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On the orbit-sizes of permutation
groups containing elements

separating finite subsets

B.J. Birch, R.G. Burns, Sheila Oates Macdonald,
and Peter M. Neumann

It is proved that if (G is a permutation group on a set &
every orbit of which contains more than mm elements, then any
pair of subsets of § containing m and n elements

respectively can be separated by an element of (& .

1.

This note is the outcome of attempts to find a direct proof of the
following result, which is a translation of a lemma of B.H. Neumann [1]
into the language of permutation groups. (We shall state B.H. Neumann's

lemma and indicate why the two results are equivalent at the end of this
section.)

THEOREM 1 ([3, Lemma 2.31). If G 1is a group of permutations of a
set 0 such that all the orbits of G are infinite, then for each finite
subset b6 of § there is an element g € G such that Dg n A is
empty.

We shall give a direct proof of this theorem, and also prove the
following quantitative version of it.

THEOREM 2. 1If G is a growp of permutations of a set Q such that
every orbit of G has more than mn elements then corresponding to each
pair ', AcCQ with |[T|=m, |A| =n , there exists g € G such that
TgnA=9.
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We make two remarks. The first one is that the lower bound (mm+l)
on orbit-size ensuring separability of ' and A 1is best possible. If
G 1is a transitive group of degree mm having m Dblocks of imprimitivity
each of size n then one can choose [, A , of sizes m, n respectively,
such that Tg nA # @ for all g € G : take I to have one element from
each of the blocks of the imprimitivity system, and take A to be one of
those blocks. The second remark is that the theorem can be proved using
results and methods of B.H. Neumann from [/] and [2]. The proof we give
here is in the more natural combinatorial and permutation group-theoretic

style.

As promised, before proving the theorems (in Section 2) we sketch a
proof of the equivalence of Theorem 1 with the result of B.H. Neumann [T,

k
Lemma L4.1] that if a group K is the union U Higi of finitely many

=1

cosets Higi of subgroups Hi , then at least one of the Hi has finite

index in K .

Thus assume the statement of Theorem 1 and suppose that XK = U H.g,

v

H o

Let Q={Hig|lsi$k;g€G},andlet K act on 2 by
multiplication on the right. Let A4 = {Hl, ceey Hk’ ngl, cees Hkgk} .
Then A 1is a finite subset of §; if g € X then g € Hrgr for some r
and so Hg, €A NAlg; thus ANAg# $ for all g € K . From our

assumption it follows that one of the orbits of X in § is finite, and

S0 IK : Hil is finite for some ¢ . The converse follows as in [3,

Lemma 2.3], from the observation that, if A is a subset of £ such that

AnAg# P for all g €G, then G= U ¢ where C is defined as
nxa B b

{g | og =B, g € G} . Each set CaB is a right coset of the stabiliser
Ga of & , so that if A is finite then G is covered by finitely many
cosets. By B.H. Neumann's result qu has finite index in G for some

0 , whence the orbit containing @ is finite.
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2.
We first prove a combinatorial lemma which gives Theorem 1 directly.

LEMMA 1. If every orbit of G has more than f(m, n) elements

where
f(la n)=7l,
flm, n) = f(m-1, n2+n) (m>1),
then for each pair T, bCQ with |T| =m, |&] =n, there exists

g € G such that TgnA=0¢.

Proof. We use induction on m . If m =1 the result is obvious
since each orbit has more than 7 elements. Suppose that m > 1 and as
inductive hypothesis that the desired conclusion holds when one set has
fewer than m elements, and the other has any {(finite) number, and suppose
further that every orbit has more than f(m, n) elements. Since every
orbit has more than 7 elements, without loss of generality we may assume

that there exists Y in T - A . Let th, e th be the distinct

transforms of 7Y which lie in A . ©Note that 0 =k <=n . Since every

orbit has more than f(m, n) elements, every orbit must have more than

f(m—l, n2+n) elements and so by inductive hypothesis there is h € G such

that

(T-{yHnn (2 v br U ... uAhk] =9 .
If Yr A thenput g=h . If Yh €A then Yh = Yh, for some < ,

in which case put g = hh;l . In both cases Yg k A , and also
(T-{y})g n A =9 . Therefore Tg NnA = ¢ as required.

Now we set out on the proof of Theorem 2. Unfortunately, we are
unable to prove it directly - we have to use Theorem 1. First we will
prove a second combinatorial lemma, which gives the right numbers but which

'begs the question' by making a strong finiteness assumption.

LEMMA 2. If T, AcQ with |T| =m, |A] =n and each element
of T ie in a finite orbit of G with more than mn elements, then there

exists g € G with TgnA=2¢.

Proof. Let the distinct orbits of G that contain elements of T be
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Qs oeees Qr ; for each Z =1, ..., r , suppose that |Qi n Al = v; s
IQiI = ti so that Z:vi =n and ti >m . Let the number of distinct

translates Tg , for g € G , be s (which from our assumptions is

finite). Each element of Qi occurs the same number of times in the
translates Tg , so at most msvi/ti of these translates contain an
element of Qi NnA . Since

r msvi

r svi
< —_— <
. t. .Z n - 8
=1 7 =1

and TG n A S-U(Qi n A) , the lemma follows.

Now we complete the proof of Theorem 2. Let FO be the subset of T

consisting of elements that are contained in a finite orbit of G . By

Lemma 2, there exists g1 € G such that Pogl NnA=¢ . Nowlet H be
the subgroup of G that leaves the elements of Fogl fixed; H has
finite index in (G , so the orbits of H containing elements of (F-Fo)gl

are still infinite. So by Theorem 1, there exists g2 € H such that

(r-r0)9192 na=¢ . So Tgg,nbd=¢.
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