
JFP 29, e20, 53 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000157

How to prove decidability of equational theories
with second-order computation analyser SOL

M A K O T O H A M A N A
Gunma University, Kiryu, Gunma, Japan
(e-mail: hamana@cs.gunma-u.ac.jp)

Abstract

We present a general methodology of proving the decidability of equational theory of programming
language concepts in the framework of second-order algebraic theories. We propose a Haskell-based
analysis tool, i.e. Second-Order Laboratory, which assists the proofs of confluence and strong
normalisation of computation rules derived from second-order algebraic theories. To cover various
examples in programming language theory, we combine and extend both syntactical and semantical
results of the second-order computation in a non-trivial manner. We demonstrate how to prove
decidability of various algebraic theories in the literature. It includes the equational theories of
monad and λ-calculi, Plotkin and Power’s theory of states and bits, and Stark’s theory of π-calculus.
We also demonstrate how this methodology can solve the coherence of monoidal categories.

A video abstract can be found at: https://vimeo.com/365486403

1 Introduction

Equations and equational reasoning are ubiquitous in functional programming in pure (Bird
& Moor, 1996) and even impure setting (Gibbons & Hinze, 2011). In a programming lan-
guage paper, one often defines one’s own calculus or algebra by giving a set of equational
laws or reduction rules. Then, the decidability of the equational theory of a calculus or
algebra of programming language is useful for reasoning, verification, and program trans-
formation. If one knows the decidability, one can use a decidable test of an equation for
type checking, compilation, optimisation, etc. Therefore, the decidability of equational
theory is important for programming languages in theory and practice. The purpose of this
paper is to present a general methodology of proving the decidability of equational theory
with the assistance of our Haskell-based analysis tool SOL, Second-Order Laboratory.

1.1 Monad [Problem #1]

First, we demonstrate how to prove that a sample equational theory is decidable. We
consider monads (Moggi, 1991), important and indispensable features in functional pro-
gramming (Wadler, 1990), especially in Haskell. A monad T is a structure with two
operations

return : a→ Ta �= : Ta→ (a→ Tb)→ Tb

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157
https://orcid.org/0000-0002-3064-8225
mailto:hamana@cs.gunma-u.ac.jp
https://vimeo.com/365486403
https://doi.org/10.1017/S0956796819000157

2 M. Hamana

satisfying three laws

return(x) �= λy.k y = k x(unitL)

e �= λy.return(y) = e(unitR)

(e �= λx.k x) �= λy.� y = e �= λx.(k x �= λy.� y)(assoc)

This is well known. However, the following is perhaps less known:

The theory of monad is decidable.

By theory, we mean equational theory, which is the set of all equationally provable equa-
tions (i.e. theorems) under a given set of axioms. In this case, axioms are the three laws of
monad, and the problem is the following:

Given two well-typed terms s, t consisting of return, �= , and variables, is an
equation

s = t

derivable from the three laws of monad?

This problem is decidable; that is, there is a terminating algorithm answering yes or no for
any two terms. How do we prove it? In the following, we sketch a rewriting theoretic proof
and a practical method to prove the decidability of the theory of monad.

1.2 Theoretical method

Proof by rewriting. A principal idea to obtain the decidability of equational theory in
this paper is to extend a rewriting method originated by Knuth and Bendix (1970). They
solved the decidability of the theory of a group, known as a word problem, by obtain-
ing confluent and terminating rewrite rules to compute normal forms. Their method for
deciding an equality between expressions of a group is first to orient the given equational
axioms E, as left-to-right rewrite rules, and next to transform them to a set of conflu-
ent and terminating rewrite rules R. Finally, for a given equation s= t, the proof method
is to rewrite both sides of the equation to normal forms using R, and to compare them.
If two normal forms are the same term, then we conclude s= t is derivable from the
axioms E. Otherwise, it is not derivable by the equational logic. To make this method
correct and decidable, we must ensure that the rewriting rules are terminating and con-
fluent. Termination is to reach the normal form in finite time. Confluence ensures the
existence of unique normal forms. A given set E of equational axioms is not always termi-
nating or confluent, hence they developed an algorithm to transform the rules to have these
properties.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 3

s

����
���

� = t

�����
���

· · ·
����

���
��� · · ·

�����
���

��

n
?= n′

Normal forms

In this paper, we follow this described general methodology of proving equations by
rewriting as a foundational method. Our principal interest is to give a methodology that
is applicable to programming language theory. In this respect, our method is not merely
a straightforward application of the classical Knuth and Bendix’s approach. In the case of
Knuth and Bendix, a group is axiomatised as an ordinary algebraic theory. In other words,
all the axioms are built on algebraic terms without having any higher-order terms. The the-
ory of programming languages absolutely requires higher-order terms, such as λ-terms and
let-expressions. Therefore, we extended the methodology to cover second-order algebraic
theories. One important observation related to our development is that calculi and alge-
bras for programming languages are often described naturally as second-order algebraic
theories (Fiore & Hur, 2010; Fiore & Mahmoud, 2010). Second-order algebraic theories
are founded on the mathematical theory of second-order abstract syntax (Fiore et al.,
1999; Hamana, 2004; Fiore, 2008). Staton has shown that second-order algebraic the-
ories are a useful framework that models various important notions of programming
languages, such as logic programming (Staton, 2013a), algebraic effects (Staton, 2013b),
and quantum computation (Staton, 2015). Recently, the present author modelled cyclic
computation using second-order algebraic theories (Hamana, 2016). This paper presents
another practical application of second-order algebraic theories to investigate decidability.

To cover various examples in programming language theory, we combine and extend
the results of computation on second-order algebraic theories, including both rewriting
and semantical methods, in a non-trivial manner. The main problems are how to prove the
termination and confluence of a given second-order equational theory, regarded as second-
order computation rules, correctly, effectively, and in a simple manner. This paper presents
a solid and useful methodology for them using our tool: SOL.

Monad laws as computation rules. We turn to the problem of the theory of monad. To
use the rewriting method, first we orient each axiom from left to right:

return(X) �= y.K[y] ⇒ K[X](unitL)

E �= y.return(y) ⇒ E(unitR)

(E �= x.K[x]) �= y.L[y] ⇒ E �= x.(K[x] �= y.L[y])(assoc)

We use these as a schema of computation. Therefore, free variables are important as the
targets of instantiation by pattern matching. To clarify the distinction of free and bound
variables, we write the free variables in capitals, and maintain bound variables as small
letters. To simplify and clarify the term structure for further syntactic analysis of compu-
tation, we omit the λ symbol and use the square bracket K[y] to denote an application of a
term to a free variable K.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

4 M. Hamana

Fig. 1. Overlaps in monad laws.

Confluence. Next, we prove confluence of this computation rule set, named C. To the
best of our knowledge, confluence of the monad laws has not been explicitly proved (even
stated) in the literature. Our proof is the following. Careful inspection of C reveals that
it has, in all, five patterns of overlap situations as depicted in Figure 1, each of which
admits two ways of reductions. The underline represents the rewritten part (i.e. redex) by
the right path of rewriting. The whole term (involving an underlined subterm) is rewritten
by the left path. For example, in the overlap number 3: (return(X’)�= x.K[x])�= y.L[y],
the underlined term is rewritten by (unitL), and the whole term (i.e. the root position) is
rewritten by (assoc).

An overlap is such a situation that matches the left-hand sides of rules in two ways
(Definition 7.7). The pair of divergent terms is called a critical pair (CP for short)
(Definition 7.10). The diagrams in Figure 1 show that all the critical pairs are joinable
by further rewriting. Importantly, this finite number of checks is sufficient to conclude that
all other infinite numbers of instances of the divergent situations1 are convergent. This con-
vergence is ensured by Theorem 7.11 and the property is called local confluence (WCR for
short, see Section 7.5), meaning that every possible one-step divergence is always joinable.
By applying Newman’s lemma (Lemma 7.6), stating “termination and local confluence
imply confluence”, we can conclude that C is confluent (CR for short). Because it requires
termination, we consider it next.

SN. We consider termination (SN for short, meaning strong normalisation) of the compu-
tation rules C for monad. We warn that a naive proof by assigning some “weight” to each

1 Because the five patterns above might occur in an arbitrary larger term context and because every metavariable
can be instantiated by arbitrary term.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 5

term (such as a natural number calculated using a certain polynomial), which is decreas-
ing in each rule, is typically dangerous for proving the termination of higher-order rules.
For example, can we assign some simple “weight” to terms to prove termination of the
β-reduction rule2

λ(x.M[x])@N ⇒ M[N]

of the simply typed λ-calculus? No simple weight is known. One reason is that M can con-
tain many x. Therefore, N might be copied many times at the right-hand side, which makes
the term larger. Also, there is a case that M does not contain x. Then the term size becomes
smaller. It is not an easy problem. Only quite involved weights using ordinals (van de Pol,
1994) are known for such a “weight”-based proof, which is not readily applicable to other
variations of rules.

The reason why we refer to the β-reduction rule here is that in case of monad, (unitL)
has a similar flavour to the β-rule, as K is applied to X at the right-hand side. Therefore,
we must regard that the termination of the monad laws is almost as difficult as termination
of the typed λ-calculus.

The usual way of proving termination of a higher-order calculus is to employ the notion
of reducibility or computability by Tait and Girard (1989). Particularly in this paper, we use
Blanqui’s General Schema criterion (2000; 2016) as a main proof method of termination
of second-order rules. The General Schema is based on Tait’s computability method.

To provide a quick overview, we skip presentation of a proof of SN. Instead, we bor-
row the existing result. Actually, SN of Moggi’s computational meta-language (1988) has
been shown by a translation into λ-calculus with sums (Benton et al., 1998), or using
��-lifting method (Lindley & Stark, 2005). The rules C is a part of strongly normalising
computational meta-language. Therefore, C is also strongly normalising. We conclude that
the theory of monad is decidable.

1.3 Proposed method: How to prove decidability with SOL

Why SOL. What were the difficult parts of the proof of confluence and strong normalisa-
tion? Actually, the proof structure is not theoretically difficult for experienced researchers,
but practically difficult because one must try to do the following:

i. enumerate all the overlaps of the rules without oversight;
ii. rewrite terms to check joinability, which is tedious when choosing suitable rules

and redexes;
iii. define a suitable reducibility predicate and check the many syntactic conditions to

prove SN.

These are often quite confusing and prone to error because of similar rules, terms, and
variable names. Moreover, one often needs trial and error to develop a better calculus.
Changing just a single rule might produce a huge number of overlaps, which must be
checked again. Adding a new rule also produces overlaps and might affect termination,

2 Milner used the same notation in Milner (1996, p. 271),
https://books.google.co.jp/books?id=lGgPwQfeXSEC&pg=PA271 .

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://books.google.co.jp/books?id=lGgPwQfeXSEC&pg=PA271
https://doi.org/10.1017/S0956796819000157

6 M. Hamana

and might globally change the whole proof, such as a reducibility predicate. The redexes to
check joinability are often a mixture of various binding/infix/prefix notations, which appear
to be confusing and a source of mistakes. Calculation of critical pairs between higher-order
rules needs higher-order unification (Huet, 1980; Miller, 1991), which is complicated for
a human to check manually. Therefore, this paper presents a proposal of the tool SOL to
eliminate such pains.

A usage scenario for SOL. We show how proofs can be completed more easily with
the assistance of SOL. Our system SOL is implemented as an embedded domain-specific
language (DSL) in Haskell. An intended scenario of the usage of SOL is the following.
First, the user creates a Haskell script for a given problem by specifying a signature and
axioms (or rules). Then in the Glasgow Haskell interpreter (GHCi), the user attempts sev-
eral commands to analyse CR and SN. These commands are realised as Haskell functions.
Therefore, the GHCi provides an interactive user interface for SOL. If the user is lucky,
then this attempt just finishes by invoking a few commands. If not, the user modifies the
specification of rules, and repeats the checking process of SN and CR until the user obtains
sufficient computation rules.

Monad in SOL. We define the signature by

sigm = [signature|
return : a -> T(a) ; bind : T(a),(a -> T(b)) -> T(b) |]

and define the axioms by3

monad = [axiom|
(unitL) return(X) >>= y.K[y] = K[X]
(unitR) E >>= y.return(y) = E
(assoc) (E >>= x.K[x]) >>= y.L[y] = E >>= x.(K[x] >>= y.L[y]) |]

The reader might find that the description presented above in SOL exactly and naturally
matches the mathematical definition of monads presented in Section 1.1. The keyword-
headed bracket [signature|..|] or [axiom|..|] indicates the beginning and end of
SOL’s DSL using a feature of Template Haskell. Other than the bracketed parts are nor-
mal Haskell, but the inside of the brackets is completely the world of SOL, which has its
own syntax designed to be close, to the greatest extent possible, to the ordinary mathemat-
ical meta-language used in formulating laws and calculi of programming languages. SOL
regards each axiom as a computation rule transforming a term from left to right in textual
order.

Confluence. Next we try to prove confluence (CR) using SOL. Invoking the command
cri (which is short for critical pairs), SOL enumerates all possible overlap situations and
checks the joinability of critical pairs.

3 Several operators are reserved in SOL to be translated automatically to the corresponding function symbols
for readability. Here the infix operator »= is translated to the prefix function bind.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 7

*SOL> cri monad sigm
1: Overlap (unitL)-(unitR)--- N’|-> return(X), K|-> z1.return(z1) -------------

(unitL) (return(X) >>=y.K[y]) => K[X]
(unitR) N’ >>=y’.return(y’) => N’

return(X) >>=y.return(y)
return(X) <-(unitL)-∧-(unitR)-> return(X)

---> return(X) =OK= return(X) <---
2: Overlap (unitR)-(assoc)--- N|-> N’ >>=x’.K’[x’], L’|-> z1.return(z1) -------

(unitR) (N >>=y.return(y)) => N
(assoc) (N’ >>=x’.K’[x’]) >>=y’.L’[y’] => N’ >>=x’.(K’[x’] >>=y’.L’[y’])

(N’ >>=x’.K’[x’]) >>=y.return(y)
N’ >>=x’.K’[x’] <-(unitR)-∧-(assoc)-> N’ >>=xd.(K’[xd] >>=yd.return(yd))

---> N’ >>=x’.K’[x’] =E= N’ >>=xd.K’[xd] <---
3: Overlap (assoc)-(unitL)--- N|-> return(X’), K’|-> z1.K[z1] -----------------

(assoc) (N >>=x.K[x]) >>=y.L[y] => N >>=x.(K[x] >>=y.L[y])
(unitL) return(X’) >>=y’.K’[y’] => K’[X’]

(return(X’) >>=x.K[x]) >>=y.L[y]
return(X’) >>=x.(K[x] >>=y.L[y]) <-(assoc)-∧-(unitL)-> K[X’] >>=y.L[y]

---> K[X’] >>=y.L[y] =E= K[X’] >>=y.L[y] <---
4: Overlap (assoc)-(unitR)--- N’|-> N, K|-> z1.return(z1) ---------------------

(assoc) (N >>=x.K[x]) >>=y.L[y] => N >>=x.(K[x] >>=y.L[y])
(unitR) N’ >>=y’.return(y’) => N’

(N >>=x.return(x)) >>=y.L[y]
N >>=x.(return(x) >>=y.L[y]) <-(assoc)-∧-(unitR)-> N >>=y.L[y]

---> N >>=x.L[x] =E= N >>=y.L[y] <---
5: Overlap (assoc)-(assoc)--- N|-> N’ >>=x’.K’[x’], L’|-> z1.K[z1] ------------

(assoc) (N >>=x.K[x]) >>=y.L[y] => N >>=x.(K[x] >>=y.L[y])
(assoc) (N’ >>=x’.K’[x’]) >>=y’.L’[y’] => N’ >>=x’.(K’[x’] >>=y’.L’[y’])

((N’ >>=x’.K’[x’]) >>=x.K[x]) >>=y.L[y]
(N’ >>=x’.K’[x’]) >>=x.(K[x] >>=y.L[y])

<-(assoc)-∧-(assoc)-> (N’ >>=xd.(K’[xd] >>=yd.K[yd])) >>=y.L[y]
---> N’ >>=x.(K’[x] >>=y.(K[y] >>=y.L[y]))
=E= N’ >>=x29.(K’[x29] >>=x30.(K[x30] >>=y30.L[y30])) <---

#Joinable! (Total 5 CPs)

The above five overlaps descriptions correspond exactly to the five diagrams shown in
Figure 1. The two rules after the line number: Overlap (..)-(..)–- indicate the rules
used in the left and right paths of a divergence, and the highlight in the first rule shows that
the subterm is unifiable with the root of left-hand side of the second rule.

For example, in the overlap 3, the subterm (N »=x.K[x]) in the rule (assoc) is
unifiable with the term return(X’) »=y’.K’[y’] in the rule (unitL) using the uni-
fier N|-> return(X’), K’|-> z1.K[z1] described at the immediately above. This is
obtained by higher-order unification (Huet, 1980; Miller, 1991), which is crucial but
difficult for a human. Then using this information, SOL generates the underlined term
(return(X’) »=x.K[x]) »=y.L[y], which exactly corresponds to the source in a dia-
gram of a divergence in Figure 1. The lines involving ∧ (indicating “divergence”) mimics
the divergence diagram and the joinability test in text. The sign =OK= denotes syntactic
equality, and =E= denotes equal modulo an equational theory, here just the α-equivalence.

