write the fermion bilinear terms in the Lagrangian density as,

−L = 1

2
N̄i [Mi j + iγ5 Ni j ]N j , (7.38)

(summation is implied) where Ni are Majorana spinors and i is a label that dis-

tinguishes different particle types. Hermiticity of L requires that M and N are

Hermitian matrices. Since the Ni are Majorana spinors, M and N also have to be

symmetric (and hence real) matrices since N̄i�N j = N̄ j�Ni for � = I or γ5. This

will be crucial later. The Lagrangian density can be written by separating the left-

and right-chiral parts of the spinors as,

−2L = N̄Li [Mi j + iNi j ]NR j + N̄Ri [Mi j − iNi j ]NL j .

We can always find unitary matrices U and V such that V †[M + iN ]U = D, and

U †[M − iN ]V = D†, where D is a diagonal (but not necessarily real) matrix. V
is the unitary matrix that diagonalizes the Hermitian matrix [M + iN ][M − iN ]

to give,

V †[M + iN ][M − iN ]V = DD†.

U is the corresponding matrix for [M − iN ][M + iN ] which is also Hermitian.

It is important to note that [M + iN ][M − iN ] and [M − iN ][M + iN ] have

the same (real and positive) eigenvalues. Furthermore, since M and N are real
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matrices, if the column X is an eigenvector of [M + iN ][M − iN ], then X∗ is an

eigenvector of [M − iN ][M + iN ] with the same eigenvalue. As a result, we can

choose V = U ∗. This guarantees that the spinor ψ ′ defined by,

NL = V ψ ′
L, NR = Uψ ′

R = V ∗ψ ′
R

is Majorana when the original spinorN is Majorana. Writing the Lagrangian density

(7.38) in terms of ψ ′ we obtain (with matrix multiplication implied),

−L = 1

2
[ψ̄ ′

L Dψ ′
R + ψ̄ ′

R D†ψ ′
L], (7.39)

which (though it still contains a γ5-dependent mass term) is now diagonal in par-

ticle type. We can now get rid of this γ5 dependence in the fermion bilinears by

performing chiral rotations,

ψ ′
L j = e−iφL j ψL j , ψ ′

R j = e−iφR j ψR j ,

(no summation over j). These transformations leave the kinetic terms invariant. If

we write the elements of the diagonal matrix D by

Di = mi e
iai ,

with mi and ai as real numbers, the γ5 dependence in (7.39) is removed if we choose,

ai + φLi − φRi = 0.

This, of course, fixes only the difference φLi − φRi , but not the two separately. In

order to maintain the Majorana character of ψi , we should also choose,

φLi = −φRi .

We can now write (7.39) in terms of ψ to obtain,

−L =
∑

i

mi

2
[ψ̄LiψRi + ψ̄RiψLi ] =

∑

i

mi

2
ψ̄iψi . (7.40)

We see that the mi are then the positive masses for the fermions. A straight-

forward way to obtain these is to note that the m2
i are the eigenvalues of D†D

which, of course, coincide with eigenvalues of (M − iN )(M + iN ) (or of

(M + iN )(M − iN )).

We should remember several things from this discussion.

� “Fermion masses” (by this we mean the coefficient of ψ̄ψ in the Lagrangian

density) are not physical objects. It is only the squares of these that give the

squared masses of the fermions. A special case of this that we will have frequent

occasion to use is when a fermion mass has the “wrong sign”. In this case,

the reader can easily check that the transformation, ψ → γ5ψ fixes this sign.
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This does not, however, preserve the Majorana nature of ψ . If ψ is Majorana,

the appropriate transformation should be ψ → iγ5ψ . Both these transformations

preserve the kinetic terms, but may introduce additional γ5 matrices as well as

i’s in interaction terms. These are important as they lead to physically observable

changes in amplitudes.
� For a system of fermions, the physical masses are given not by the eigenvalues

of the “fermion mass matrix” (which need not even be Hermitian). Instead, the

eigenvalues of the mass matrix times its Hermitian adjoint are the squares of the

fermion masses.
� We can eliminate γ5 dependence in fermion bilinears by separately rotating the

left- and right-chiral components. Care must be taken, however, if we are dealing

with Majorana fermions, to preserve their Majorana character. Such γ5-dependent

mass terms, which are not precluded by Poincáre invariance, frequently signal

C P violation.11 In two-component notation, the analogue of these is phases in

masses for spinor fields.

11 Recall that ψ̄γ5ψ is odd under C P .
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