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Abstract

We show that over any field F of characteristic 2 and 2-rank n, there exist 2n bilinear n-fold Pfister forms
that have no slot in common. This answers a question of Becher [‘Triple linkage’, Ann. K-Theory, to
appear] in the negative. We provide an analogous result also for quadratic Pfister forms.

2010 Mathematics subject classification: primary 11E04; secondary 11E81, 16K20.

Keywords and phrases: symmetric bilinear forms, quadratic forms, Pfister forms, fields of characteristic
2, valuations, quaternion algebras.

1. Introduction

The study of linkage of quadratic or bilinear n-fold Pfister forms and its connections
to important field invariants, for example, the u-invariant and the cohomological 2-
dimension, has been the focus of several interesting papers in the last five decades.
The first significant result was obtained in [14] where it was shown for nonreal fields
F with char(F) , 2 that if InF is linked (that is, every pair of anisotropic n-fold Pfister
forms have an (n − 1)-fold Pfister form as a common factor) then In+2F = 0, and it was
concluded that if F is linked (that is, I2F is linked) then u(F) can be either 0,1,2,4 or 8.
The analogous result for In

q F when char(F) = 2 was given in [7] based on preliminary
results obtained in [15].

There is an intrinsic complication with quadratic forms when char(F) = 2: there
exist two kinds of quadratic field extensions—separable and inseparable—which
means that a maximal subfield shared by two given quaternion division algebras
can be either a separable or inseparable extension of the centre, and two quadratic
n-fold Pfister forms can share either a quadratic or bilinear (n − 1)-fold Pfister
form as a common factor. We specify the terms ‘separable’ and ‘inseparable’
linkage accordingly. It was shown that inseparable linkage for I2

q F implies separable
linkage [12] but not vice versa [18]. This fact was generalised to In

q F for arbitrary n
in [15] and to symbol division p-algebras of arbitrary prime degree in [6].
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In [5] the linkage property was extended to larger sets of n-fold Pfister forms: we
say that InF is m-linked if m anisotropic bilinear m-fold Pfister forms always have an
(n − 1)-fold Pfister form as a common factor. It was shown for nonreal fields F with
char(F) , 2 that if InF is 3-linked then In+1F = 0, and consequently that if I2F is 3-
linked then u(F) 6 4. The analogous results for In

q F when char(F) = 2 were obtained
in [9].

Becher noticed that there exist fields F for which I2F is m-linked for any finite m
(such as number fields) and asked the following natural question.

Question 1.1 [5, Question 5.2]. Suppose InF , 0 and InF is 3-linked. Does it follow
that InF is m-linked for every finite m > 3?

In this paper we provide a negative answer to this question when char(F) = 2.
We also consider the analogous questions for In

q F. We say that In
q F is separably

(inseparably) m-linked if m anisotropic quadratic n-fold Pfister forms over F always
have a quadratic (bilinear) (n − 1)-fold Pfister form as a common factor. This leads to
two analogues of Question 1.1 for In

q F.

Question 1.2. Suppose In
q F , 0 and In

q F is inseparably 2-linked. Does it follow that
In
q F is inseparably m-linked for every finite m > 2?

Question 1.3. Suppose In
q F , 0 and In

q F is separably 3-linked. Does it follow that In
q F

is separably m-linked for every finite m > 3?

We answer Question 1.2 in the negative, and likewise Question 1.3 for n > 3. We
conjecture that the answer to [5, Question 5.2] is negative also when char(F) , 2.

2. Preliminaries

For general reference on symmetric bilinear forms and quadratic forms see [13].
The group WqF = IqF is generated by the forms ϕ(u, v) = αu2 + uv + βv2 for α, β ∈ F,
denoted by [α, β]. We write 〈 β1, . . . , βn〉b for the diagonal bilinear form

B((v1, . . . , vn), (w1, . . . ,wn)) =

n∑
i=1

βiviwi

and 〈 β1, . . . , βn〉 for the diagonal quadratic form ϕ(v1, . . . , vn) =
∑n

i=1 βiv2
i . We denote

by D(ϕ) the set of nonzero values ϕ represents, that is, {ϕ(v) : v ∈ V, ϕ(v) , 0}, and by
D(B) the set {B(v, v) : v ∈ V, B(v, v) , 0}.