SN. We prove termination of the axioms of monad. The command sn of SOL tries to prove
SN of the rules by checking all the conditions of the General Schema (Section 7.9):

*SOL> sn monad sigm
Found constructors: return
Checking type order >>OK

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

8 M. Hamana

Checking positivity of constructors >>OK
Checking no loop in function dependency >>OK
Checking (unitL) return(X) >>=y.K[y] => K[X]
(meta K)[is acc in return(X),y.K[y]] [is positive in return(X)]
(meta X)[is acc in return(X),y.K[y]] [is positive in return(X)] [is acc in X] >>True

Checking (unitR) N >>=y.return(y) => N
(meta N)[is acc in N,y.return(y)] [is acc in N] >>True

Checking (assoc) (N >>=x.K[x]) >>=y.L[y] => N >>=x.(K[x] >>=y.L[y])
(fun bind=bind) subterm comparison of args
(meta N)[is acc in N >>=x.K[x],y.L[y]] [is positive in N >>=x.K[x]] [is acc in N]
(fun bind=bind) subterm comparison of args
(meta K)[is acc in N >>=x.K[x],y.L[y]] [is positive in N >>=x.K[x]] [is acc in K[x]]
(meta L)[is acc in N >>=x.K[x],y.L[y]] [is positive in N >>=x.K[x]] [is acc in L[y]]
>>True

#SN!

It reports SN. Therefore, we know that monad, regarded as left-to-right computation
rules, is strongly normalising on the signature sigm.

1.4 Contributions

This paper is the fully reworked and extended version of the paper (Hamana, 2017) with
the following new contributions:

1. We extend the framework to be polymorphic, i.e. polymorphic second-order
algebraic theory and computation systems (Section 2).

2. We add new examples: theory of reading a bit (Section 3.2), theory of writing a bit
(Section 3.3), and coherence of monoidal categories (Section 6).

3. We complete the π-calculus example (Section 5). In Hamana (2017), there was
a problematic formulation in a rule, which is corrected in this paper. The proof
becomes more difficult and longer, which requires detailed analysis to show
Church–Rosser modulo equivalence.

4. We give the complete proofs of the theorem that critical pair checking implies local
confluence for computation systems (Theorem 7.11) and the theorem establishing
Church–Rosser modulo equational theory by critical pair checking for partitioned
computation systems (Theorem 7.19).

1.5 Organisation

The paper is organised as follows. We first introduce the framework of second-order alge-
braic theories and computation rules in Section 2. From Sections 3–5, we examine various
algebras and calculi and try to show their decidability with SOL. These are Part I: Theory
of effect, Part II: Variations on the λ-calculus, Part III: A Theory of π-calculus, and Part
VI: On Coherence of Skew-Monoidal Categories. We consider 11 problems tagged as
“Problem [#n]”. In Section 7, we present the technical foundations of our notions of
computation systems and SOL, including second-order matching (Sections 7.1 and 7.2),
unification (Section 7.3), rewriting (Section 7.5), critical pairs (Sections 7.6–7.8), and the
General Schema (Section 7.9). In Section 9, we summarise the paper.

The GHCi interface and the web interface of the SOL system are available; see Section 8.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 9

2 Polymorphic second-order algebraic theories and computation

In this section, we introduce the framework of polymorphic second-order algebraic the-
ories and computation rules. It gives a formal unified framework to provide syntax,
types, and computation for various simply typed computational structures. It is a sim-
plified framework of general polymorphic framework (Hamana, 2011; Fiore & Hamana,
2013). It is also regarded as a polymorphic extension of second-order abstract syntax
with metavariables (Hamana, 2004), second-order algebraic theories (Fiore & Hur, 2010;
Fiore & Mahmoud 2010), and its rewriting system (Hamana, 2005, 2007, 2010).

In a previous paper (Hamana, 2017), we use the type system called molecular types,
which was intended to mimic polymorphic types in a simple-type setting. However, this
mimic setting provided an awkward framework to address polymorphic typed rules. The
present framework first developed in Hamana (2018) is more direct and introduces type
variables into types. The polymorphism in this framework is essentially ML polymor-
phism, i.e. predicative and only universally quantified at the outermost level, and has
type constructors on types. The necessity of polymorphism for formulating simply typed
systems is illustrated in Section 4.1.

Notation 2.1. We use the notation A for a sequence A1, . . . , An, and |A| for its length.
We use the abbreviations “lhs” and “rhs” to mean left-hand side and right-hand side,
respectively.

Types. We assume that A is a set of atomic types (e.g. Bool, Nat, etc.), and a set V of
type variables (written as a, b, . . .). We also assume a set of type constructors together
with arities n ∈N, n≥ 1. The sets of “0-order types” T0 and (at most first-order) types T

are generated by the following rules:

o ∈A

o ∈T0

a ∈ V
a ∈T0

τ1, . . . , τn ∈T0 T n-ary type constructor

T(τ1, . . . , τn) ∈T0

σ 1, . . . , σ n, τ ∈T0

σ 1, . . . , σ n → τ ∈T

We call σ → τ with |σ |> 0 a function type. A type having no type variables is a simple
type. We usually write types as σ , τ, A sequence of types may be empty in the above
definition. The empty sequence is denoted by (), which may be omitted, e.g. ()→ τ, or
simply τ. For example, Bool is an atomic type, List(1) is a type constructor, and Bool→
List(Bool) is a type. We assume that there is at least one atomic type in A .

Terms. A signature Σ is a set of function symbols of the form

a1, . . . , an � f : (σ 1 → τ1), . . . , (σ m → τm)→ τ

where (σ 1 → τ1), . . . , (σ m → τm), τ ∈T , and type variables a1, . . . , an may occur in these
types. Any function symbol is of up to second-order type.

Remark 2.2. Staton’s parameterised algebraic theories (Staton, 2013a) are similar, which
are second-order algebraic theories, where the target type of every function type is always
a fixed atomic type ι. Therefore, a signature there consists of function symbols of the form
f : (a1 → ι), . . . , (am → ι)→ ι.

Parameterised algebraic theories have been shown to be a useful framework that models
various important notions of programming languages, such as logic programming (Staton,
2013a), algebraic effects (Staton, 2013b), and quantum computation (Staton, 2015).

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

10 M. Hamana

Fig. 2. Typing rules of meta-terms.

Because our framework encompasses them, we can analyse such useful examples of
parameterised algebraic theories using our method and the tool SOL. We consider some of
them in Sections 3 and 5.

A metavariable is a variable of (at most) first-order function type, declared as M : σ → τ

(written as capital letters M , N , K, . . .). A variable (of a 0-order type) is written usually
x, y, . . ., and sometimes written xτ when it is of type τ. The raw syntax is given as follows:

- Terms have the form t ::= x | x.t | f (t1, . . . , tn).

- Meta-terms extend terms to t ::= x | x.t | f (t1, . . . , tn) | M[t1, . . . , tn].

where f ∈Σ. The last form M[t1, . . . , tn], called meta-application, means that when we
instantiate M : a→ b with a meta-term s, free variables of s (which are of types a) are
replaced with meta-terms t1, . . . , tn (cf. Definition 2.3). We may write x1, . . . , xn. t for
x1. · · · .xn. t, and we assume ordinary α-equivalence for bound variables. A metavariable
context Θ is a sequence of (metavariable:type)-pairs, and a context Γ is a sequence of
(variable:type in T0)-pairs. A judgement is of the form Θ � Γ � t : τ. A type substitution
ρ : S →T is a mapping that assigns a type σ ∈T to each type variable a in S. We write
τ ρ (resp. t ρ) to be the one obtained from a type τ (resp. a meta-term t) by replacing
each type variable in τ (resp. t) with a type using the type substitution ρ : S →T . A meta-
term t is well-typed by the typing rules Figure 2. In every well-typed function term, a
function symbol is officially annotated by its type as

f σ (xσ1
1 .t1, . . . , xσ i

i .ti, . . . , xσm
m .tm)

where f has the polymorphic type σ � ((σ 1 → τ1), . . . , (σ m → τm)→ τ)ξ. Practically, we
often omit the type annotation. The type annotation can be recovered by the type inference
algorithm in Section 7.4. The notation t {x1 → s1, . . . , xn → sn} denotes ordinary capture
avoiding substitution that replaces the variables with terms s1, . . . , sn.

Definition 2.3. (Substitution of meta-terms for metavariables) Let ni = |τi| and
τi = τ1

i , . . . , τni
i . Suppose

Θ � Γ′, x1
i : τ1

i , . . . , xni
i : τni

i � si : σ i (1≤ i≤ k)

Θ, M1 : τ1 → σ 1, . . . , Mk : τk → σ k � Γ � e : τ

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 11

Fig. 3. Polymorphic second-order equational logic.

Then the substituted meta-term Θ � Γ, Γ′ � e [M → x.s] : τ is defined by

x [M → x.s] � x

Mi[t1, . . . , tni] [M → x.s] � si {x1
i → t1 [M → x.s], . . . , xni

i → tni [M → x.s]}
f σ (y1.t1, . . . , ym.tm) [M → x.s] � f σ (y1.t1 [M → x.s], . . . , ym.tm [M → x.s])

where [M → x.s] denotes a substitution for metavariables [M1 → x1.s1, . . . , Mk →
xk .sk].

Definition 2.4. For meta-terms Θ � Γ � s : b and Θ � Γ � t : b, an equation is of the
form

Θ � Γ � s= t : b

We usually omit contexts and type information, and write simply s= t. The polymorphic
second-order equational logic is a logic to deduce formally proved equations from a given
set E of equations, regarded as axioms. The inference system of equational logic is given in
Figure 3. The second-order polymorphic equational theory (or second-order polymorphic
algebraic theory) is the set of all proved equations deduced from a set of axioms.

Definition 2.5. For meta-terms Θ � Γ � � : τ and Θ � Γ � r : τ, a polymorphic
second-order computation rule (or simply rule) is of the form

Θ � Γ � �⇒ r : τ

satisfying the following:

i. � is a deterministic second-order pattern.
ii. All metavariables in r appear in �.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

12 M. Hamana

Fig. 4. Polymorphic second-order computation (one-step).

The definition of the condition (i) will be given in Section 7.2. We usually omit the context
and type and simply write �⇒ r.

A polymorphic computation system is a pair (Σ, C) consisting of a signature Σ and a set
C of rules. We write s ⇒C t to be one-step computation using (Σ, C) obtained by the infer-
ence system given in Figure 4. The (RuleSub) instantiates a polymorphic computation rule
�⇒ r in C by substitution [M → x.s] of meta-terms for metavariables and substitution ξ

on types. The (Fun) means that the computation step is closed under polymorphic function
symbol contexts. Clearly, it is a subsystem of the second-order equational logic (Figure 3),
by deleting (Ref)(Tra)(Ax2). We regard ⇒C to be a binary relation on meta-terms.

Example 2.6. The simply typed λ-calculus is modelled as a polymorphic second-order
algebraic theory as follows. We suppose a binary type constructor Arr, and regard each
ι ∈ Ty as a type constant of a polymorphic second-order algebraic theory. The signature
Σlam for the λ-terms is

a, b � lam : (a→ b)→Arr(a, b)

a, b � app : Arr(a, b), a→ b

Here, a and b are type variables. The β-reduction law is presented as an equation

M : a→ b, N : a � � lam(a→b)→Arr(a,b)(xa. M[x]) @Arr(a,b),a→b N = M[N] : b

where app is denoted by the infix operator @. The β-reduction rule is similar.

3 Problem part I: Theories of computation and effects

Using the basic framework of second-order algebraic theories, we examine various
examples.

3.1 Global state [Problem #2]

We consider the theory of global state (Plotkin & Power, 2002; Staton, 2009) for the single
location. Suppose there are the type Val of values and a type A, which is different from
Val. The signature

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 13

sigst = [signature| lk : (Val -> A) -> A; ud : Val,A -> A |]

consists of two operations lk(v.t) (looking-up the state, binding the value to v, and
continuing t) and ud(v,t) (updating the state to v and continuing t), and the axioms are4

gstate = [axiom|
(lu) lk(v.ud(v,X)) = X
(ll) lk(w.lk(v.X[v,w])) = lk(v.X[v,v])
(uu) ud(V,ud(W,X)) = ud(W,X)
(ul) ud(V,lk(w.X[w])) = ud(V,X[V]) |]

These axioms have intuitive reading. For example, the axiom (lu) says that looking-up
the state, binding the value to v, then updating the state to v, is equivalent to doing nothing.
The axiom (ul) says that updating the state to V, then looking-up and continuing X with the
looked-up value, is equivalent to updating the state to V and continuing with V. Plotkin and
Power showed that the monad corresponding to the theory of global state (of finitely many
locations) is the state monad (Plotkin & Power, 2002). As far as we examined their paper,
they did not touch the decidability issue of the theory, and to the best of our knowledge, it
has not been explicitly proved in the literature so far (e.g. Staton, 2009; Melliès, 2010). We
give a rewriting theoretic proof of the decidability of the second-order equational theory
gstate using SOL.

SN. First we try to show SN of gstate regarded as left-to-right computation rules by
using SOL.

*SOL> sn gstate sigst
Checking (ll) lk(w.lk(v.X[v,w])) => lk(v.X[v,v])
(fun lk=lk) subterm comparison of args >>False

No idea..

SOL cannot prove it. This is because the General Schema checks that a recursive call at
the rhs must be with a subterm of an argument at the lhs. In case of (ll), the recursive
call of lk happens with v.X[v,v], which is not a subterm of w.lk(v.X[v,w]) at the lhs.
Moreover, in (ul), where ud is called with X[V], which is not a subterm of lk(w.X[w]).
However, we can show SN by using another interpretation method. Since in each rule, the
total numbers of lk and ud symbols in the lhs and in the rhs are strictly decreasing, we
conclude the original axioms gstate is SN. Note that since Val �= A, the number of lk
and ud in X[v,v] and X[V] are the same as the number of these in X.

CR. Next consider confluence (CR) of gstate. SOL reports three non-joinable critical
pairs out of eight.

*SOL> cri gstate sigst
1: Overlap (lu)-(uu_v)--- V’|-> z1.z1, X|-> ud(H1,H2), W’|-> z1.H1, X’|-> z1.H2 --

(lu) lk(v.ud(v,X)) => X
(uu_v) ud(V’[v],ud(W’[v],X’[v])) => ud(W’[v],X’[v])

lk(v.ud(v,ud(H1,H2)))
ud(H1,H2) <-(lu)-∧-(uu_v)-> lk(v.ud(H1,H2))
---> ud(H1,H2) =#= lk(v.ud(H1,H2)) <---

4 In SOL, [axiom|..|], [rule|..|] are treated as the same data. The distinction is only for
representing the user’s intention.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

14 M. Hamana

2: Overlap (lu)-(ul_v)--- V’|-> z1.z1, X|-> lk(w’.H6[w’]), X’|-> z1.z2.H6[z2] -
(lu) lk(v.ud(v,X)) => X
(ul_v) ud(V’[v],lk(w’.X’[v,w’])) => ud(V’[v],X’[v,V’[v]])

lk(v.ud(v,lk(w’.H6[w’])))
lk(w’.H6[w’]) <-(lu)-∧-(ul_v)-> lk(v.ud(v,H6[v]))
---> lk(w’.H6[w’]) =#= lk(v.ud(v,H6[v])) <---

3: Overlap (ll)-(lu_w)--- X|-> z1.z2.ud(z1,X’[z2]) ----------------------------
(ll) lk(w.lk(v.X[v,w])) => lk(v.X[v,v])
(lu_w) lk(v’.ud(v’,X’[w])) => X’[w]

lk(w.lk(v.ud(v,X’[w])))
lk(v13.ud(v13,X’[v13])) <-(ll)-∧-(lu_w)-> lk(w.X’[w])
---> lk(v13.ud(v13,X’[v13])) =#= lk(w.X’[w]) <---

4: Overlap (ll)-(ll_w)--- X|-> z1.z2.lk(v’.X’[z2,v’,z1]) ----------------------
(ll) lk(w.lk(v.X[v,w])) => lk(v.X[v,v])
(ll_w) lk(w’.lk(v’.X’[w,v’,w’])) => lk(v’.X’[w,v’,v’])

lk(w.lk(v.lk(v’.X’[w,v’,v])))
lk(v19.lk(v’.X’[v19,v’,v19])) <-(ll)-∧-(ll_w)-> lk(w.lk(vd20.X’[w,vd20,vd20]))

---> lk(v21.X’[v21,v21,v21]) =E= lk(v24.X’[v24,v24,v24]) <---
5: Overlap (uu)-(uu)--- V’|-> W, X|-> ud(W’,X’) -------------------------------

(uu) ud(V,ud(W,X)) => ud(W,X)
(uu) ud(V’,ud(W’,X’)) => ud(W’,X’)

ud(V,ud(W,ud(W’,X’)))
ud(W,ud(W’,X’)) <-(uu)-∧-(uu)-> ud(V,ud(W’,X’))

---> ud(W’,X’) =OK= ud(W’,X’) <---
6: Overlap (uu)-(ul)--- V’|-> W, X|-> lk(w’.X’[w’]) ---------------------------

(uu) ud(V,ud(W,X)) => ud(W,X)
(ul) ud(V’,lk(w’.X’[w’])) => ud(V’,X’[V’])

ud(V,ud(W,lk(w’.X’[w’])))
ud(W,lk(w’.X’[w’])) <-(uu)-∧-(ul)-> ud(V,ud(W,X’[W]))

---> ud(W,X’[W]) =OK= ud(W,X’[W]) <---
7: Overlap (ul)-(lu)--- X|-> z1.ud(z1,X’) -------------------------------------

(ul) ud(V,lk(w.X[w])) => ud(V,X[V])
(lu) lk(v’.ud(v’,X’)) => X’

ud(V,lk(w.ud(w,X’)))
ud(V,ud(V,X’)) <-(ul)-∧-(lu)-> ud(V,X’)

---> ud(V,X’) =OK= ud(V,X’) <---
8: Overlap (ul)-(ll)--- X|-> z1.lk(v’.X’[v’,z1]) ------------------------------

(ul) ud(V,lk(w.X[w])) => ud(V,X[V])
(ll) lk(w’.lk(v’.X’[v’,w’])) => lk(v’.X’[v’,v’])

ud(V,lk(w.lk(v’.X’[v’,w])))
ud(V,lk(v’.X’[v’,V])) <-(ul)-∧-(ll)-> ud(V,lk(vd32.X’[vd32,vd32]))

---> ud(V,X’[V,V]) =OK= ud(V,X’[V,V]) <---
#NON 3 joinable... (Total 8 CPs)

This is unfortunate, but the output gives us useful information about how we should
proceed next. Although gstate is not CR, by adding new theorems to gstate, we
may recover CR. We should add correct theorems, otherwise, it becomes inconsistent.
Interestingly, the three non-joinable indications s =#= t are actually correct theorems s= t,
because s and t are obtained by unification between rules (i.e. instances of axioms) and
rewriting (i.e. equational reasoning) through different paths. Listing them,

lk(v1.ud(W’,X’)) = ud(W’,X’)
lk(v2.ud(v2,X’[v2])) = lk(w’.X’[w’])

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 15

we see that these are naturally understandable theorems. The first says that looking-up the
state and then updating it by a value W’ is equivalent to just updating the state by W’.
The second says that looking-up the state and then updating it by the looked-up value and
continuing with the value is equivalent to looking-up the state and continuing with the
looked-up value. These must be the same. These are regarded as missing theorems to get
confluent axioms of global state. We define them as extra rules

gstateEx = [rule| (lu1) lk(v1.ud(W’,X’)) => ud(W’,X’)
(lu2) lk(v2.ud(v2,X’[v2])) => lk(w’.X’[w’]) |]

We next try to show CR of the combination of the two sets of rules. Here, we use a benefit
of SOL as a DSL in Haskell. Meta-theoretic operations of manipulating syntax, axioms,
rules, etc., can be programmed using Haskell. In this case, since a rule declaration set is
implemented as a list, we can use the append “++” for the combination:

*SOL> cri (gstate ++ gstateEx) sigst
..
#Joinable! (Total 21 CPs)

This addition generates new overlaps, and now all are successfully joinable. Note again
that since gstateEx are theorems deduced from gstate, this addition does not change
the equational theory, i.e. regarded as lemmas. Hence we have confluent reduction rules
for gstate.

Finally, since the number of lk and ud symbols in the lhs and in the rhs in each
rule are decreasing, (gstate ++ gstateEx) is SN. Hence, we conclude that the the-
ory of global state is decidable, and the SN and CR computation system (gstate ++
gstateEx) provides a decision procedure.

The method we have done is nothing but the process of Knuth–Bendix completion
algorithm (Knuth & Bendix, 1970). The “completion” means “to make the rewrite sys-
tem confluent and terminating”. The original Knuth–Bendix completion algorithm repeats
automatically the “critical pair checking” and “adding new rules” process (for first-order
rewrite rules) using an order to orient an equation to add to the rule set.

Instead, we have manually chosen new computation rules from the critical pair checking
for second-order computation rules.

3.2 Reading a bit: Rectangular band [Problem #3]

Staton examined various algebraic theories of computational effects in Staton (2013b). We
consider examples about bits.

A theory of reading a bit consists of a binary operator qu (also written as an infix operator
“?”)

sigrect = [signature| qu : a,a -> a |]

and the following axioms:

rect = [axiom|
(idem-Q) X ? X = X
(dup-Q) (U ? V) ? (X ? Y) = U ? Y |]

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

16 M. Hamana

The infix operator ? is automatically translated to the function qu in SOL. The idea is that X
? Y is a computation that first reads the bit and then proceeds as X (if the read bit is 0) or as
Y (if the read bit is 1) depending on the result. The axiom (idem-Q) says that if the result
is ignored, then the read is not observable. The axiom (dup-Q) says that the same result
is obtained no matter how many times the reading is tested. This theory rect has been
studied in universal algebra under the name “rectangular band”. The monad associated to
this theory is the reader monad.

We consider CR of rect. SOL reports five critical pairs, and only one is joinable.

*SOL> cri rect sigrect
1: Overlap (idem-Q)-(dup-Q)--- X|-> U’ ? V’, X’|-> U’, Y’|-> V’ ---------------

(idem-Q) (X ? X) => X
(dup-Q) (U’ ? V’) ? (X’ ? Y’) => U’ ? Y’

(U’ ? V’) ? (U’ ? V’)
U’ ? V’ <-(idem-Q)-∧-(dup-Q)-> U’ ? V’

---> U’ ? V’ =OK= U’ ? V’ <---
2: Overlap (dup-Q)-(idem-Q)--- X’|-> V, U|-> V --------------------------------

(dup-Q) (U ? V) ? (X ? Y) => U ? Y
(idem-Q) X’ ? X’ => X’

(V ? V) ? (X ? Y)
V ? Y <-(dup-Q)-∧-(idem-Q)-> V ? (X ? Y)

---> V ? Y =#= V ? (X ? Y) <---
3: Overlap (dup-Q)-(idem-Q)--- X’|-> Y, X|-> Y --------------------------------

(dup-Q) (U ? V) ? (X ? Y) => U ? Y
(idem-Q) X’ ? X’ => X’

(U ? V) ? (Y ? Y)
U ? Y <-(dup-Q)-∧-(idem-Q)-> (U ? V) ? Y

---> U ? Y =#= (U ? V) ? Y <---
..
#NON 4 joinable... (Total 5 CPs)

Analysing the output, we see that the following two equations are missing:

rectEx = [axiom|
(ex1) V ? (X ? Y) = V ? Y
(ex2) (U ? V) ? Y = U ? Y |]

These equations are naturally understandable. Since the same result is obtained no matter
how many times the reading is tested, in (ex1), if the read bit is 1, always the second
argument is tested. Therefore, in the lhs of (ex1), firstly (X ? Y) is tested, and next Y is
test, which is equivalent to the result of rhs V ? Y. Adding these equations to rect, we
check again the critical pairs

*SOL> cri (rectEx++rect) sigrect
...
#Joinable! (Total 22 CPs)

SOL reports 22 critical pairs, and now all are successfully joinable. For SN, by invoking
the command sn (rectEx++rect) sigrect, SOL successfully check SN. This is imme-
diate because in every axiom, the length of rhs is smaller than that of lhs. Therefore, we
have CR of rectEx++rect, and the theory of rectangular band is decidable.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 17

The decidability is useful to prove a new law. For example, we can show the following
equation is derivable from rectEx++rect:

(U ? V) ? (X ? Y) = (U ? X) ? (V ? Y)

Since the theory is CR and SN, it suffices to check whether the unique normal forms are
equal. Normalising both sides of equation using a SOL’s command normalise,

*SOL> normalise [o| (U ? V) ? (X ? Y) |] (rectEx++rect)
Just U ? Y
*SOL> normalise [o| (U ? X) ? (V ? Y) |] (rectEx++rect)
Just U ? Y

we see that the normal forms are the same, hence the equation is proved.

3.3 Theory of writing a bit [Problem #4]

A theory of writing a bit of memory has two additional function symbols w0 and w1 for
writing 0 and 1.

sigw = [signature|
qu : a,a -> a ; w0 : a -> a ; w1 : a -> a |]

The idea is that w0(X) sets the bit to 0 and continues as X. It is subject to the following
equations:

wbit = [axiom|
(w0w0) w0(w0(X)) = w0(X) ; (w1w0) w1(w0(X)) = w0(X)
(w0w1) w0(w1(X)) = w1(X) ; (w1w1) w1(w1(X)) = w1(X)
(w0Q) w0(X ? Y) = w0(X) ; (w1Q) w1(X ? Y) = w1(Y)
(_Qw) w0(Z) ? w1(Z) = Z |]

By invoking the command “cri wbit sigw”, SOL reports 20 CPs and 6 non-joinable.
By repeating the completion process manually as the previous examples, we obtain the
following new rules:

wbitEx = [rule|
(idem-Q) X ? X => X
(ex1) V ? (X ? Y) => V ? Y
(ex2) (U ? V) ? Y => U ? Y
(e0) w0(Z) ? Y => Z ? Y
(e1) w1(Z) ? Z => w1(Z)
(e2) Z ? w0(Z) => w0(Z)
(e3) Y ? w1(Z) => Y ? Z |]

Then, (wbitEx++wbit) has 76 CPs and all of these are joinable. SN of (wbitEx++wbit)
is also immediate by SOL. Hence, the theory of writing a bit is decidable.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

18 M. Hamana

4 Problem part II: Variations on the λ-calculus

This section discusses five variations of λ-calculus. We try to show the decidability of
them by checking SN and CR with SOL. During the examination of each λ-calculus, we
will also discuss a few notable sub-issues. The subtitle “— something” of each section
denotes it.

4.1 The call-by-name λ-calculus [Problem #5] – Polymorphism is necessary for
formulating a simply typed system

We consider first the most fundamental calculus of typed functional programming, i.e. the
simply typed λ-calculus in call-by-name.

(β) Γ � (λx σ . M) N ⇒ M[x :=N] : τ

Describing this simply typed system requires a schematic type notation that is best formu-
lated in a polymorphic typed framework. An important point is that σ and τ are not fixed
types, but schemata of types. Therefore, (β) actually describes a family of actual computa-
tion rules. Namely, it represents various instances of rules by varying σ and τ, such as the
following:

(βbool,int) Γ � (λxbool. M) N ⇒ M[x :=N] : int
(βint→int,bool) Γ � (λxint→int. M) N ⇒ M[x :=N] : bool

From the viewpoint of meta-theory, the (β)-rule should be formulated in a polymorphic
typed framework, where types τ and σ vary over simple types. Therefore, we represent the
λ-calculus by the following signature and rules:

siglam = [signature| lam : (a -> b) -> Arr(a,b)
app : Arr(a,b),a -> b |]

beta = [rule| (beta) lam(x.M[x]) @ N => M[N] |]

Here, a,b are type variables, and Arr(a,b) encodes the arrow type of the “object level”
simply typed λ-calculus. SOL automatically translates the infix operator @ to the prefix
function symbol app. SOL also automatically infers the types of terms in the rule (such
as beta) and its typing context. This is the type inference algorithm we will give in
Section 7.4.

Our choice of the signature is different from the ordinary higher-order abstract syn-
tax (HOAS) (Pfenning & Elliott, 1988). We strictly distinguish a type Arr(a,b) from a
function type a -> b of the “meta-level” second-order algebraic theory.

In second-order algebraic theory, a function type a→ b, where a and b are types, always
represents “variable binding”. While written a→ b in our notation, it semantically corre-
sponds to a presheaf δab ∼= Va ⇒ b , roughly considered as a function type from the type
of “variables”. The above signature is exactly the syntactic counterpart of Fiore’s algebra
structure of simply typed terms in Fiore (2002).

Type theoretically, this choice is also suitable, because it is strictly positive. The type of
lam

lam : (a→ b)→Arr(a, b)

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 19

does not involve a negative occurrence of the target type Arr(a, b) for any types a, b (see
Definitions 7.20 and 7.21). Even in the case a= b, we have lam : (a→ a)→Arr(a, a),
where the type Arr(a, a) cannot appear negatively in (a→ a) because of a �=Arr(a, a).

This fact is crucial in applying the General Schema’s criterion for SN, because the
General Schema requires positivity of constructors. For instance, SOL reports SN

*SOL> sn beta siglam
Found constructors: lam
Checking positivity of constructors >>OK
Checking (beta) lam(x.M[x])@N => M[N]
(meta M)[is acc in lam(x.M[x]),N] [is positive in lam(x.M[x])] [is acc in M[x]]
(meta N)[is acc in lam(x.M[x]),N] [is positive in lam(x.M[x])] [is acc in N] >>True

#SN!

By varying the type variables in the signature over simple types, SOL automatically
checks that lam is a positive constructor. Hence we could show the termination of simply
typed λ-calculus using the general method of the General Schema.

Confluence (CR) of the call-by-name λ is immediate. Since the rule beta does not
have a critical pair, beta is locally confluent (WCR). With SN, we have CR. Hence the
equational theory of the simply typed λ-calculus generated by (β) is decidable.

Remark 4.1. If one badly chose types for the signature (with the exactly the same rule
beta), the General Schema may not pass. For example, consider the following definition:

sigunLam = [signature| lam : (I -> I) -> I
app : I,I -> I |]

beta = [rule| (beta) lam(x.M[x]) @ N => M[N] |]

This is the ordinary HOAS encoding lam : (ι→ ι)→ ι, which is not positive, and is
regarded as the representation of untyped λ-calculus. Therefore, beta with the untyped
signature sigunLam is actually non-terminating, and the General Schema wisely rejects it.
(Try sn beta sigunLam in SOL).

4.2 The call-by-value λ-calculus [Problem #6]
– Meta-programming on rules and importance of “variables”

Next we consider Plotkin’s call-by-value λ-calculus (Plotkin, 1975). The ordinary style of
definition (Sabry & Wadler, 1997) can be straightforwardly defined in SOL:

cbv0 = [rule| (beta-v) lam(x.M[x])@V => M[V]
(eta-v) lam(x.V@x) => V |]

with the signature siglam. But this is not enough. This style additionally imposes the
grammatical restriction on the form of values V :

Values V ::= y | λw.M

saying that values are either variables or abstractions. But the definition cbv0 in SOL
did not reflect it. The metavariable V had no difference with other metavariables. We can

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

20 M. Hamana

tell it to SOL by the following meta-programming on rules using the benefit of Haskell
DSL. We can define an expansion function expandV that replaces V with a variable and
an abstraction (using the internal data structures of SOL) in Haskell. We omit this straight-
forward but intricate definition for readability. Then, we define cbv as the expansion.

cbv = expandV cbv0

Then printing command pr of SOL shows us the actual rules of CBV λ:

*SOL> pr cbv
(beta-v_v) lam(x.M[x])@y => M[y]
(beta-v_b) lam(x.M[x])@lam(w.K[w]) => M[lam(w.K[w])]
(eta-v_v) lam(x.y@x) => y
(eta-v_b) lam(x.lam(w.K[w])@x) => lam(w.K[w])

There is one important point in this formulation. In (beta-v_v) (resp. (eta-v_v)), a
variable y is used as lam(x.M[x])@y => M[y], which is not the same as writing

(bad_beta-v) lam(x.M[x])@Y => M[Y]

using a metavariable Y. While very similar, there is a big difference. In case of the latter,
the metavariable Y can match any term including a non-value, hence it does not reflect
the intention. In the formulation cbv, the variable y does not match with e.g. M@N. Hence
unintended overlapping between (beta-v_v) and (beta-v_b) does not happens. The
clear distinction between variables and metavariables in second-order algebraic theories
is important in formulating axioms having free “variables”. SOL successfully proves SN
of cbv. SOL also reports joinable eight CPs; therefore, cbv is CR. Hence the theory of
the call-by-value λ is decidable. There may be cases that use finer classifications of term
structures other than values. This example shows that meta-programming on rules is useful
to generate rules from a schematic definition for those cases.

4.3 The computational meta-language λml [Problem #7]

We consider Moggi’s computational meta-language (Moggi, 1988) in the calculus form
(Sabry & Wadler, 1997).

sigML = [signature|
app : Arr(a,b),a -> b ; let : T(a),(a -> T(b)) -> T(b)
lam : (a -> b) -> Arr(a,b) ; return : a -> T(a) |]

lamML = [rule|
(beta) lam(x.M[x])@N => M[N]
(eta) lam(x.M@x) => M
(beta-let) let(return(M),x.N[x]) => N[M]
(eta-let) let(M,x.return(x)) => M
(assoc) let(let(L,x.M[x]),y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

Here, a let-expression let x = s in t is represented by let(s,x.t) using
let:T(a),(a -> T(b)) -> T(b), which is more concise and is nothing but “bind”.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 21

Hence, the relationship between this and the laws of monad considered in Section 1.3 is
now evident, namely lamML is the combination of the λ-calculus with monad.

WCR. SOL automatically shows WCR of lamML by enumerating seven CPs and checking
their joinability.

SN. SOL’s termination criteria does not work for this example because of the commuting
conversion rule assoc, but SN of λml has also been proved in Benton & Hyland (2003),
Lindley & Stark (2005).

Decidability. With this SN result, we have CR of λml. The result on CR of λml was stated
in Sabry & Wadler (1997, Prop. 4.2) but without proof or any reference. We will touch
this issue in Remark 4.2.