The bilinear forms 〈〈 β〉〉b = 〈1, β〉b are called bilinear 1-fold Pfister forms. These
forms generate the basic ideal IF of WF. Powers of IF are denoted by InF.
The tensor products 〈〈 β1, . . . , βn〉〉b = 〈〈 β1〉〉b⊗ · · · ⊗〈〈 βn〉〉b are called bilinear n-fold
Pfister forms.

The quadratic form [1, α] is called a quadratic 1-fold Pfister form and denoted by
〈〈α]]. For any quadratic form ϕ and β1, . . . , βn ∈ F×,

〈 β1, . . . , βn〉b ⊗ ϕ = β1ϕ ⊥ · · · ⊥ βnϕ.
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For any integer n > 2, we define the quadratic n-fold Pfister form 〈〈β1, . . . , βn−1, α]]
as 〈〈 β1, . . . , βn−1〉〉b ⊗ 〈〈α]]. A quadratic Pfister form is isotropic if and only if it is
hyperbolic, and a bilinear Pfister form is isotropic if and only if it is metabolic. We
define In

q F to be the group generated by the scalar multiples of quadratic n-fold Pfister
forms.

A quadratic n-fold Pfister form ϕ = 〈〈 β1, . . . , βn−1, α]] over F decomposes as
ϕ = [1, α] ⊥ ϕ′′. The quadratic form ϕ′ = 〈1〉 ⊥ ϕ′′ is independent of the choice of
presentation of ϕ and is called the ‘pure part’ of ϕ. A bilinear form B = 〈〈 β1, . . . , βn〉〉b

over F decomposes as B = 〈1〉b ⊥ B′ for a unique symmetric bilinear form B′ called
the ‘pure part’ of B.

3. Bilinear Pfister forms

Suppose that char(F) = 2. We define the 2-rank of F, denoted by rank2(F), to be
log2([F : F2]). It is known to be an integer. For any finitely generated field extension
L/F, we have rank2(L) = rank2(F) + tr. deg(L/F) (see [16, Lemma 2.7.2]). By [13,
Example 6.5], a given bilinear n-fold Pfister form 〈〈 β1, . . . , βn〉〉b is anisotropic if and
only if log2([F2( β1, . . . , βn) : F2]) = n. As a result, if rank2(F) = r then InF , 0 for all
n 6 r and InF = 0 for all n > r.

Theorem 3.1. Let F be a field of char(F) = 2 and rank2(F) = n for some integer n > 2.
Then for any m ∈ {1, . . . , n − 1}, every collection of 2n−m+1 − 1 anisotropic bilinear
n-fold Pfister forms has a bilinear m-fold Pfister form as a common factor.

Proof. Write N = 2n−m+1 − 1. Consider N anisotropic bilinear n-fold Pfister forms
B1, . . . , BN . Let i be an integer in {0, . . . ,m − 1}. Suppose there exists a bilinear i-
fold Pfister form ρ such that B` = ρ ⊗ π` for some (n − i)-fold Pfister forms π` for all
` ∈ {1, . . . , N}. For each `, D(ρ ⊗ π′`) is an F2-vector subspace of F of dimension
2n − 2i. Since 2iN 6 2n − 2i < 2n, the spaces D(ρ ⊗ π′`) for ` ∈ {1, . . . , N} have a
nontrivial intersection. Hence, by [13, Proposition 6.15], there exists β ∈ F× such
that B` = ρ ⊗ 〈〈 β〉〉b ⊗ ψ` for some bilinear (n − i − 1)-fold Pfister forms ψ` for all
` ∈ {1, . . . ,N}. The statement then follows by induction. �

Corollary 3.2. Let F be a field of char(F) = 2 with InF , 0 for some n > 2. Then InF
is 3-linked if and only if rank2(F) = n.

Proof. Suppose every triple of anisotropic bilinear n-fold Pfister forms over F have
a common (n − 1)-fold Pfister factor. By [5, Theorem 5.1], In+1F = 0, and therefore
rank2(F) 6 2n. Since InF , 0, it follows that rank2(F) = n. The opposite direction is
Theorem 3.1 with m = n − 1. �

If we substitute m = n − 1 in Theorem 3.1, then it says that when rank2(F) = n > 2,
every 2n − 1 anisotropic bilinear n-fold Pfister forms have a common bilinear 1-fold
Pfister factor, that is, a common slot. The following theorem shows that this bound is
sharp by providing 2n bilinear n-fold Pfister forms that do not have a common slot.
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Theorem 3.3. Let F be a field of char(F) = 2 with rank2(F) = n for some n > 2. Then
there exist 2n anisotropic bilinear n-fold Pfister forms with no common slot.