4.4 The simplified monadic calculus λml∗ [Problem #8] – Clarification of CR

We consider a variation called the simplified monadic calculus λml∗ in Sabry & Wadler
(1997, Fig. 4). The signature is the same as sigML before, and the rules are defined as the
combination of cbv λ-calculus with value version of let-axioms.

lamMLstar0 = cbv0 ++ [rule|
(beta-let) let(return(V),x.N[x]) => N[V]
(eta-let) let(M,x.return(x)) => M
(assoc) let(let(L,x.M[x]),y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

lamMLstar = expandV lamMLstar0

As in the case of cbv λ, we apply the expansion of value metavariable V to get actual
rules. Checking CR, SOL reports a fairly large number of 17 CPs and all are joinable.
Therefore, SOL successfully shows WCR. SN has been shown in Lindley & Stark (2005),
hence combing it with SOL’s WCR result, we have CR, hence decidable.

Remark 4.2. In Sabry & Wadler (1997), CR of λml∗ was stated (after Prop. 5.2) as a
corollary of CR of λml using the correspondence between of λml and λml∗. This simulation
result is no problem, but there is one unclear point: CR of λml had no proof in the paper
(Sabry & Wadler, 1997). It may have to rely on some result in Moggi’s original paper,
because they also mentioned “The system (the computational λ-calculus λc) is confluent
as was shown by Moggi (1988)” (Sabry & Wadler, 1997, Prop. 5.1). But as far as the
present author examined Moggi’s LFCS technical report (1988), Moggi did not give a
proof of confluence.

We make clear this point: λml∗ is certainly confluent.

4.5 Hasegawa’s yet simpler linear λ-calculus [Problem #9]
– Necessity of deterministic second-order patterns and FCU unification algorithm

Hasegawa (2005) proposed a linear λ-calculus. It has the !-type constructor that cor-
responds to a modality in linear logic. We represent it as a type constructor Bang.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

22 M. Hamana

The formalisation of the syntax and typing in Ohta & Hasegawa (2006) is straightforward
in SOL.

sigHas = [signature|
app : Arr(a,b),a -> b ; lam : (a -> b) -> Arr(a,b)
bang : a -> Bang(a) ; let : Bang(a),(a -> b) -> b |]

lamHas = [rule|
(beta-o) lam(x.M[x])@N => M[N] ; (eta!) let(M, x.L@bang(x)) => L@M
(eta-o) lam(x.M@x) => M ; (beta!) let(bang(M), x.N[x]) => N[M]|]

This calculus is criticised in Ohta & Hasegawa (2006, Section 2) as “While this is very
compact, it does not immediately hint a terminating and confluent system.” Hence, Ohta
and Hasegawa developed another finer linear λ-calculus and tried to prove SN and CR
modulo equational theory with considerable effort.

From our point of view, the above comment sounds an interesting challenge. Does SOL
“immediately prove termination and confluence” of this system? Let’s try.

*SOL> cri lamHas sigHas
..
3: Overlap (eta!)-(beta-o_x)--- L|-> lam(x’.H10[x’]), M’|-> z1.z2.H10[z2], N’|-

(eta!) let(M,x.(L@bang(x))) => L@M
(beta-o_x) lam(x’.M’[x,x’])@N’[x] => M’[x,N’[x]]

let(M,x.(lam(x’.H10[x’])@bang(x)))
lam(x’.H10[x’])@M <-(eta!)-∧-(beta-o_x)-> let(M,x.H10[bang(x)])

---> H10[M] =OK= H10[M] <---
..
#NON 1 joinable... (Total 4 CPs)

Although SOL does not have linear/intuitionistic distinction of contexts, it does not affect
the confluence problem as long as we are considering well-typed terms. This is because
starting from a well-typed linear term, rewriting using lamHas never breaks linearity and
the intended property of bang.

SOL reports four CPs, and the above only one critical pair (the number 3) is non-joinable.
Hence we add it as a new rule

etaDashBang = [rule| (eta’!) let(M, x.C[bang(x)]) => C[M] |]

Interestingly, Ohta and Hasegawa have also considered the same (eta’!) rule for their
finer linear λ-calculus from a different source. They tried to overcome a more compli-
cated situation of non-joinability using a finer rule set. SOL’s finding is algorithmic, just a
consequence of critical pair checking. Checking again,

*SOL> cri (lamHas ++ etaDashBang) sigHas
..
6: Overlap (beta!)-(eta’!)--- M’|-> bang(M), N|-> x.C’[bang(x)] ---------------

(beta!) let(bang(M),x.N[x]) => N[M]
(eta’!) let(M’,x’.C’[bang(x’)]) => C’[M’]

let(bang(M),x.C’[bang(x)])
C’[bang(M)] <-(beta!)-∧-(eta’!)-> C’[bang(M)]

---> C’[bang(M)] =OK= C’[bang(M)] <---
#Joinable! (Total 6 CPs)

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 23

SOL reports six CPs and finally all are joinable. Hence we conclude that lamHas is WCR.
The above overlap is particularly interesting. SOL reports an overlap between (beta!) and
(eta’!) using a unifier M’|-> bang(M), N|-> x.C’[bang(x)] using the modified
FCU algorithm (Section 7.3). Hence, the middle term let(bang(M),x.C’[bang(x)])
of the critical pair can be rewritten by (beta!) at the left path and (eta!) at the right
path of divergence. Why does the solution happen in unification? This is due to the fact
that the lhs of (eta’!)

let(M, x.C[bang(x)])

is beyond the class of Miller’s higher-order patterns, but is within the class of Yokoyama
et al.’s (2003, 2004a) deterministic second-order patterns – i.e. the metavariable C takes
a constructor term bang(x) (cf. Section 7.2). Unification between this and a term is only
solvable using the recent Function-as-Constructor Unification (FCU) algorithm.

5 Problem part III: A theory of π-calculus [Problem #10]

As a fairly large problem, we consider a theory of π-calculus given by Stark (2008). The
π-calculus of Milner is one of the most fundamental concurrent calculi (Milner, 1999).
Stark (2008) gave a free algebra model of π-calculus and Staton (2009, 2013b) examined
algebraic and categorical properties of this algebraic theory. However, as far as the present
author examined, none of the above mentioned papers touched the decidability issue of this
algebraic theory of π-calculus. We try to show the decidability of it with assistance of SOL.

A theory of π-calculus consists of 12 axioms. We use Huet’s idea of partitioning axioms
into rules and equations (Section 7.7). A reason for doing this is that commutativity axioms
((sum-com),(new-com) below) cannot be oriented. We define the signature and the
partitioned axioms of the π-calculus in SOL as follows:

pisig = [signature|
nil : A ; in : N,(N -> A) -> A ; tau : A -> A
sum : A,A -> A ; out : N,N,A -> A ; new : (N -> A) -> A |]

pical = [rule|
(new-uni) new(a.X) => X
(sum-uniL) sum(nil,X) => X
(new-sum) new(a.sum(X[a],Y[a])) => sum(new(a.X[a]),new(a.Y[a]))
(new-out0) new(a.out(a,B,X[a])) => nil
(new-out) new(a.out(B,C,X[a])) => out(B,C,new(a.X[a]))
(new-in) new(a.in(B,c.X[a,c])) => in(B,c.new(a.X[a,c]))
(new-tau) new(a.tau(X[a])) => tau(new(a.X[a]))
(new-in0) new(a.in(a,b.X[a,b])) => nil |]

pieq = [axiom|
(sum-idem) sum(X,X) = X
(sum-com) sum(X,Y) = sum(Y,X)
(sum-asc) sum(sum(X,Y),Z) = sum(X,sum(Y,Z))
(new-com) new(a.new(b.X[a,b])) = new(b.new(a.X[a,b])) |]

None of the axioms are changed from the original presentation (Stark, 2008; Staton, 2009).
We just partitioned them and wrote in the notation of second-order algebraic theory.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

24 M. Hamana

The notation of meta-applications concisely reflects the intention without writing side-
conditions of variables. For example,

• In (new-uni), X cannot contain the variable a (since it is not written as X[a]).
• The rhss of (newout0),(newout) seem overlapped. However, they are not,

because B in new(a.out(B,C,X[a])) cannot contain a (since it is not written
as B[a]), hence it cannot unify with new(a.out(a,B,X[a])).

To prove the decidability, we show that the computation rules pical have the prop-
erty called Church–Rosser modulo the equational theory (CR∼) generated by pieq (see
Section 7.7).

We show it by the critical pair checking on the rules pical and axioms pieq, and the
SN of the computation rules (Theorem 7.19). These entail the decidability (Section 7.7).

Critical pair checking. SOL has the command crimod, which is short for critical pair
checking modulo equational theory. It enumerates all the critical pairs of a polymorphic
second-order computation rules modulo equational theory, and checks their joinability,
which is needed to establish Church–Rosser modulo equational theory. For the case of
π-calculus, we invoke

*SOL> crimod pical pieq

Then SOL reports 53 critical pairs (CPs) and 11 CPs are non-joinable. This large number
of CPs shows that it is hard for a human to enumerate all the critical pairs manually without
oversight. We list the CPs by omitting duplication.

12: Overlap (sum-ascr)-(sum-uniL) 14: Overlap (sum-com)-(sum-uniL)
sum(sum(X,nil),Z) =#= sum(X,Z) sum(Y,nil) =#= Y

36: Overlap (new-com)-(new-out0_a)
new(b.new(a.out(b,B[a,b],X[a,b]))) =#= nil

37: Overlap (new-comr)-(new-out0_b)
new(a.new(b.out(a,B[b,a],X[b,a]))) =#= nil

40: Overlap (new-com)-(new-out_a)
new(b.new(a.out(B[a],C[a],X[a,b]))) =#= new(a.out(B[a],C[a],new(b.X[a,b])))

41: Overlap (new-comr)-(new-out_b)
new(a.new(b.out(B[b],C[b],X[b,a]))) =#= new(b.out(B[b],C[b],new(a.X[b,a])))

44: Overlap (new-com)-(new-in_a)
new(b.new(a.in(B[a],c.X[a,b,c]))) =#= new(a.in(B[a],c.new(b.X[a,b,c])))

45: Overlap (new-comr)-(new-in_b)
new(a.new(b.in(B[b],c.X[b,a,c]))) =#= new(b.in(B[b],c.new(d.X[b,d,c])))

Here (sum-ascr) and (sum-comr) are the reversed versions of the equations (sum-asc)
and (sum-com), respectively. The notation like “_b” in a label of an axiom indicates an
extension of the axiom by a variable. For example, (new-out0_b) is a variation of the
axiom (new-out0):

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 25

(new-out_b) new(a.out(B[b],C[b],X[b,a])) => out(B[b],C[b],new(a.X[b,a]))

which extends the axiom by allowing a free variable b.
Now a missing computation rule to make joinable the first two of the non-joinable CPs

is the right unit law of sum, and for the other three, we just add them:

piex = [rule|
(sum-uniR) sum(X,nil) => X
(new1-out0) new(a.new(b.out(a,B[b,a],X[b,a]))) => nil
(new1-out) new(a.new(b.out(B[b],C[b],X[b,a])))

=> new(b.out(B[b],C[b],new(a.X[b,a])))
(new1-in) new(a.new(b.in(B[b],c.X[b,a,c])))

=> new(b.in(B[b],c.new(a.X[b,a,c]))) |]

We check again by putting “crimod (piex++pical) pieq”, and SOL reports 104 CPs
(!), and 6 non-joinable. Carefully looking at one of them:

34: Overlap (new-com)-(new1-out_a)
new(b.new(a.new(b’.out(B[a,b’],C[a,b],X[a,b’,b]))))

=#= new(a.new(bd.out(B[a,bd],C[a,bd],new(ad.X[a,bd,ad]))))

we see that this is just a variant of the previous overlap number 40, where new-binder in lhs
is nested three times, rather than twice (in 40). Other non-joinable CPs are also variants
of the previous case, where new is nested three times. This observation leads us to the
additional rules of three times version of piex:

piex2 = [axiom|
(new2-out) new(a.new(b.new(c.out(B[b,c],C[b,c],X[b,c,a]))))

=> new(b.new(c.out(B[b,c],C[b,c],new(a.X[b,c,a]))))
(new2-out0) new(a.new(b.new(c.out(a,B[b,c,a],X[b,c,a])))) => nil
(new2-in) new(a.new(b.new(c.in(B[b,c],q.X[b,c,a,q]))))

=> new(b.new(c.in(B[b,c],q.new(a.X[b,c,a,q])))) |]

We check again by putting “crimod (piex++piex2++pical) pieq”, and SOL reports
157 CPs, and 6 non-joinable. The non-joinable CPs are again variants of the previous case,
but now new-binder in lhs is nested four times, rather than three.

Clearly, this “checking and adding missing rules” process (known as Knuth–Bendix
completion) does not end in finite times in this example. Since (new-com) can swap
any two nested new, (new-com) and the added new-nested rules (such as (new2-*)) are
overlapped again.

But now we see that what we actually need are schematic rules for every (n+1)-time
nested new-case, which we call piexn:

(newn-out0) new(a.newn(b.out(a,B[b,a],X[b,a]))) => nil
(newn-out) new(a.newn(b.out(B[b],C[b],X[b,a])))

=> newn(b.out(B[b],C[b],new(a.X[b,a])))
(newn-in) new(a.newn(b.in(B[b],q.X[b,a,q])))

=> newn(b.in(B[b],q.newn(a.X[b,a,q])))

where b denotes a sequence b1, . . . , bn of variables, and newn(b,X) denotes n-time
nesting of new. Then we have that every critical pair of pical∪ {(sum-uniR)} ∪

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

26 M. Hamana

{piexn | n ∈N} is joinable modulo pieq by meta-theoretical reasoning. Note that theo-
retically, a computation system need not be finite, hence this is meaningful.

SN. We show SN of pical∪ {(sum-uniR)} ∪ {piexn | n ∈N}. Although SOL could not
show it automatically (because it does not follow the General Schema), this system fits
into the class of binding term rewriting systems (Hamana, 2005, Section 7), meaning that
there is no proper meta-application. We can use the polynomial interpretation method.
Interpreting the function symbols using the following monotone polynomials over natural
numbers N,

[[in]](x, f)= x+ f + 2 [[new]](f)= 2 f + 1 [[nil]]= 0

[[out]](x, y, z)= 2x+ 2y+ z+ 2 [[sum]](x, y)= x+ y+ 2 [[tau]](x)= x+ 1

the semantics of the rules in pical are strictly decreasing. By Hamana (2005, Section 7),
we have SN.

Decidability. We prove that pical has the property of Church–Rosser modulo the equa-
tional theory pieq. Formally, we apply Theorem 7.19 to deduce it. We take a binary
relation �� to be the equational theory generated by pieq and a sub-relation � to be
the equational theory generated by {(sum-com),(sum-asc),(new-com)}. Why we do
not include (sum-idem) is that (sum-idem) is problematic to prove well-foundedness of
⇒C ◦�∗ (cf. Section 7.7). The well-foundedness of ⇒C ◦�∗ follows from SN of ⇒C

and the fact that in each axiom in {(sum-com),(sum-asc),(new-com)}, the lhs and rhs
do not change the number of function symbols sum and new. Since we have checked that
all critical pairs are joinable, we can conclude Church–Rosser modulo equational theory.

The equational theory generated by pieq is decidable, because the (sum-*) axioms in
pieq axiomatise that sum-terms are “set”-like data (i.e. unordered sequences satisfying
idempotency), and (new-com) just swaps the order of new. Hence enumeration is finite
and there is an evident algorithm to decide the equality on sum and new terms. Hence, the
algebraic theory of π-calculus is decidable.

Note on two function spaces. In algebraic formulations of π-calculus, it has been under-
stood that two kinds of function spaces are needed (Stark, 1996; Fiore et al., 1996), one
[N → A] for giving a location/channel and the other [N� A] for giving a new loca-
tion/channel (cf. a detailed analysis Staton, 2009). This distinction affects substitution of
variables in equational logic deduction. Our formalisation loosely uses [N → A] for both,
but it is no problem in proving CR and SN on meta-terms of the theory in SOL, because
(1) the above mentioned notational benefit of meta-applications, (2) SOL’s unification in
critical pair checking does not identify differently named variables – i.e. injectivity of sub-
stitution for variables is ensured, and (3) SN of a (loosely larger) theory implies SN of its
sub-theory.

6 Problem part IV: Coherence of monoidal categories [Problem #11]

We show another example, which is different from computational calculi. We consider the
coherence problem of monoidal categories with SOL.

A monoidal category (Mac Lane, 1971) is a category equipped with a “monoidal” prod-
uct⊗ and three natural isomorphisms λ, ρ, α, considered as the unit and associative “laws”

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 27

for the monoidal product. A typical example of monoidal category is a category with carte-
sian products and terminal object, but a monoidal category is more general than that (e.g.
the smash product A⊗ B of cpos is a monoidal product, and is not cartesian because it
is not decomposable). There are many examples of monoidal categories in programming
language theory and theoretical computer science, such as in formulating directed (acyclic)
graphs (Gibbons, 1995; Fiore & Campos, 2013).

Definition 6.1. A monoidal category is a category C together with a distinguished object
I, a bifunctor ⊗ : C×C→C, and natural transformations

λA : I⊗ A→ A ρA : A⊗ I→ A αA,B,C : (A⊗ B)⊗C → A⊗ (B⊗C)

which are isomorphisms parameterised by objects A, B, C of C, subject to the axioms

(a) I⊗ I
λI

���
��
��

ρI

����
��
�

I I

(b) (A⊗ B)⊗ I
αA,B,I �� A⊗ (B⊗ I)

A⊗ B
		ρA⊗B

������

 A⊗ρB

						

(c) (A⊗ I)⊗ B
αA,I,B �� A⊗ (I⊗ B)

A⊗ B
		ρA⊗B

������

 A⊗λB

						

(d) (I⊗ A)⊗ B

λA⊗B 		�
��

��
�

αI,A,B �� I⊗ (A⊗ B)

λA⊗B

		
		
		

A⊗ B

(e) (A⊗ (B⊗C))⊗D
αA,B⊗C,D �� A⊗ ((B⊗C)⊗D)

A⊗αB,C,D
��

((A⊗ B)⊗C)⊗D

αA,B,C⊗D

��

αA⊗B,C,D �� (A⊗ B)⊗ (C ⊗D)
αA,B,C⊗D �� A⊗ (B⊗ (C ⊗D))

A monoidal category has the following remarkable property called coherence.

Theorem 6.2. Every diagram in a monoidal category made up of λ, ρ, α commutes.

This theorem means that any two formal arrows having the same domain and codomains
and consisting of composable λ, ρ, α and ⊗, id are equal in C by using axioms (a)–
(e) and bi-functoriality of ⊗. The proof of coherence theorem by Mac Lane (1963) is
by a complicated combinatory argument. We show another proof based on a rewriting
technique.

Our proof. The first step is considering the following question: where do the diagrams
of the axioms (a)–(e) of a monoidal category come from? We now see that the diagrams
look like the joinability of critical pairs we have considered (e.g. see Figure 1). To make
sense of this understanding, we regard the objects of a monoidal category as meta-terms,
the arrows as one-step rewriting using some computation rule. This leads us to defining the
computation rules of a computation system for this problem from the natural isomorphisms
of a monoidal category.

sigmcat = [signature|
i: C ; times : C,C -> C |]

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

28 M. Hamana

mcat = [rule|
(lmd) i * A => A
(rho) A * i => A
(alpha) (A * B) * C => A * (B * C) |]

The infix operator * (for monoidal product) is automatically translated to the function
symbol times in SOL.

The second step is to consider the following question: In this setting, what are the critical
pairs? We try to check them by SOL.

*SOL> cri mcat sigmcat
1: Overlap (rho)-(lmd)--- A|-> i, A’|-> i -------------------------------------

(rho) (A * i) => A
(lmd) i * A’ => A’

i * i
i <-(rho)-∧-(lmd)-> i

---> i =OK= i <---
2: Overlap (rho)-(alpha)--- A|-> A’ * B’, C’|-> i -----------------------------

(rho) (A * i) => A
(alpha) (A’ * B’) * C’ => A’ * (B’ * C’)

(A’ * B’) * i
A’ * B’ <-(rho)-∧-(alpha)-> A’ * (B’ * i)

---> A’ * B’ =OK= A’ * B’ <---
3: Overlap (alpha)-(rho)--- A’|-> A, B|-> i -----------------------------------

(alpha) (A * B) * C => A * (B * C)
(rho) A’ * i => A’

(A * i) * C
A * (i * C) <-(alpha)-∧-(rho)-> A * C

---> A * C =OK= A * C <---
4: Overlap (alpha)-(lmd)--- A|-> i, A’|-> B -----------------------------------

(alpha) (A * B) * C => A * (B * C)
(lmd) i * A’ => A’

(i * B) * C
i * (B * C) <-(alpha)-∧-(lmd)-> B * C

---> B * C =OK= B * C <---
5: Overlap (alpha)-(alpha)--- A|-> A’ * B’, C’|-> B ---------------------------

(alpha) (A * B) * C => A * (B * C)
(alpha) (A’ * B’) * C’ => A’ * (B’ * C’)

((A’ * B’) * B) * C
(A’ * B’) * (B * C) <-(alpha)-∧-(alpha)-> (A’ * (B’ * B)) * C

---> A’ * (B’ * (B * C)) =OK= A’ * (B’ * (B * C)) <---
#Joinable! (Total 5 CPs)

Five critical pairs arise and all are joinable. Interestingly, the automatically obtained
critical pairs (1)–(5) precisely correspond to Mac Lane’s original axioms (a)–(e) in
Definition 6.1. We now understand that the axioms are the minimal requirements to ensure
that if an object can be transformed in two ways by laws consisting λ, ρ, or α and possibly
⊗, id then the divergence is finally joinable by applying other laws.

By Theorem 7.11 for establishing local confluence from critical pair checking, we have
that sigmcat is locally confluent.

The third step is to analyse the structure of the proof of Theorem 7.11. The proof is by
induction on the construction of computation relation ⇒C given in Figure 4. This means
that any (large) locally confluent diagram is made of

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 29

• smaller “atomic” locally confluent diagrams, i.e. instances of critical pairs by
(RuleSub), and

• these smaller diagrams are composed and extended by context closure by (Fun).

Therefore, any rewriting diagram of mcat can be viewed as a categorical dia-
gram in C because any one-step rewrite rewritten at some position of a meta-term by
(lmd),(rho),(alpha) can be viewed as an arrow of C consisting of λ, ρ, or α and
possibly ⊗ and id’s (which is for context closure).

For example, the commutativity of the following categorical diagram

(A⊗ B)⊗C

((A⊗ I)⊗ B)⊗C
(ρA⊗B)⊗C αA,I,B⊗C �� (A⊗ (I⊗ B))⊗C

(A⊗λB)⊗C
������

���
���

���
���

���
�

(A⊗ B)⊗C

in a monoidal category C is ensured by the joinability of the rewriting diagram

(A⊗ B)⊗C

���
���

���
���

���
���

�

���
���

���
���

���
���

�
((A⊗ I)⊗ B)⊗C

(rho)

1·1��
(alpha)

1 �� (A⊗ (I⊗ B))⊗C

(lmd)

1·2

�� ���
���

���
���

���
���

�

���
���

���
���

���
���

�

(A⊗ B)⊗C

due to the case (Fun) (iii) of Theorem 7.11 (which corresponds to bi-functoriality of ⊗)
with the case (RuleSub) using the joinable critical pair 4: of mcat (which corresponds to

the use of the axiom (c) of monoidal category). The notation such as ===1
(alpha)

⇒ means rewrit-

ing a term at the position 1 by the rule (alpha), and the underline in a term designates a
redex.

Remark 6.3. The axioms (a)–(e) in Definition 6.1 are the original axioms (Mac Lane,
1963). Later Kelly (1964) discovered that (a), (b), and (d) can be derived from (c) and (e).

7 Foundations

In this section, we present the technical foundations of our computation systems and
SOL. We explain known basic results on second-order matching (Sections 7.1 and 7.2),
unification (Section 7.3), type inference (Section 7.4), rewriting (Section 7.5), and our
new developments on critical pairs and CR modulo second-order equational theory
(Sections 7.7 and 7.8), the General Schema for termination criterion (Section 7.9), and
what are the connections between them.

7.1 An algorithm for second-order computation

A one-step computation by a computation system can be understood algorithmically, as we
now demonstrate. A matcher θ is a substitution of terms for metavariables (Definition 2.3).

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

30 M. Hamana

Second-order one-step computation

Input: a target term s for rewrite, and a computation system C
Output: a one-step computed result term t

1. Select a subterm s′ of s and a computation rule �⇒ r from C for rewrite.
(NB. This selection should be fair – i.e. it does not select always the same pair of a
subterm and a rule. s′ is a candidate of reducible expression, “redex”).

2. Try second-order matching between � and s′.
If it succeeds, get a matcher θ such that � θ= s′ holds.
Otherwise, go to 1 to select again a subterm and a rule.
If there are no other possible subterm and rule to match, then give up.

3. Replace s′ in s with the instance rθ of the rhs of the computation rule. It is the
output t.

Then we write s ⇒C t.

A key point of the above algorithm is the item 2 of the phase of second-order matching.
In general, second-order matching is expensive (i.e. the second-order matching problem is
NP-complete Baxter, 1977) and may have incomparable matchers between � and s′ (i.e.
the existence of single most general matcher is not ensured), which means computation
is inefficient and may be non-deterministic. These are in contrast to first-order matching,
which is cheap and the existence of single most general matcher is ensured. A well-known
idea to recover these benefits in the higher-order case (Miller, 1991; Nipkow, 1991) is
to restrict the lhss � of computation rules to be Miller’s higher-order patterns (1991).
We call the second-order fragments of them second-order Miller-patterns. In our term
syntax, a second-order Miller-pattern is a meta-term � in which every occurrence of meta-
application in � is restricted to be of the form

M[x1, . . . , xn],

where x1, . . . , xn are distinct bound variables. Thus meta-terms such as M[N],
M[cons(x, y)] are not Miller-patterns. Second-order Miller-patterns have nice properties:
there exists the most general unifier (mgu) for a unification problem, and an efficient algo-
rithm is known (Miller, 1991). Thus, a computationally reasonable idea is to restrict the
lhs � of a rule �⇒ r to be a second-order Miller-pattern. But this is a bit too restrictive as
shown in Section 4.5.

7.2 Deterministic second-order patterns

Yokoyama et al. (2003, 2004a) have found a slightly wider class of decidable second-order
matching, which we have found suitable for Hasegawa’s linear λ-calculus (Section 4.5).
It is called deterministic second-order patterns, because it ensures the existence of unique
most general matchers (hence called “deterministic”, while general second-order matching
may have incomparable matchers). We present their result by adapting it to the language
of meta-terms. We denote by s� t if s is a subterm of t, and s� t if s� t and s �= t.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 31

A deterministic second-order pattern is a meta-term p in which for every occurrence of
meta-application M[t1, . . . , tn], the following conditions are satisfied:

i. Every ti is a term without binders, metavariables, or free variables, but it can contain
function symbols with arity n > 0 and bound variables.

ii. Every ti contains at least one bound variable.
iii. ti ��tj for every 1≤ i, j≤ n.

For example, M[cons(x, y)] is a deterministic second-order pattern. Yokoyama et al.’s
deterministic second-order patterns extend the second-order fragment of Miller’s higher-
order patterns, because “metavariables with distinct bound variables” are ensured by ii.

and iii.. We say: a matching problem s
?= t between meta-terms asks whether there exists

a matcher θ such that s θ= t holds. A unification problem s
?= t between meta-terms asks

whether there exists a unifier θ such that s θ= t θ holds.

Theorem 7.1. (Yokoyama et al., 2003, 2004a) Any deterministic second-order pattern

matching problem p
?= t, where p is a deterministic second-order pattern, is decidable and

has a single most general matcher if matchable. There exists an efficient algorithm for
matching.

Hence deterministic second-order patterns are computationally suitable for the syntax
of lhss of second-order computation rules. What about unification? Unification between
the lhss of rules is also needed when we compute overlaps of rules used for establishing
local confluence. To make computation of overlaps deterministic, we expect assurance of
the existence of most general unifiers. In contrast to matching, deterministic second-order

pattern unification problem p
?= t may not have a single most general unifier. Yokoyama

et al. (2004b, Section 2) have shown such an example. The unification problem between
deterministic second-order patterns

x.y.M[c(x), c(y)]
?= x.y.c(N[y, x])

has two incomparable unifiers: {M → x.y.y, N → x.y.x} and {M → x.y.x, N → x.y.y}. We
overcome this problem by the following two steps.

7.3 Modified FCU unification

Step 1: FCU unification. Recently, Libal and Miller considered a new decidable class
of higher-order unification problems called Functions-as-Constructors unification (FCU)
(Libal & Miller, 2016). Although they did not mention a connection to Yokoyama et al.’s
work, we found that the class was quite close to deterministic second-order patterns, if we
restrict it to the second-order fragment. This is a key point of our design of the syntax of
computation system. We connect these two works and adapt their result to our setting. A

second-order unification problem s
?= t is called FCU unification if s and t are determin-

istic second-order patterns and it satisfies the following condition (Libal & Miller, 2016,
Definition 14).

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

32 M. Hamana

• Global restriction: in a unification problem s
?= t, for every two different occur-

rences of meta-applications M[s1, . . . , sn] and N[t1, . . . , tm], si �� tj holds for every
1≤ i≤ n, 1≤ j≤m.

Yokoyama et al.’s example actually violates the global restriction. As a corollary of a
general result on higher-order FCU unification, we have the following.

Corollary 7.2. Second-order FCU unification problem is decidable and ensures the
existence of a most general unifier if solvable.

A higher-order FCU unification algorithm has been given in Libal & Miller (2016),
which is sound, complete, and terminating and returns a most general unifier. It is the basis
of our implementation of unification in SOL.

Step 2: Checking a solvable unification problem violating the global restriction. But
this is still not enough. When examining the example of a linear λ-calculus (Section 4.5),
we need to check an overlap between the following two rules:

let(bang(M),x.N[x]) => N[M]
let(M1, x.L[bang(x)]) => L[M1]

Trying unification between the lhss of these, we encounter a unification problem N[x] ?=
L[bang(x)]. This violates the global restriction, because x� bang(x). We regard this
as a general phenomenon when allowing deterministic second-order patterns at lhs of a
rule. To cope with this pattern, we modify the algorithm:

Modified FCU algorithm

• When the algorithm encounters a problem M[s1, . . . , sn]
?=N[t1, . . . , tm] which vio-

lates the global restriction, we check whether it comes from a problem of the

form x1, . . . , xn.M[x1, . . . , xn]
?= x1, . . . , xn.N[t1, . . . , tm]. If so, returns the unifier

{M → x1, . . . , xn.N[t1, . . . , tm]} for it. Otherwise, fail.
• Other forms of unification problems are handled by the original algorithm.

For example, the original FCU algorithm decomposes the unification problem

let(bang(M),x.N[x]) ?= let(M1,x.L[bang(x)])

to

bang(M) ?= M1, x.N[x] ?= x.L[bang(x)]

and then, the second unification problem becomes N[x] ?= L[bang(x)]. This is a problem
treated by the modified part of FCU algorithm and the algorithm returns the unifier {N →
x.L[bang(x)]} .

The modified FCU algorithm is sound, but not complete. For example, the algorithm
returns fail for Yokoyama et al.’s counterexample. But it is enough for the critical pair

checking of second-order computation. For a unification problem p
?= t, if the algorithm

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 33

succeeds, then the output is the most general unifier of the problem. The reasons are as

follows. Suppose p
?= t is solvable.

i. Case that p
?= t satisfies the global restriction. Then by Corrollary 7.2, the algorithm

returns the most general unifier.

ii. Case that p
?= t violates the global restriction, but in the scope of the modified FCU

algorithm and p is a linear. Then the algorithm returns a unifier involving {M →
x1, . . . , xn.N[t1, . . . , tm]}, which is the most general and correct by Proposition 7.3
presented below.

iii. Otherwise, the algorithm fails. Therefore, the algorithm is not complete.

Proposition 7.3. (Prehofer, 1995, Theorem 5.2.2) A unification problem p
?= t, where p

is a linear (w.r.t. metavariables) Miller-pattern and t is a second-order term such that p
and t share no variables, is decidable and has a finite number of minimal complete sets of
unifiers.

7.4 Type inference for polymorphic computation rules

We defined in Section 2 that polymorphic computation rules were explicitly typed. But
to insist that the user writes fully annotated type and context information for computation
rules in our confluence and termination checker SOL is not a good system design. Hence
we give a type inference algorithm.

For example, in the case of the call-by-name λ-calculus, the user only provides the sig-
nature siglam and the “plain” rule (beta) as in Section 4.1. The type inference algorithm
infers the missing context and type annotations (highlights) as

M : a→ b, N : a � � lam (a→ b)→Arr(a, b) (xa. M[x]) @Arr(a, b), a→ b N ⇒ M[N] : b

Algorithm. Our algorithm (Hamana, 2018) is given in Figure 5, which is a modification of
Damas–Milner type inference algorithm W (Damas & Milner, 1982). It has several mod-
ifications to cope with the language of meta-terms and to return enough type information
for confluence checking. The algorithm takes a signature Σ and an un-annotated meta-
term t. A sub-function W returns (θ , Θ � u : τ), which is a pair of type substitution θ and
an inferred judgement. The types in it still need to be unified. The context Θ may contain
unifiable declarations, such as M : σ and M : τ with σ �= τ, and these σ and τ should be
unified. The main function infer(Σ, t) does it, and returns the form

Θ � t′ : τ

The meta-term t′ is a renamed t, where every function symbol f in the original t now
has a unique index as fn, and Θ is the set of inferred type declarations for fn’s and all
the metavariables occurring in t′. Similarly, for a given plain rule s⇒ t, the function
infer(Σ, s⇒ t) returns Θ � s′ ⇒ t′ : τ, where Θ is an inferred context and correspond-
ing renamed terms s′, t′ as the sole term case. This is realised by inferring types for a
meta-term to implement a rule using the new binary function symbol rule (see the definition
of infer(Σ, s⇒ t)).

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

34 M. Hamana

Fig. 5. Type inference algorithm.

We denote by | t | a meta-term obtained from t by erasing all type annotations in the
variables and the function symbols of t.