Proof. Let α1, . . . , αn be a 2-basis of F (meaning that F = F2(α1, . . . , αn)). Write
I = {0, 1}×n, 0 = (0, . . . , 0), d = (d1, . . . , dn) for an arbitrary element in I and αd for∏n

i=1 α
di
i . For every d ∈ I\{0}, let Bd be 〈〈α1, . . . , α̂`, . . . , αn〉〉b ⊗ 〈〈1 + αd〉〉b where `

is the minimal integer in {1, . . . , n} for which d` , 0. For every e ∈ I\{0} with e` = 0,
both αe and αe(1 + αd) = αe + αe+d are in D(B′d), and so also αe+d ∈ D(B′d). Therefore,
the elements {αe : e ∈ I\{0,d}} ∪ {1 + αd} are all in D(B′d) and, since they are linearly
independent over F2 and D(B′d) is of dimension 2n − 1 over F2, they form a basis of
D(B′d) over F2.

Let B0 be 〈〈α1, . . . , αn〉〉b, so that D(B′0) is spanned over F2 by {αe : e ∈ I\{0}}.
Since D(Bd) for all d ∈ I are of dimension 2n over F2, they are anisotropic by [13,
Example 6.5]. By elementary linear algebra, for any given d ∈ I\{0}, the intersection
D(B′0)

⋂
D(B′d) is spanned by {αe : e ∈ I\{0,d}} and so the intersection

⋂
d∈I D(B′d) is

trivial. This means the pure parts of the bilinear n-fold Pfister forms {Bd : d ∈ I} do not
represent a common element and so they have no slot in common. �

This means the answer to Question 1.1 is always negative. Fields of 2-rank n are
easily provided: take any perfect field F0 of char(F) = 2, and let F be either the
function field F0(α1, . . . , αn) in n algebraically independent variables over F0, or the
field of iterated Laurent series F0((α1)) . . . ((αn)) in n variables over F0.

The situation in quadratic forms is more complicated, as we shall see in the next
section. This is a good opportunity to point out another surprising difference between
quadratic forms and symmetric bilinear forms in characteristic 2.

Proposition 3.4. Suppose two given anisotropic bilinear n-fold Pfister forms B1 and
B2 over F with char(F) = 2 satisfy the following property: for every α ∈ F×, 〈〈α〉〉 is a
factor of B1 if and only if it is a factor of B2. Then B1 ' B2.

Proof. For every α ∈ F×, 〈〈α〉〉 is a factor of B1 if and only if α is represented
by B′1. If α is represented by B′1 if and only if it is represented by B′2 for every
α, it means that D(B′1) = D(B′2), that is, D(B′1) and D(B′2) are the same (2n − 1)-
dimensional F2-subspace V of F. Let ρ be a common i-fold factor of B1 and B2.
Write B1 = ρ ⊗ ψ1 and B2 = ρ ⊗ ψ2. The spaces D(ρ ⊗ ψ′1) and D(ρ ⊗ ψ′2) are (2n − 2i)-
dimensional F2-subspaces of V . If i 6 n − 1 then they have a nonzero intersection,
because [V : F2] = 2n − 1. Let β be a nonzero element in the intersection. By [13,
Proposition 6.15], ρ ⊗ 〈〈 β〉〉 is a common factor of B1 and B2. This works for every
i ∈ {1, . . . , n − 1}. Therefore, we obtain by induction that B1 ' B2. �

This is not true for quadratic n-fold Pfister forms, which can share all 1-fold factors
(either bilinear or quadratic, or both) without being isomorphic (see [8] for reference).

Remark 3.5. In this section we focused on anisotropic bilinear n-fold Pfister forms.
From [1, page 909], an isotropic bilinear n-fold Pfister form B decomposes as B =

〈〈1, . . . , 1︸  ︷︷  ︸
k times

〉〉b ⊗ B1, where B1 is an anisotropic bilinear (n − k)-fold Pfister form and
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D(B) = D(B1) for some unique integer k. However, B1 is not unique and there can
certainly be a different anisotropic bilinear Pfister form B2 such that B = 〈〈1〉〉kb ⊗ B2 as
well. For example, take an anisotropic B1 = 〈〈x〉〉b, B2 = 〈〈x + 1〉〉b and B = 〈〈1, x〉〉b
(see also [1, Proposition A.8]). The situation is therefore more fluid when it comes to
isotropic forms. In addition, anisotropic bilinear n-fold Pfister forms represent nonzero
classes in InF and are mapped to nonzero classes in the Milnor K-groups KnF/2KnF,
while all the isotropic n-fold Pfister forms are trivial in InF and mapped to zero by
the isomorphism InF/In+1F � KnF/2KnF from [17], which gives anisotropic forms
greater significance in the algebraic theory of bilinear forms, K-theory and in general.