Theorem 7.4. (Soundness) If infer(Σ, t)= (Θ � t′ : τ), then there exists Γ such that Θ �
Γ � t′ : τ .

Theorem 7.5. (Completeness) If Θ � Γ � t : τ holds under a signature Σ and infer (Σ,
| t |)= (Θ′ � t′ : τ′), then there exists a substitution θ such that τ′θ = τ and

• if M : σ ∈Θ then, there exists M : σ ′ ∈Θ′ such that σ ′θ = σ ;
• if f σ→τ occurs in t, then there exists fn : σ ′ → τ′ ∈Θ′ such that fn occurs in t′ at the

same position as t, and (σ ′ → τ′)θ = σ → τ.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 35

The reason why our algorithm attaches an index n to each occurrence of a function
symbol f as “fn” is to distinguish different occurrences of the same f in a meta-term, and
to correctly infer the type of each of them. If we have infer(Σ, t)= (Θ � t′ : τ), then we can
fully annotate types for the plain term t. We can pick the type of each function symbol in t
by finding fn : σ ′ → τ′ ∈Θ, which means that this f has the inferred type σ ′ → τ′ .

7.5 Properties of abstract rewriting

This subsection reviews classical results on abstract rewriting (Huet, 1980; Baader &
Nipkow, 1998). Abstract rewriting is a general framework for analysing properties of
rewriting without touching the structure of “terms”, only focusing the rewrite relation
between elements (in this sense “abstract”).

An abstract rewriting system (ARS) is a pair (A,→) of a set A and a binary relation →
on A. We write →∗ for the reflexive transitive closure, →+ for the transitive closure, and
← for the converse of →. We define ↔�→∪←. We say the following:

1. a, b ∈ A are joinable, written a ↓ b, if ∃c ∈ A. a→∗ c & b→∗ c.
2. → is confluent if ∀a, b ∈ A. a→∗ b & a→∗ c implies b ↓ c.
3. → is Church–Rosser (CR) if ∀a, b ∈ A. a↔∗ b implies a ↓ b.
4. → is locally confluent (WCR) if ∀a, b ∈ A. a→ b & a→ c implies b ↓ c .
5. → is strongly normalising (SN) if ∀a ∈ A, there is no infinite sequence a→ a1 →

a2 →· · · .
6. a is a normal form if there is no b ∈ A such that a→ b.

7. We write a
!→ a′ if a→∗ a′ and a′ is a normal form, meaning rewriting to a normal

form.

We identify an ARS A with its relation → (e.g. we say A is CR to mean → is CR). It is
well known that confluence and Church–Rosser properties are equivalent, hence we have
used the word CR to also mean confluence. The properties of SN and CR are important for
establishing decidability of equational theories. Thus one is interested in how to deduce
CR from other (possibly easier to check) properties. Newman’s lemma is a well-known
good candidate, provided SN is established.

Lemma 7.6. (Newman’s lemma) If an ARS A is SN and WCR, then A is CR.

To deduce WCR, we next consider the concrete one, i.e. our second-order computation
system.

7.6 Critical pairs for second-order computation rules

In this subsection, we develop our notion of critical pairs for second-order computation
rules, which generalises Knuth and Bendix’s “joinability test” for the finite set of critical
pairs (Knuth & Bendix, 1970).

Suppose that a computation system (Σ, C) is given. We assert an important fact that the
pair “(the set of all meta-terms, ⇒C)” forms an ARS. Any notion and result on ARS are
applicable to second-order computation. Henceforth, we may regard a computation system
(Σ, C) as an ARS. We first give some preliminary definitions.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

36 M. Hamana

A position p is a finite sequence of natural numbers. The empty sequence ε is the root
position, and the concatenation of positions is denoted by pq or p.q. The order on positions
is defined by p < q if there exists a non-empty p′ such that p.p′ = q. The set Pos(t) of the
positions of a meta-term t is defined by

Pos(x)= {ε}
Pos(x.t)= {ε} ∪ {1.p | p ∈ Pos(t)}

Pos(f (t1, . . . , tn))= {ε} ∪ {i.p | 1≤ i≤ n, p ∈ Pos(ti)}
Pos(M[t1, . . . , tn])= {ε} ∪ {i.p | 1≤ i≤ n, p ∈ Pos(ti)}

The notation s[u]p means replacing the subterm at the position p of s with u, and s|p means
selecting the subterm of s at the position p.

Suppose a computation system C is given. We say two rules l1 ⇒ r1, l2 ⇒ r2 in C
are variant if l1 ⇒ r1 is obtained by injectively renaming variables and metavariables of
l2 ⇒ r2.

We say that a position p in a meta-term t is a metavariable position if t|p is a metavariable
or meta-application, i.e.

t|p =M[c1, . . . , cn]

This description includes the case t|p =M by the case n= 0, for which we identify M[]
with just a metavariable M .

An overlap represents an overlapping of the two rules, which admits the situation that a
term can be rewritten by the two different rules.

Definition 7.7. An overlap between two rules l1 ⇒ r1 and l2 ⇒ r2 of a polymorphic
computation system (Σ, C) is a tuple

〈l1 ⇒ r1, p, l2 ⇒ r2, ξ, θ〉
satisfying the following properties:

i. l1 ⇒ r1, l2 ⇒ r2 are variants of rules in C without common (meta)variables.
ii. (ξ, θ) is a unifier between l1|p and l2.

iii. a. p is a non-metavariable position of l1, or
b. if p is a metavariable position of l1 as l1|p =M[c1, . . . , cn] such that at least one

of c1, . . . , cn is not a bound variable, and θ has the assignment

θ : M → x1, . . . , xn.u,

then for all i= 1, . . . , n, if ci is not a bound variable then xi occurs in u.
iv. If p is the root position, l2 ⇒ r2 is not a variant of l1 ⇒ r1.

Algorithmically, the components θ in an overlap are obtained by the modified FCU
unification algorithm.

The condition (iii)-(b) may need explanation. Ordinary definition of overlap requires
that the position p of l1 must be a non-metavariable position because l1|p matches anything
if it is a metavariable, which means that it should not be considered as overlapping. But
in the present setting, l is a deterministic second-order pattern, which makes the situation
differ, because a metavariable M may be instantiated as a meta-term with free variables,

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 37

which are filled by terms (not by bound variables) ci. The following examples illustrate
this situation.

Example 7.8. Consider the computation system.

sigFCU = [signature|
f:(I -> I),(I -> I) -> I ; g:I -> I ; c:I -> I ; d:I -> I
0:I ; 1:I |]

exFCU = [rule|
(1) f(y.M[c(y)]) => M[1]
(2) g(c(X)) => 0 |]

This system is non-overlapping in the ordinary sense, but is not locally confluent:

f(y.g(c(y)))

(1)

� ��
��
��
�

��
��
��
�

(2)

��

g(1) f(y.0)/��

Example 7.9. Consider the computation system.

sigFCU = [signature|
lam : (Atom(a) -> b) -> Arr(a,b) ; app : Arr(a,b),a -> b
var : Atom(a) -> a ; isvar : a -> Bool ; true : Bool ; 0 : Nat |]

exFCU = [rule|
(beta) lam(x.M[var(x)])@N => M[N]
(isvar) isvar(var(X)) => true |]

This system is non-overlapping in the ordinary sense, but is not locally confluent:

lam(x.isvar(var(x)))@0

(beta)

�� ��
���

���
��

���
���

���
�

(isvar)

	��
���

���
���

��

���
���

���
���

isvar(0) / true lam(x.true)@0
(beta)��

By these example, we see that we need to formulate a new notion of overlap such that
these cases are regarded as non-joinable critical pairs. The case (iii)-(b) in Definition 7.7
treats these kinds of cases.

Definition 7.10. The critical pair (CP) generated from an overlap 〈�1 ⇒ r1, p, �2 ⇒ r2, θ〉
is a triple 〈r1θ , �1θ, r′2〉 where

• �1θ ⇒C r1θ which rewrites the root position ε of �1θ using �1 ⇒ r1

• �1θ ⇒C r′2 which rewrites the position p of �1θ using �2 ⇒ r2.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

38 M. Hamana

This is depicted as

�1θ

ε

�� ��
��
��
�

��
��
��
�

p

��
��

��
��

��
��

��

r1θ r′2

This is a critical situation that admits two ways of reduction, hence called a criti-
cal pair. Ordinary Knuth–Bendix critical pairs lack the middle �1θ , hence “pairs”. But
including “the source of divergence” designates a situation more clearly (especially in the
implementation), hence our notion of critical pair consists of three terms. We define

overlap(l1 ⇒ r1, l2 ⇒ r2) � {all possible overlaps between l1 ⇒ r1 and l2 ⇒ r2}.
Algorithmically, this function scans all subterms of l1 and tries to unify each of them with
l2 to produce an overlap where the modified FCU unification algorithm can be used. We
then collect all overlaps in C by

O �
⋃
{overlap(l1 ⇒ r1, l2 ⇒ r2) | l1 ⇒ r1, l2 ⇒ r2 ∈C}.

Finally, we obtain all critical pairs of C by generating the critical pair of each overlap in
O . We say that a critical pair 〈r′1, t, r′2〉 is joinable if r′1 ↓ r′2, depicted as

t

� ��
��
�

��
��
�

�	
��

��
�

��
��

�

r′1
∗ �	

r′2
∗
�·

The following is an important theorem that extends the first-order case.

Theorem 7.11. A computation system (Σ, C) is WCR if all its critical pairs are joinable.

Proof. We show “if u⇐C w ⇒C s then u ↓ s” by induction on the proof of u⇐C w, using
the inference rules in Figure 4.

• (RuleSub) Let l⇒ r ∈C and consider the situation

rθ ⇐===ε lθ ===p
′
⇒ s

for a substitution θ for metavariables and type variables.

i. If the rewrite position p′ is not “a metavariable position of l or below it”, then it
is an instance of a critical pair, hence rθ ↓ s.

ii. Case p′ = p · q is a metavariable position in l, or below it, – i.e. there exists a
metavariable M : σ 1, . . . , σ n → τ such that l|p =M[c1, . . . , cn]. Suppose θ has
the following assignment.

θ : M → x1, . . . , xn. t

By the fact that l is a deterministic second-order pattern and Definition 7.7 of
overlaps, the following two cases are possible.

a. Case that if ci is not a bound variable then xi occurs in t in θ , for each
i= 1, . . . , n. Then it is an instance of a critical pair, hence rθ ↓ s.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 39

b. Not the previous case.
(i.e. the case that all c are distinct bound variables, or, the case that ci is not a
bound variable and xi does not occur in t for some i.)
Let tp be a one-step reduct of t by contracting the position q as

t{x → c} ⇒C tp

where tp does not involve variables x, but may involve c. We define

l
Mp
p � l [Mp]p ; θp � [Mp → tp]

i.e. l
Mp
p as a modified l, where M[c] at the position p of l is replaced with a new

metavariable Mp : τ (Note that the arity changed from M to Mp).
Suppose that zi’s are new distinct variables. For each i= 1, . . . , n, we define a
variable

yi �
{

ci if ci is a bound variable

zi otherwise

Define θ′ to be M → y.tp, N → θ(N) for N �=M . We have

rθ ⇐=====ε
lθ ====p′ ⇒ l

Mp
p θp θ = s

r θ ′
∗�
����

⇐================ l θ ′
∗����

• (Fun): Consider the situation f ξ(x.s) ⇐===p′
f ξ(x.u) ===⇒ t, where p′ is not the root

position because (Fun) is applied. Hereafter, we omit the superscript of f .

i. Case that the right rewrite happens at the root, i.e. there exists l⇒ r ∈C and θ

such that

s ⇐=====p′
f (x.u)= lθ ====ε ⇒ rθ

Flipping the left and right rewrites, rθ ↓ s is proved as the case for (RuleSub).
ii. Case the i, jth arguments of f are rewritten. Without loss of generality, we assume

i < j ∈N.

f (. . . , xi.u
′
i, . . . , xj.uj, . . .) ⇐==ip f (x.u) ==jq⇒ f (. . . , xi.ui, . . . , xj.u

′′
j , . . .)

f (. . . , xi.u
′
i, . . . , xj.u

′′
j , . . .)

jq����
============== f (. . . , xi.u

′
i, . . . , xj.u

′′
j , . . .)

ip����

iii. Case the ith argument of f is rewritten by two ways as

f (. . . , xi.u
′
i, . . .) ⇐=====

ip
f (x.u) =====iq ⇒ f (. . . , xi.u

′′
i , . . .)

f (. . . , xi.s, . . .)

∗����
===================== f (. . . , xi.s, . . .)

∗����
The above diagram commutes by the induction hypothesis:
u′i ⇒∗

C s⇐∗
C u′′i and closedness of reduction by contexts. �

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

40 M. Hamana

Fig. 6. CR∼.

Corollary 7.12. If a computation system (Σ, C) is SN and C is finite, checking “C is CR
or not” is decidable.

Proof. All constructions up to the theorem and checking joinability of all critical pairs
are done in finite time because C is SN, and the modified FCU unification algorithm is
decidable. �

Remark 7.13. Nipkow has considered critical pairs for higher-order rewrite rules over
the simply typed λ-calculus (Nipkow, 1991; Mayr & Nipkow, 1998). The development
in this section is similar, but there are differences. Our computation system has distinc-
tion between variables and metavariables, covers deterministic second-order patterns, and
overlap checks are based on the recent FCU unification. Nipkow’s rules are based on the
simply typed λ-terms in βη-long normal forms, Miller’s higher-order patterns and pattern
unification. There is no distinction between free variables and metavariables in the rule
syntax of Nipkow. As we mentioned in Section 4.2 in the rules, it may be crucial in mod-
elling the object level variables such as in the call-by-value λ-calculus. The (eta’!) rule
needed in the linear λ-calculus (Section 4.5) is beyond the scope of Nipkow’s formalism.
Therefore, the developments in this subsection are not a consequence of existing results
(Nipkow, 1991; Mayr & Nipkow, 1998).

7.7 Church–Rosser modulo equational theory

A given computation system may not be SN and CR, or it might be difficult to prove them,
as we have seen in Section 5. This and next subsections explain the background theories
used there (i.e. SOL’s crimod command).

Huet (1980) observed that the axioms of a theory are usually partitioned into two forms:
“structural axioms” (such as associativity and commutativity of operators), and “sim-
plification rules” such as “if true then x else y → x”. Huet and Jouannaud et al.
(1983) developed general theories of abstract rewriting modulo equivalence. We follow
this approach, and define a partitioned computation system as (Σ, C, E) consisting of a
computation system (Σ, C) and equational axioms (Σ, E).

We set up the approach firstly at the abstract rewriting level. We consider an ARS (A,→)
equipped with an equivalence relation ∼ on A. We say

1. a, b ∈ A are joinable modulo ∼ if ∃c, c′ ∈ A. a→∗ c & b→∗ c′ & c∼ c′, which is
denoted by a ↓∼ b.

2. → is Church–Rosser modulo ∼ (CR∼) (Jouannaud et al., 1983) if for all a, b ∈ A,
a (∼∪↔)∗ b implies a ↓∼ b (see Figure 6).

A decidable proof method for “partitioned” algebraic theories. We explain the rea-
son why CR∼ is useful below. Suppose that an ARS satisfies SN and CR∼, and ∼ is

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 41

decidable. Now CR∼ means that a proof of s (∼∪↔)∗ t, where s and t are connected by
a combination of ∼, →, ←, is always transformed to a “tidy” proof

s →∗ s0 ∼ t0 ←∗ t (1)

which means first rewriting terms s, t some terms s0, t0 and then comparing them by the
equality∼. The reasons why this method is effective are (i)→ is SN, and (ii) the equational
theory ∼ is decidable. Hence (1) gives a decidable proof method. We use the following
criterion to check CR∼. In the following, “◦” denotes the composition of relations.

Theorem 7.14. (Aoto & Toyama, 2012, Theorem 2.2) Let ∼ be an equivalence rela-
tion and → a binary relation on a set A. Suppose �� is a symmetric relation such
that ��∗ = ∼, and take a relation �⊆��. Define ��= ���∪ idA and ��→∪�.
If →◦�∗ is well-founded and

(A) s←◦→ t implies s�∗ ◦ ��= ◦	∗ t,
(B) s�� ◦→ t implies s→◦�∗ ◦ ��= ◦	∗ t or s��= ◦	∗ t,

then → is Church–Rosser modulo ∼.

For later use, we name the conclusions of the conditions of the above theorem.

Definition 7.15. We call that s and t are “joinable for ←→” if s�∗ ◦ ��= ◦	∗ t, and
“joinable for ��→” if s→◦�∗ ◦ ��= ◦	∗ t or s��= ◦	∗ t.

We will use this abstract theorem to prove our critical pair checking method for a parti-
tioned computation system in Theorem 7.19. This less known theorem is practically useful
for various examples, more so than Huet’s often used criterion (Huet, 1980, Lemma 2.7)
(for instance in Ohta & Hasegawa, 2006; Lindley, 2007; Mayr & Nipkow, 1998), or
other criteria to deduce CR∼ requiring well-foundedness of →◦��∗ (such as Huet, 1980,
Lemma 2.8). The following points are superior points compared with other criteria.

1. Checking a peak by “one-step” equality �� and rewrite suffices in (B), rather
than a peak by “many-step” ∼=��∗ equality and rewrite required in Huet (1980,
Lemma 2.7).