4. Quadratic Pfister forms

In this section we provide a negative answer to Question 1.2, and to Question 1.3
in all cases but n = 2. The technique is to study the common quadratic inseparable
splitting fields of quadratic n-fold Pfister forms. Given an anisotropic quadratic n-fold
Pfister form ϕ over F and an inseparable quadratic field K = F[

√
γ], ϕK is isotropic if

and only if the bilinear 1-fold Pfister form 〈〈γ〉〉b is a factor of ϕ. Given a quadratic
form ϕ : V → F, a subform ψ of ϕ is the restriction of ϕ to some subspace W of V .

Lemma 4.1. If F[
√
γ] is a splitting field of an anisotropic quadratic n-fold Pfister form

ϕ over F, then 〈1, γ〉 is a subform of ϕ′.

Proof. This follows from [8, Proposition 3.2]. �

We focus on valued fields with a sufficiently large value group. For general
reference on valuation theory see [19].

Lemma 4.2 [10, Lemma 10.1]. Let n > 2 and F be a field of char(F) = 2 with a
valuation v onto the totally ordered group Γ. Write v for the function mapping each
q ∈ F× to the class of q in Γ/2Γ. Let α1, . . . , αn be elements in F× of negative
values whose images under v are linearly independent over F2, and consider the
quadratic n-fold Pfister form ϕ = 〈〈α1, . . . , αn]] with underlying vector space V with
basis {vd : d ∈ I}, where I, d and αd are the same as in Theorem 3.3. Then:

(a) for every v =
∑

d∈I cdvd ∈ V, v(ϕ(v)) = v(ϕ(cdvd)) for some specific d ∈ I with
cd , 0;

(b) ϕ is anisotropic;
(c) v(D(ϕ)) is the F2-subspace of Γ/2Γ spanned by {v(αi) : i ∈ {1, . . . , n}}.

Corollary 4.3 [10, Corollary 10.2]. For any two-dimensional subspace U of V, there
exists an element in U whose image under v is nonzero.

Corollary 4.4. If v(D(ϕ)) = Γ/2Γ, then the form ϕ described in Lemma 4.2 satisfies
{v(q) : q ∈ D(ϕ′)} = Γ/2Γ\{v(αn)}.

Proof. This follows immediately from the fact that ϕ′ is the restriction of ϕ to the
subspace of V spanned by {vd : d ∈ I\{(0, . . . , 0, 1)}} and from the linear independence
of the images of α1, . . . , αn under v over F2. �
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Theorem 4.5. Let n > 2 be an integer and F be a field of char(F) = 2 with a discrete
rank-n valuation. Then there exist 2n − 1 quadratic n-fold Pfister forms with no
common quadratic inseparable splitting field.

Proof. Write v for the valuation and Γ(� Z×n) for the group. Write v for the function
mapping each q ∈ F× to the class of q in Γ/2Γ. Let α1, . . . , αn be elements in F×

of negative values whose images under v are linearly independent over F2. Let
I, 0, d and αd be the same as in Theorem 3.3. For every d ∈ I\{0}, let ϕd be
〈〈α1, . . . , α̂`, . . . , αn〉〉 ⊗ 〈〈α

d]] where ` is the minimal integer in {1, . . . , n} for which
d` , 0. We will show that the forms {ϕd : d ∈ I\{0}} do not have a common inseparable
quadratic splitting field.

By Corollary 4.4, v(D(ϕ′d)) = Γ/2Γ\v(αd) for each d ∈ I\{0}. Therefore⋂
d∈I\{0}

v(D(ϕ′d)) = {0}.

However, by Lemma 4.1, if the forms ϕd have a common inseparable quadratic
splitting field then the forms ϕ′d have a common two-dimensional subform. All the
elements q represented by this two-dimensional subform must satisfy v(q) = 0, which
contradicts Corollary 4.3. �

Note that the forms appearing in the statement of Theorem 4.5 do not have a bilinear
(n − 1)-fold Pfister form as a common factor, because they do not even share one
inseparable quadratic splitting field. When n > 3 these forms do not have a quadratic
(n − 1)-fold Pfister form as a common factor for the same reason.