2. The well-foundedness of →◦�∗ holds more likely than the well-foundedness of
→◦��∗ required in Huet (1980, Lemma 2.8) by choosing and orienting appropriate
axioms� from the “equational axioms” ��.

3. Some equational axioms taken from �� can be used many times to check the closing
part by using�∗ or	∗ in (A) and (B), rather just ��= , i.e. a zero-or-one time use of
an axiom, as in Jouannaud et al. (1983, Prop. 1,3), Aoto & Toyama (2012, Cor. 2.3).

What 2. means that, for example, if a partitioned computation system has an idempo-
tency axiom x⊗ x= x, then �� involves it. In this case, well-foundedness of →◦��∗
cannot hold because using the idempotency axiom in reverse direction can infinitely copy
a redex. Therefore, one chooses some other axioms �⊆�� avoiding the idempotency
axiom and tries to prove the well-foundedness of →◦�∗. This is more likely to hold.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

42 M. Hamana

7.8 Critical pairs between second-order computation rules and equations

A partitioned computation system (Σ, C, E) consists of a computation system C and a set
of equational axioms E satisfying for each axiom s= t,

• the set of all metavariables of s and that of t are exactly the same, and
• s and t are second-order Miller patterns.

For a partitioned computation system (Σ, C, E), we extend the notion of critical pairs to
the one between C and E to check CR∼, where∼ is the equivalence relation on meta-terms
generated by E. We establish an effective method to show CR∼.

Example 7.16. In the case of a theory of π-calculus in Section 5, C = pical, E= pieq
and s (∼∪↔)∗ t means that s= t is derivable from the original “unpartitioned” axioms. If
we have CR∼ of the partitioned algebraic theory (Σ, C, E), then we can decide s= t by the
method (1).

Definition 7.17. An overlap between an equation s= t ∈ E and a rule l⇒ r ∈C is an
overlap between s⇒ t and l⇒ r, or, an overlap between t⇒ s and l⇒ r. Namely, the
overlaps are generated by regarding each equation as a bidirectional computation rule.

All the overlaps in (Σ, C, E) are now defined by

O =
⋃

({overlap(l1 ⇒ r1, l2 ⇒ r2) | l1 ⇒ r1, l2 ⇒ r2 ∈C} ∪
{overlap(s⇒ t, l⇒ r), overlap(t⇒ s, l⇒ r),

overlap(l⇒ r, s⇒ t), overlap(l⇒ r, t⇒ s) | s= t ∈ E, l⇒ r ∈C})
The critical pairs of a partitioned computation system (Σ, C, E) are generated by O . We

call a meta-term linear if no metavariable occurs more than once, and C is linear if for
every �⇒ r in C, both � and r are linear.

Definition 7.18. A critical pair 〈s, u, t〉 of (Σ, C, E) is joinable if one of the following
holds:

i. If it is generated by an overlap between two rules in C, then s and t are joinable for
⇐C ⇒C (see Definition 7.15).

ii. If it is generated by an overlap between an equation in E and a rule in C, then s and
t are joinable for ��⇒C .

iii. If it is generated by an overlap between a rule in C and an equation in E, then t and
s are joinable for ��⇒C .

Theorem 7.19. Let (Σ, C, E) be a partitioned computation system. Assume C is linear
and every rhs is a second-order Miller pattern, and there is E′ ⊆ E such that ⇒C ◦�∗

is SN, where� is the computation relation generated by E′ ∪ E′−1. If every critical pair
of (Σ, C, E) is joinable, then ⇒C is Church–Rosser modulo ∼, where ∼ the equivalence
relation on meta-terms generated by E.

Proof. We use the criterion Theorem 7.14 to deduce CR∼. Now A is taken to be the set of
all meta-terms. We first prove the condition (B):

s�� u ⇒C t implies s ⇒C ◦�∗ ◦ ��= ◦	∗ t or s��= ◦	∗ t

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 43

Fig. 7. Polymorphic second-order equational logic (one-step).

by induction on the proof of s�� u, where the relation �� is defined by: s�� u if Θ � Γ �
s= u : τ is derived from E by the polymorphic second-order equational logic (one-step)
in Figure 7. Namely, the symmetric relation �� is the congruence closure of a one-step
application of an instance of axiom of E. Thus ��∗ =∼. We define ��= ���∪ id and
�� ⇒C ∪�.

We write t ��p s if s is rewritten at a position p of s using an axiom, and s
p⇒C t if s is

rewritten at a position p of s using a computation rule.

• (Ax1sub) Let E � u= s and consider the situation uθ�� sθ ⇒C t for a substitution
θ for metavariables and type variables.

i. If the rewrite position p is not “a metavariable position of s or below it”,

uθ
ε

sθ =======p ⇒ t

then it is an instance of a critical pair between an equation and a rule, hence uθ

and t are joinable for ��⇒C .
ii. If p is a metavariable position in s, or below it. Note that s is a Miller pattern.

In this case, the metavariable rewritten by the rewriting appears in s. Since C is
linear, p determines a rewriting of substitution θ ⇒C θ′, meaning that θ(M) ⇒C

θ′(M) for a metavariable in the domain of θ, θ′. Then we have

uθ
ε

sθ ====p ⇒ sθ′

uθ′
∗����

================ uθ′

Note that if u does not involve metavariables in the domain of θ , then uθ⇒∗
C uθ′

becomes 0-step. Therefore, uθ and sθ′ are joinable for ��⇒C .
(Ax2sub) is similar.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

44 M. Hamana

• (Fun): Consider the situation f ξ(x.s)
p

f ξ(x.u) ⇒C t. Hereafter, we omit the
superscript of f . In this case, the position p must not be the root because (Fun) is
applied.

i. If the rewrite happens at the root of f (x.u) by ⇒C , and ��-step happens at a
non-metavariable position p of l as

s
p

f (x.u)= lθ ====ε ⇒ rθ

then it is an instance of a critical pair, hence it is joinable.
ii. Case ��-step happens in the meta-substitution θ and the rewrite happens at the

root. Then, it becomes

lθ′ p
f (x.u)= lθ ====ε ⇒ rθ

rθ′
����
===================== rθ′

��∪=

Since l is linear, p determines a one-step equality of substitutions as

θ(M)�� θ′(M)

for every metavariable M . Since r is linear and a Miller pattern, rθ (��∪=) rθ′.
Therefore, we have that lθ′ and rθ are joinable.

iii. Case u′i �� ui and uj ⇒C u′′j and without loss of generality, assume i < j.

f (. . . , xi.u
′
i, . . . , xj.uj, . . .)

i
f (x.u) ==j ⇒ f (. . . , xi.ui, . . . , xj.u

′′
j , . . .)

f (. . . , xi.u
′
i, . . . , xj.u

′′
j , . . .)

j����
============= f (. . . , xi.u

′
i, . . . , xj.u

′′
j , . . .)

i

iv. Case u′i �� ui and ui ⇒C u′′i . We have

f (. . . , xi.u
′
i, . . .)

i
f (x.u) =====i ⇒ f (. . . , xi.u

′′
i , . . .)

By induction hypothesis, u′i and u′′i are joinable for ��⇒C , hence so are
f (. . . , xi.u′i, . . .) and f (. . . , xi.u′′i , . . .).

The condition (iii) is also shown similarly by induction on the proof of u⇐C s.
The condition (A) “s⇐C u⇒C t implies s�∗ ◦ ��= ◦	∗ t” is also proved similarly by

induction on s⇐C t. By Thm. 7.14, we conclude that ⇒C is CR∼. �

This theorem is the basis of SOL’s crimod command used in Section 5.

7.9 Strong normalisation

The General Schema. The General Schema is a criterion for proving strong normali-
sation of higher-order rules given in Blanqui (2000). We summarise the definitions and
properties of the General Schema needed for our SOL system (Blanqui, 2000, 2016).
The General Schema is formulated for a framework of higher-order type systems with
rewrite rules called inductive data-type systems, whose second-order fragment is equiva-
lent to our framework of computation systems with simple types. The General Schema has

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 45

succeeded in proving SN of various rewrite rules such as Gödel’s System T. The basic idea
of the General Schema is to check whether the arguments of recursive calls in the rhs of a
rewrite rule are “smaller” than the left-hand sides’ ones. It is similar to Coquand’s notion
of “structurally smaller” (1992), but more relaxed and extended.

Definition 7.20. Given a type τ, the set Posi(τ) of positive positions and the set Nega(τ)
of negative positions are defined by Posi(b)= {ε}, Nega(b)=∅,

Posi(τ)= {i.w | i= 1, . . . , |τ|, w ∈ Posi(τi)}
Posi(σ → τ)=Nega(σ)∪ {0w | w ∈ Posi(τ)}

Nega(τ)= {i.w | i= 1, . . . , |τ|, w ∈Nega(τi)}
Nega(σ → τ)= Posi(σ)∪ {0w | w ∈Nega(τ)}

The set Pos(b, τ) of positions of a type b in a type τ is defined by

Pos(b, b)= {ε} Pos(b, σ)= {i.w | i= 1, . . . , |τ|, w ∈ Pos(b, σ i)}
Pos(b, c)=∅ if b �= c Pos(b, σ → τ)= Pos(b, σ)∪ {0w | w ∈ Pos(b, τ)}.

Here we regard that every function type of the form σ → τ is formally a type from a
singleton sequence, i.e. 〈σ 〉→ τ.

Definition 7.21. A constructor is a function symbol c : τ→ b which does not occur at the
root of the lhs of any rule. The set of all constructors defines a preorder≤B on the set B of
types by b≤B τ if b occurs in τ for a constructor c : τ→ b. We write ≥B to be the inverse
of ≤B. Let <B be the strict part of ≤B and =B �≤B ∩≥B the equivalence relation. A
type b is positive if for each constructor c : σ → b of it, Pos(b′, σ)⊆ Posi(σ) for any type
b′ s.t. b=B b′. A constructor c : σ → b is positive if b is positive.

Definition 7.22. A metavariable M is accessible in a meta-term t if there are distinct bound
variables x such that M[x] ∈Acc(t), where Acc(t) is the least set satisfying the following
clauses:

a1. t ∈Acc(t).
a2. If x.u ∈Acc(t) then u ∈Acc(t).
a3. If c(s1, . . . , sn) ∈Acc(t) then each si ∈Acc(t) for a constructor c.
a4. Let f : τ1, . . . , τn → b and f (u1, . . . , un) ∈Acc(t). Then ui ∈Acc(t) (1≤ i≤ n) if for

all types b′ ≤T b, Pos(b′, τi)⊆ Posi(τi) (Blanqui, 2016, Definition 15).

Definition 7.23. A meta-term u is a covered subterm of t, written t
̂ u, if there are
two positions p ∈ Pos(t), q ∈ Pos(t|p) such that u= t[t|pq]p, (i) ∀r < p. t|r is headed by an
abstraction, and (ii) ∀r < q. t|pr is headed by a function symbol.

For example, f(a, c(x))
̂ c(x), lam(x.M[x])
̂ x.M[x], and y.lam(x.M[x])
̂ y.x.M[x].

Definition 7.24. A set of rules �⇒ r induces the following relation on function symbols
in a signature Σ: f depends on g if there is a rule defining f (i.e. whose lhs is headed by f)
in the rhs of which g occurs. Its transitive closure is denoted by >Σ, and the associated
equivalence relation is denoted by =Σ.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

46 M. Hamana

Definition 7.25. Given f : τ1, . . . , τn → τ ∈Σ, the computable closure CCf (t) of a meta-
term f (t) is the least set CC satisfying the following clauses. All the meta-terms below are
supposed to be well-typed.

1. (meta M) If M : τ1, . . . , τp → τ is accessible in some of t, and u ∈ CC, then
M[u] ∈ CC.

2. For any variable x, x ∈ CC.
3. If u ∈ CC then x.u ∈ CC.
4. (fun f >Σ g) If f >Σ g and w ∈ CC, then a well-typed g(w) ∈ CC.
5. (fun f =Σ g) If u ∈ CC such that t �̂lex u, then a well-typed g(u) ∈ CC, where �̂lex

is the lexicographic extension of the strict part of
̂ .

The labels (meta M) etc. are used for references in a termination proof using SOL
(see, e.g., Section 1.3). The lexicographic extension �̂lex can be left-to-right or right-to-
left comparison. This option sometimes called “status” is supposed for each f ∈Σ before
applying the General Schema, and for every f =Σ g, the statuses of f and g must be the
same.

Using this, the item 5. (fun f =Σ g) is expanded as follows. Suppose the status of
f and g are left-to-right comparison. Let u= u1, . . . , un ∈ CC and t= t1, . . . , tn. If there
exists 1≤ i≤ n such that t1 = u1, . . . , ti = ui and ti+1 > ui+1 then g(u) ∈ CC.

Definition 7.26. A rule f (t)⇒ r satisfies the General Schema if CCf (t) � r.

Theorem 7.27. Suppose that given a signature Σ and rules C satisfy:

i. All the types in Σ are simple types,
ii. >B is well-founded,

iii. every constructor is positive, and
iv. >Σ is well-founded.

If all the rules of C satisfy the General Schema, then C is strongly normalising.

The SOL’s command sn implements checking all the conditions of Theorem 7.27.

Associated simply typed systems. We say that a type substitution ξ : S →T is a simple
type instantiation if for all t ∈ S, ξ(t) does not involve type variables. For each function
symbol f : σ → τ ∈Σ and polymorphic rule Θ � l⇒ r : τ ∈C, we define the following
computation system:

Σinst � { f : σξ→ τξ | f σ → τ ∈Σ, ξ is a simple type instantiation}
Cinst � {Θξ � Γξ � lξ→ rξ : αξ | ξ is a simple type instantiation}

and call it the associated simply typed instance.
The following are immediate by the definition of ⇒C .

Proposition 7.28. A polymorphic computation system (Σ, C) is SN if and only if
(Σinst, Cinst) is SN.

Proposition 7.29. Assume a polymorphic computation system C with a polymorphic
signature Σ. If Cinst with Σinst satisfies the General Schema, then C is SN.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 47

8 Implementation of SOL

In this section, we describe some details of the system SOL.
The system SOL consists of about 7,000 lines Haskell code, and works on Glasgow

Haskell Compiler (tested on version 7.6.2 and 8.0.2). SOL uses Template Haskell (Sheard
& Jones, 2002) with a custom parser generated by Alex (for lexer) and Happy (for paper)
to realise readable notation for signatures and rules. There are a command line interface
using GHCi (Section 8.2), and a web interface (Section 8.3).

8.1 Design and syntax

Design principles. The design principles of SOL are as follows:

• One of the purposes of SOL is to assist the user to develop better and suitable
axioms and rules for a problem.

• Hence, SOL outputs enough information of how the checking proceeds and where
the methods fail.

• The syntax should be natural and as close as possible to the ordinary mathematical
meta-language of computation rules and axioms, to let the users quickly test their
own rules and axioms written in a theory paper, using SOL without embarrassing
encoding.

Syntax. SOL’s definitions are realised by the feature of quasi-quotation of Template
Haskell. For example, the notations [signature|..] and [rule|..] are the quasi-
quotations, and the keywords signature and rule are implemented as quasi-quoters of
Template Haskell. SOL’s syntax has a layout rule. Newline is regarded as a separator of
declarations in signatures and rules. For example,

siglam = [signature|
lam : (a -> b) -> Arr(a,b)
app : Arr(a,b),a -> b |]

If the user wants to write the declarations sequentially, the user can use the semicolon “;”
for the separator, e.g.

sig = [signature| lam : (a -> b) -> Arr(a,b) ; app : Arr(a,b),a -> b |]

The label for a rule is enclosed by round brackets, such as “(beta)”, which is placed
before a rule. Any blank line is not allowed in the SOL’s bracket. The user should write like

sig = [signature|
f : a -> b
;
g : b -> c |]

The user makes sure writing a space before and after the arrow type constructor “->”.
“a->b” is bad, the user should write “a -> b”. Rules and axioms are internally the same;
for example, the following definitions give internally the same data:

lambdaCal = [rule| (beta) lam(x.M[x])@N => M[N] |]
lambdaCal = [axiom| (beta) lam(x.M[x])@N = M[N] |]

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

48 M. Hamana

This surface distinction may be useful for the user to represent one’s intention. A meta-
term can be written using the [o|..|]-bracket, such as [o| lam(x.M[x]) |] (meaning:
object for term). In GHCi, the user should first enable the Template Haskell feature as

*SOL> :set -XTemplateHaskell -XQuasiQuotes

and then the user can use the notation freely. For example, we can invoke FCU unification
between meta-terms.

*SOL> unify [o| f(lam(x.M[x]),Y) |] [o| f(lam(x.x@x),a()) |]
"M|-> z1.(z1@z1), Y|-> a"

8.2 Commands

SOL has the following commands implemented as Haskell functions:

• cri <rules> <signature>
Enumerating critical pairs of a computation system and check their joinability.

• crimod <rules> <equations>
Enumerating critical pairs of a partitioned algebraic theory and checking their
joinability modulo equational theory.

• sn <rules> <signature>
Checking SN of a computation system.

• unify <meta-term> <meta-term>
Unifying two meta-terms using the extended FCU algorithm.

• match <meta-term> <meta-term>
Trying to match two meta-terms

• normalise <meta-term> <rules>
Normalising a meta-term to get a normal form (cf. Section 3.2).

• pr <any>: a generic printing command

As we have demonstrated, checking SN is by the command sn that takes two arguments
of a rule set and signature. Checking the critical pairs is by the command cri that takes
two arguments of a rule set and signature.

The command pr is a generic command for printing, e.g.

*SOL> pr cbn
(beta) lam(x.M[x])@N => M[N]
(eta) lam(x.(M@x)) => M

*SOL> pr sigcbn
app : (Arr(a,b),a) -> b
lam : (a -> b) -> Arr(a,b)

Without pr, we can see the internal data structure

*SOL> [o| lam(x.M[x]) |]
"lam" :< ["x" :. "M" :$ [V "x"]]

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 49

Fig. 8. Web interface of SOL.

*SOL> [rule| (sample) f(X) => a() |]
["sample" :! "f" :< ["X" :$ []] :=> "a" :< []]

which may be useful to get information for meta-programming on rules.

8.3 Web interface

To ease the use of SOL, we have also constructed a web interface for SOL (Figure 8),
which is available at

http://www.cs.gunma-u.ac.jp/hamana/sol/

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

http://www.cs.gunma-u.ac.jp/hamana/sol/
https://doi.org/10.1017/S0956796819000157

50 M. Hamana

The usage is as follows:

• The user selects a file using the topmost of the pull-down menu, and checks CR or
SN radio button. Push [SUBMIT] button for checking.

• The user can also submit own computation rules, firstly pushing [CLEAR], sec-
ondly writing rules by filling the form, and finally checking CR or SN radio button.
Push [SUBMIT] button for checking.

All the examples in this paper have been stored in the web interface and one can choose
an example from the pull-down menu.

9 Summary

We have presented a general methodology of proving decidability of equational theories
of programming language concepts in the framework of second-order algebraic theories.
We proposed a Haskell-based analysis tool SOL which assists the proofs of confluence and
strong normalisation of computation rules derived from second-order algebraic theories.

To cover various examples in programming language theory, we have combined and
extended both syntactical and semantical results on second-order computation in non-
trivial directions. In particular, our choice of Yokoyama’s deterministic second-order
patterns as a syntactic construct of rules is important to cover a wide range of exam-
ples, which makes our computation system useful for programming language theory.
We demonstrated how to prove decidability of 11 examples of algebraic theories in the
literature using SOL.

As related systems, there are equational specification systems based on rewriting, OBJ
(Goguen et al., 1996), Maude (Clavel et al., 2007), and CafeOBJ (Diaconescu & Futatsugi,
2002). But these systems can only deal with order-sorted first-order equational theories,
and cannot describe higher-order equational theories, such as the λ-calculus directly. In
this respect, SOL is unique. SOL is the first system that can automatically check both
confluence and strong normalisation of second-order polymorphic computation systems in
a single system.

SOL’s foundational technologies may be applicable to other systems, such as termina-
tion or confluence checker of Haskell’s rewrite rule pragma (Peyton Jones et al., 2001), and
type functions (Chakravarty et al., 2005a,b), which have currently no sufficient checking
mechanism for rules.

Acknowledgments

I acknowledge Kazuki Fuju and Dateyao Faustin Dieudonne for developing the Vue.js-
based web interface of SOL. It has been helpful to discuss this work with many
people, including Yoshihito Toyama, Kentaro Kikuchi, Tetsuo Yokoyama, Tatsuya Abe,
Kazuyuki Asada, Kazuhiko Sakaguchi, Yuito Murase, and Masahito Hasegawa. I also
thank to Kazutaka Matsuda for advice on parsing in Haskell, Frédéric Blanqui for clar-
ifying details of the General Schema, and the reviewers for their constructive comments.
This work was supported in part by JSPS KAKENHI Grant Number 17K00092.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 51

References

Aoto, T. & Toyama, Y. (2012) A reduction-preserving completion for proving confluence of non-
terminating term rewriting systems. Logic. Method. Comput. Sci. 8(1), 1–29.

Baader, F. & Nipkow, T. (1998) Term Rewriting and All that. Cambridge University Press.
Baxter, L. (1977) The Complexity of Unification. PhD Thesis, Department of Computer Science,

University of Waterloo.
Benton, N. & Hyland, M. (2003) Traced premonoidal categories. Theor. Inform. Appl. 37(4),

273–299.
Benton, P. N., Bierman, G. M. & de Paiva, V. (1998) Computational types from a logical perspective.

J. Funct. Program. 8(2), 177–193.
Bird, R. & Moor, O. D. (1996) Algebra of Programming. Prentice-Hall.
Blanqui, F. (2000) Termination and confluence of higher-order rewrite systems. In Rewriting

Techniques and Application (RTA 2000). LNCS, vol. 1833. Springer, pp. 47–61.
Blanqui, F. (2016) Termination of rewrite relations on λ-terms based on Girard’s notion of

reducibility. Theor. Comput. Sci. 611, 50–86.
Chakravarty, M. M. T., Keller, G. & Peyton Jones, S. L. (2005a) Associated type synonyms. In

Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2005, Tallinn, Estonia, September 26–28, 2005, pp. 241–253.

Chakravarty, M. M. T., Keller, G., Peyton Jones, S. L. & Marlow, S. (2005b) Associated types with
class. In Proceedings of POPL’05, Long Beach, California, USA, January 12–14, 2005, pp. 1–13.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J. & Talcott, C. L. (2007)
All About Maude - A High-Performance Logical Framework, How to Specify, program and Verify
Systems in Rewriting Logic. LNCS, vol. 4350. Springer.

Coquand, T. (1992) Pattern matching with dependent types. In Proceedings of the 3rd Workshop on
Types for Proofs and Programs.

Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Proceedings of
POPL’82, pp. 207–212.

Diaconescu, R. & Futatsugi, K. (2002) Logical foundations of CafeOBJ. Theor. Comput. Sci. 285(2),
289–318.

Fiore, M. (2002) Semantic analysis of normalisation by evaluation for typed lambda calculus. In
Proceedings of PPDP’02. ACM, pp. 26–37.

Fiore, M. (2008) Second-order and dependently sorted abstract syntax. In Proceedings of LICS’08,
pp. 57–68.

Fiore, M. & Hamana, M. (2013) Multiversal polymorphic algebraic theories: syntax, semantics,
translations, and equational logic. In 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS, 2013, pp. 520–529.

Fiore, M. & Hur, C.-K. (2010) Second-order equational logic. In Proceedings of CSL’10. LNCS,
vol. 6247, pp. 320–335.

Fiore, M. & Mahmoud, O. (2010) Second-order algebraic theories. In Proceedings of MFCS’10.
LNCS, vol. 6281, pp. 368–380.

Fiore, M., Plotkin, G. & Turi, D. (1999) Abstract syntax and variable binding. In Proceedings of
LICS’99, pp. 193–202.

Fiore, M. P. & Campos, M. D. (2013) The algebra of directed acyclic graphs. In Coecke B., Ong,
L., & Panangaden, P. (eds), Computation, Logic, Games, and Quantum Foundations. LNCS, vol.
7860, pp. 37–51.

Fiore, M. P., Moggi, E. & Sangiorgi, D. (1996) A fully-abstract model for the pi-calculus. In
11th Logic in Computer Science Conference (LICS’96). IEEE, pp. 43–54. Information and
Computation 179, 76–117 (2002).

Gibbons, J. (1995) An initial-algebra approach to directed acyclic graphs. In Proceedings of MPC’95.
LNCS, vol. 947, pp. 282–303.

Gibbons, J. & Hinze, R. (2011) Just do it: simple monadic equational reasoning. In Proceeding of the
16th ACM SIGPLAN International Conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19–21, 2011, pp. 2–14.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

52 M. Hamana

Girard, J.-Y. (1989) Proofs and Types. Cambridge University Press. translated and with appendices
by Paul Taylor, Yves Lafont.

Goguen, J., Winkler, T., Meseguer, J. & Futatsugi, K. (2000) Introducing OBJ. In Goguen, J. &
Malcolm, G. (eds), Software Engineering with OBJ. ADFM, vol. 2, pp. 3–167.

Hamana, M. (2004) Free Σ-monoids: a higher-order syntax with metavariables. In Asian Symposium
on Programming Languages and Systems (APLAS’04). LNCS, vol. 3302, pp. 348–363.

Hamana, M. (2005) Universal algebra for termination of higher-order rewriting. In Rewriting
Techniques and Application (RTA’05). LNCS, vol. 3467, pp. 135–149.

Hamana, M. (2007) Higher-order semantic labelling for inductive datatype systems. In Proceedings
of 9th ACM-SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP’07). ACM, pp. 97–108.

Hamana, M. (2010) Semantic labelling for proving termination of combinatory reduction systems.
In Proceedings of WFLP’09. LNCS, vol. 5979, pp. 62–78.

Hamana, M. (2011) Polymorphic abstract syntax via Grothendieck construction. In FoSSaCS’11.
LNCS, vol. 3467, pp. 381–395.

Hamana, M. (2016) Strongly normalising cyclic data computation by iteration categories of second-
order algebraic theories. In Proceedings of FSCD’16. The Leibniz International Proceedings in
Informatics (LIPIcs), vol. 52, 21:1–21:18.

Hamana, M. (2017) How to prove your calculus is decidable: practical applications of second-order
algebraic theories and computation. Proc. ACM Program. Lang. 1(22), 1–28.

Hamana, M. (2018) Polymorphic rewrite rules: confluence, type inference, and instance valida-
tion. In Proceedings of 14th International Symposium on Functional and Logic Programming
(FLOPS’18). LNCS, vol. 10818, 99–115.

Hasegawa, M. (2005) Classical linear logic of implications. Math. Struct. Comput. Sci. 15(2), 323–
342.

Huet, G. (1980) Confluent reductions: abstract properties and applications to term rewriting systems.
J. ACM 27(4), 797–821.

Jouannaud, J., Kirchner, H. & Remy, J. (1983) Church–Rosser properties of weakly terminating
term rewriting systems. In Proceedings of the 8th International Joint Conference on Artificial
Intelligence, pp. 909–915.

Kelly, G. M. (1964) On mac lane’s conditions for coherence of natural associativities, commutativi-
ties, etc. J. Alg. 1(4), 397–402.

Knuth, D. & Bendix, P. (1970) Simple word problems in universal algebras. In Computational
Problem in Abstract Algebra. Oxford: Pergamon, pp. 263–297. Included also in Automation of
reasoning 2, Springer (1983), pp. 342–376.

Libal, T. & Miller, D. (2016) Functions-as-constructors higher-order unification. In Proceedings of
FSCD 2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 52, pp. 26:1–26:17.

Lindley, S. (2007) Extensional rewriting with sums. In Typed Lambda Calculi and Applications, 8th
International Conference, TLCA 2007, Paris, France, June 26–28, 2007. Proceedings, pp. 255–
271.

Lindley, S. & Stark, I. (2005) Reducibility and ��-lifting for computation types. In Typed Lambda
Calculi and Applications, 7th International Conference, TLCA 2005, Nara, Japan, April 21–23,
2005. Proceedings, pp. 262–277.

Mac Lane, S. (1963) Natural associativity and commutativity. Rice Univ. Stud. 49(4), 28–46.
Available at: http://hdl.handle.net/1911/62865.

Mac Lane, S. (1971) Categories for the Working Mathematician. Graduate Texts in Mathematics,
vol. 5. Springer-Verlag.

Mayr, R. & Nipkow, T. (1998) Higher-order rewrite systems and their confluence. Theor. Comput.
Sci. 192(1), 3–29.

Melliès, P.-A. (2010) Segal condition meets computational effects. In Proceedings of the 25th Annual
IEEE Symposium on Logic in Computer Science, LICS 2010, 11–14 July 2010, Edinburgh,
UK, 150–159.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

http://hdl.handle.net/1911/62865
https://doi.org/10.1017/S0956796819000157

How to prove decidability of equational theories with SOL 53

Miller, D. (1991) A logic programming language with lambda-abstraction, function variables, and
simple unification. J. Logic Comput. 1(4), 497–536.

Milner, R. (1996) Semantic ideas in computing. In Wand, I. and Milner, R. (eds), Computing
Tomorrow. Cambridge University Press.

Milner, R. (1999) Communicating and Mobile Systems - The π-Calculus. Cambridge University
Press.

Moggi, E. (1988) Computational Lambda-Calculus and Monads. LFCS ECS-LFCS-88-66.
University of Edinburgh.

Moggi, E. (1991) Notions of computation and monads. Inform. Comput. 93, 55–92.
Nipkow, T. (1991) Higher-order critical pairs. In Proceedings of 6th IEEE Symposium on Logic in

Computer Science, pp. 342–349.
Ohta, Y. & Hasegawa, M. (2006) A terminating and confluent linear lambda calculus. In Rewriting

Techniques and Application (RTA’06). LNCS, vol. 1833, pp. 166–180.
Peyton Jones, S. L., Tolmach, A. & Hoare, T. (2001) Playing by the rules: rewriting as a practical

optimisation technique in GHC. In Haskell Workshop 2001.
Pfenning, F. & Elliott, C. (1988) Higher-order abstract syntax. In Proceedings of the ACM

SIGPLAN’88 Symposium on Language Design and Implementation, pp. 199–208.
Plotkin, G. & Power, J. (2002) Notions of computation determine monads. In Proceedings of

FoSSaCS’02, pp. 342–356.
Plotkin, G. D. (1975) Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.

1(2), 125–159.
Prehofer, C. (1995) Solving Higher-Order Equations : From Logic to Programming. PhD Thesis,

Technische Univerität München.
Sabry, A. & Wadler, P. (1997) A reflection on call-by-value. ACM Trans. Program. Lang. Syst.

19(6), 916–941.
Sheard, T. & Jones, S. P. (2002) Template metaprogramming for Haskell. In Proceedings of the

Haskell Workshop 2002.
Stark, I. (1996) A fully abstract domain model for the π-calculus. In Proceedings of the Eleventh

Annual IEEE Symposium on Logic in Computer Science, pp. 36–42.
Stark, I. (2008) Free-algebra models for the π-calculus. Theor. Comput. Sci. 390(2–3), 248–270.
Staton, S. (2009) Two cotensors in one: presentations of algebraic theories for local state and fresh

names. Electr. Notes Theor. Comput. Sci. 249, 471–490.
Staton, S. (2013a) An algebraic presentation of predicate logic. In Proceedings of FoSSaCS’13.

LNCS, vol. 7794, pp. 401–417.
Staton, S. (2013b) Instances of computational effects: an algebraic perspective. In 28th Annual

ACM/IEEE Symposium on Logic in Computer Science. LICS, vol. 2013, p. 519.
Staton, S. (2015) Algebraic effects, linearity, and quantum programming languages. In Proceedings

of POPL’15, pp. 395–406.
van de Pol, J. (1994) Termination proofs for higher-order rewrite systems. In the First International

Workshop on Higher-Order Algebra, Logic and Term Rewriting (HOA’93). LNCS, vol. 816, pp.
305–325.

Wadler, P. 1990 (June) Comprehending monads. In ACM Conference on Lisp and Functional
Programming, pp. 61–78.

Yokoyama, T., Hu, Z. & Takeichi, M. (2003) Deterministic higher-order patterns for program trans-
formation. In Logic Based Program Synthesis and Transformation, 13th International Symposium
LOPSTR 2003, Uppsala, Sweden, August 25–27, 2003, Revised Selected Papers, 128–142.

Yokoyama, T., Hu, Z. & Takeichi, M. (2004a) Deterministic second-order patterns. Inf. Process.
Lett. 89(6), 309–314.

Yokoyama, T., Hu, Z. & Takeichi, M. (2004b) Deterministic second-order patterns for program
transformation. Comput. Soft. 21(5), 71–76. In Japanese.

https://doi.org/10.1017/S0956796819000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000157

	How to prove decidability of equational theories with second-order computation analyser SOL
	Introduction
	Monad [Problem #1]
	Theoretical method
	Proposed method: How to prove decidability with SOL
	Contributions
	Organisation

	Polymorphic second-order algebraic theories and computation
	Problem part I: Theories of computation and effects
	Global state [Problem #2]
	Reading a bit: Rectangular band [Problem #3]
	Theory of writing a bit [Problem #4]

	Problem part II: Variations on the "115-calculus
	The call-by-name "115-calculus [Problem #5] – Polymorphism is necessary for formulating a simply typed system
	The call-by-value "115-calculus [Problem #6] – Meta-programming on rules and importance of ``variables''
	The computational meta-language ml [Problem #7]
	The simplified monadic calculus ml* [Problem #8] – Clarification of CR
	Hasegawa's yet simpler linear "115-calculus [Problem #9]– Necessity of deterministic second-order patterns and FCU unification algorithm

	Problem part III: A theory of -calculus [Problem #10]
	Problem part IV: Coherence of monoidal categories [Problem #11]
	Foundations
	An algorithm for second-order computation
	Deterministic second-order patterns
	Modified FCU unification
	Type inference for polymorphic computation rules
	Properties of abstract rewriting
	Critical pairs for second-order computation rules
	Church–Rosser modulo equational theory
	Critical pairs between second-order computation rules and equations
	Strong normalisation

	Implementation of SOL
	Design and syntax
	Commands
	Web interface

	Summary