For the construction of counterexamples for Question 1.2 we need a necessary
condition for In

q F to be separably 3-linked.

Lemma 4.6. Let ϕ = 〈〈a1, . . . , an]] be an n-fold quadratic Pfister form over a field F
with char(F) = 2. Write ϕ = [an, 1] ⊥ ϕ′′ and consider d ∈ D(ϕ) such that

d = ϕ(w, x, u1, . . . , u2n−2) = anw2 + wx + x2 + ϕ′′(u1, . . . , u2n−2)

for some w, x,u1, . . . ,u2n−2 ∈ F with w , 0. Then there exist b1, . . . ,bn−1 ∈ F× such that
ϕ = 〈〈b1, . . . , bn−1, d/w2]].

Proof. Let v1 be the vector (1, x/w, u1/w, . . . , u2n−2/w) and v2 be the vector
(0, 1, 0, . . . , 0). Then the subform ϕ|Fv1+Fv2 is isometric to

[an + x/w + x2/w2 + ϕ′′(u1/w, . . . , u2n−2/w), 1].

By [3, Ch. 4, Lemma 4.1], there exist b1, . . . , bn−1 ∈ F such that

ϕ = 〈〈b1, . . . , bn−1, an + x/w + x2/w2 + ϕ′′(u1/w, . . . , u2n−2/w)]]. �

Recall that u(F) is the maximal dimension of an anisotropic nonsingular quadratic
form over F (see [13, page 163]).
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Proposition 4.7 (Cf. [5, Corollary 5.4]). Let n > 3 be an integer and F be a field
of char(F) = 2 such that the function field K = F(t) in one variable over F has
u(K) 6 2n+1. Then In

q F is separably 3-linked.

Proof. Let ϕ1, ϕ2 and ϕ3 be three anisotropic quadratic n-fold Pfister forms over F.
Write ϕi = [1, αi] ⊥ ϕ′′i for i ∈ {1, 2, 3}. The system of two quadratic equations

α1w2 + ϕ′′1 (v1) = α2w2 + wx2 + x2
2 + ϕ′′2 (v2),

α1w2 + ϕ′′1 (v1) = α3w2 + wx3 + x2
3 + ϕ′′3 (v3)

has a solution over F if and only if the quadratic form

ψ : K × K × K × K×(2n−2) × K×(2n−2) × K×(2n−2) → K

mapping (w, x2, x3, v1, v2, v3) to

α1w2 + ϕ′′1 (v1) + α2w2 + wx2 + x2
2 + ϕ′′2 (v2)

+ t(α1w2 + ϕ′′1 (v1) + α3w2 + wx3 + x2
3 + ϕ′′3 (v3))

is isotropic by [13, Theorem 17.14]. The form ψ is of dimension 3 · (2n − 1), which is
greater than 2n+1. Therefore ψ is isotropic (u(K) 6 2n+1), and so the system above has
a solution over F. If in this solution w , 0 then by Lemma 4.6 the forms ϕ1, ϕ2 and
ϕ3 have a common right slot, that is, ϕi = ρi ⊗ 〈〈α]] for i ∈ {1, 2, 3} for some α ∈ F and
bilinear (n − 1)-fold Pfister forms ρ1, ρ2 and ρ3. If the solution has w = 0 then, by [2,
Lemma 3.5], ϕ1, ϕ2 and ϕ3 have a common bilinear 1-fold Pfister form as a common
factor. By [11, Corollary 6.2], since n > 3, the forms ϕ1, ϕ2 and ϕ3 also have a common
right slot, so they have a common right slot regardless of w.

Write ϕi = Bi ⊗ ρ, i ∈ {1, 2, 3}, for some bilinear (n − k)-fold Pfister forms B1, B2, B3
and some quadratic k-fold Pfister form ρ, where k is an integer in {1, . . . , n − 2}. The
system of two equations

(B′1 ⊗ ρ)(v1) = (B′2 ⊗ ρ)(v2),
(B′1 ⊗ ρ)(v1) = (B′3 ⊗ ρ)(v3)

has a solution over F if and only if the quadratic form

θ : K×(2n−2k) × K×(2n−2k) × K×(2n−2k)

mapping (v1, v2, v3) to

(B′1 ⊗ ρ)(v1) + (B′2 ⊗ ρ)(v2) + t((B′1 ⊗ ρ)(v1) = (B′3 ⊗ ρ)(v3))

is isotropic by [13, Theorem 17.14]. The dimension of θ is 3 · (2n − 2k), which is
greater than 2n+1 because k 6 n − 2. Therefore by [2, Lemma 3.5] there exists γ ∈ F×

such that 〈〈γ〉〉 ⊗ ρ is a common factor of ϕ1, ϕ2 and ϕ3. The statement then follows by
induction. �

We are now ready to give negative answers to Questions 1.2 and 1.3.
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Example 4.8. Let F0 be an algebraically closed field of char(F0) = 2, such as the
separable closure of F2, and let F be either the function field F0(α1, . . . , αn) in
n algebraically independent variables, or the field F0((α−1

1 )) . . . ((α−1
n )) of iterated

Laurent series in n variables over F0. In these cases the maximal dimension of an
anisotropic form in In

q F is 2n, so In
q F is inseparably 2-linked. However, F has a

discrete rank-n valuation. Therefore there exist (2n − 1) quadratic n-fold Pfister forms
without a common quadratic inseparable splitting field, providing a negative answer
to Question 1.2. Moreover, these fields are Cn fields [13, Section 97], and therefore
u(F(t)) = 2n+1. By Proposition 4.7, when n > 3, In

q F is separably 3-linked. However,
In
q F is not separably (2n − 1)-linked for the reason mentioned above, giving a negative

answer to Question 1.3 (when n > 3).

Our ability to answer Question 1.3 when n > 3 relies heavily on the fact that when
n > 3, quadratic n-fold Pfister forms with a common quadratic (n − 1)-fold Pfister
factor must have a common inseparable quadratic splitting field. This is certainly
not true for n = 2, and we leave Question 1.3 open in this case. The existence of
inseparable quadratic field extensions is special to the case of char(F) = 2, so our
techniques do not apply (at least not in an obvious manner) to the more common case
of char(F) , 2.

5. Quaternion algebras

Given a field F of char(F) = 2, a quaternion algebra over F is of the form

( β, α]2,F = F〈x, y : x2 + x = α, y2 = β, yxy−1 = x + 1〉

for some α ∈ F and β ∈ F×. There is a one-to-one correspondence between quaternion
algebras ( β, α]2,F and their norm forms 〈〈 β, α]] which are quadratic 2-fold Pfister
forms (see [13, Section 12] and [8, Section 6]). In particular, the splitting fields of the
quaternion algebra and its norm form are the same. We therefore obtain the following
theorem.

Theorem 5.1. Let F be a field of char(F) = 2 with a valuation v of rank 2 and value
group Γ(� Z × Z). Write v for the function mapping each q ∈ F× to the class of q in
Γ/2Γ. Let α, β be elements in F× of negative values whose images under v are linearly
independent over F2. Let Q1 = ( β, α]2,F , Q2 = (α, β]2,F and Q3 = ( β, αβ]2,F . Then Q1,
Q2 and Q3 do not have a common inseparable quadratic splitting field.

Fields F with u(F) = 4 are the fields over which every pair of quaternion algebras
share an inseparable quadratic splitting field [4, Theorem 3.1]. If every triple of
quaternion algebras over F share an inseparable quadratic splitting field, it does not
affect the value of u(F). Nevertheless, there exist fields that do not have this property
while still having u(F) = 4.

Example 5.2. Let F0 be an algebraically closed field of char(F0) = 2. Let F be either
the function field F0(α, β) in two algebraically independent variables over F0, or the
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field of iterated Laurent series F0((α−1))(( β−1)) in two variables over F0. Then every
pair of quaternion algebras over F shares a quadratic inseparable splitting field, but
not every triple.

Proof. The field F in both cases is a C2 field (see [13, Section 97]) with nontrivial
quaternion algebras, and so u(F) = 4. Therefore every pair of quaternion algebras over
F share a quadratic inseparable splitting field. However, by Theorem 5.1 there exist
three quaternion algebras that do not share a quadratic inseparable splitting field. �

There are still fields over which every collection of quaternion algebras shares a
quadratic inseparable splitting field, as the following example demonstrates. This
means that unlike Question 1.1, the answer to Question 1.2 is not always negative.

Example 5.3. Let F0 be a perfect field of char(F0) = 2 with nontrivial Ét2(F) (for
example, any finite field). Let F be either the function field F0(α) in one variable
over F0, or the field of Laurent series F0((α)) over F0. Then any finite number of
quaternion algebras over F share a quadratic inseparable splitting field, because F has
a unique quadratic inseparable field extension.
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