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Summary

This article outlines theoretical models of clines in additive polygenic traits, which are maintained

by stabilizing selection towards a spatially varying optimum. Clines in the trait mean can be

accurately predicted, given knowledge of the genetic variance. However, predicting the variance is

difficult, because it depends on genetic details. Changes in genetic variance arise from changes in

allele frequency, and in linkage disequilibria. Allele frequency changes dominate when selection is

weak relative to recombination, and when there are a moderate number of loci. With a continuum

of alleles, gene flow inflates the genetic variance in the same way as a source of mutations of small

effect. The variance can be approximated by assuming a Gaussian distribution of allelic effects ;

with a sufficiently steep cline, this is accurate even when mutation and selection alone are better

described by the ‘House of Cards’ approximation. With just two alleles at each locus, the

phenotype changes in a similar way: the mean remains close to the optimum, while the variance

changes more slowly, and over a wider region. However, there may be substantial cryptic

divergence at the underlying loci. With strong selection and many loci, linkage disequilibria are the

main cause of changes in genetic variance. Even for strong selection, the infinitesimal model can be

closely approximated by assuming a Gaussian distribution of breeding values. Linkage

disequilibria can generate a substantial increase in genetic variance, which is concentrated at sharp

gradients in trait means.

1. Introduction

Many issues in evolutionary biology depend on spatial

population structure, and most species occupy a

habitat much broader than their dispersal range. Gene

flow is involved in the spread of alleles, whether they

be favoured everywhere (Fisher, 1937), or in only

some places (Slatkin, 1973; Nagylaki, 1975; Barton,

1987). Thus, the efficiency of adaptation by natural

selection depends on the spatial distribution of

selection in relation to dispersal and density; indeed,

the range of a species may be limited by the conflict

between selection and gene flow (Holt, 1995;

Kirkpatrick & Barton, 1997). If allelic combinations

can be maintained only when they become sufficiently

common, then gene flow interacts with random drift

and selection in Wright’s (1931) ‘ shifting balance’.

The genetic variation on which adaptation depends

may be maintained by the combination of hetero-
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geneous selection with gene flow (Haldane, 1948;

Goldstein & Holsinger, 1992), and the incompati-

bilities which are responsible for reproductive isolation

may develop through divergence across a broad

geographic range (i.e. in parapatry; Endler, 1977).

Although a substantial body of theory addresses

these issues, it is framed almost entirely in terms of

gene frequencies : there is remarkably little work on

the evolution of quantitative traits in spatially

extended populations (for a review, see Barton &

Turelli, 1989). This is partly because the roots of

quantitative genetics lie in plant and animal breeding,

where spatial structure is less relevant than in nature.

However, gene flow between domesticated and natural

populations is significant (Ellstrand et al., 1999), and

the interaction between fitness and environment is an

important topic in classical quantitative genetics ; in

particular, Falconer’s (1981) representation of

genotype¬environment interaction by a multivariate

trait is a powerful way of analysing trait evolution in

heterogeneous conditions (Via & Lande, 1985).

https://doi.org/10.1017/S001667239900422X Published online by Cambridge University Press

https://doi.org/10.1017/S001667239900422X


N. H. Barton 224

A more fundamental reason for the relative neglect

of spatial structure in quantitative genetics is our

ignorance of the causes of polygenic variation (Fal-

coner & Mackay, 1996). Even if one supposes that

quantitative genetic variation is maintained by a

balance between mutation and stabilizing selection

(one of many plausible mechanisms), the theory is not

straightforward: the evolution of the genetic variance

depends on the effects and frequencies of the under-

lying alleles, and cannot be reduced to a few observable

phenotypic variables (Turelli, 1984). Thus, although

the evolution of trait means is straightforward if the

genetic variance is given, it is hard to find a robust

theoretical description of the variance itself.

The aim of this paper is to give an overview of the

theory for clines in an additive polygenic trait. I

concentrate on deterministic selection, because it is

here that the major theoretical difficulties lie : the

effects of drift and gene flow on an additive trait can

be simply extrapolated from the extensive theory on

neutral allele frequencies in structured populations

(Felsenstein, 1986; Nagylaki, 1986; Lande, 1991 ;

Whitlock, 1999). The analysis falls into two parts.

Where selection is weak relative to recombination,

populations are close to linkage equilibrium, and can

be described solely in terms of allele frequencies. With

strong selection or tight linkage, linkage disequilibria

may be significant ; these can be approximated by

assuming a short-term balance between gene flow and

recombination. While many of the results depend on

the detailed genetic basis of the traits, some robust

and testable predictions do emerge.

2. Stabilizing selection and mutation in a single

population

Many of the difficulties in analysing clines in polygenic

traits arise from corresponding difficulties in under-

standing the balance between mutation and selection

in a single population. Suppose that stabilizing

selection on a single trait favours an optimum

phenotype, z
opt

. The fitness of an individual is given by

a Gaussian function centred on z
opt

, and with variance

1}s. (The variance is often written as V
s
¯1}s ; Lande,

1975.) Without loss of generality, assume no en-

vironmental variance, and a continuous distribution

of allelic effects. The phenotype of a diploid individual

is Σn

i="
(Z

i
­Z$

i
), where Z

i
,Z$

i
are the contributions of

the maternal and paternal copies of gene i, respectively.

If selection is weak enough relative to recombination

that linkage disequilibria are negligible, and if selection

and mutation act equally on males and females, then

the population can be described by the distributions

of effects at each locus, ψ
i
[z

i
].

Kimura (1965) used a diffusion approximation to

show that when mutational effects are sufficiently

small, the distribution of effects is Gaussian with

variance �
i
¯o(µ

i
�
m,i

}s), where �
m,i

is the variance

of mutational effects at locus i. Lande (1975) extended

the continuum-of-alleles model to include linkage

disequilibria, by assuming that the joint distribution

of allelic effects, Z, is multivariate Gaussian. However,

Turelli (1984) argued that mutation rates are likely to

be too low, and mutational effects too high, to justify

the Gaussian approximation. He suggested that the

‘House of Cards’ approximation (Kingman, 1978) is

more appropriate. Here, mutational effects are

assumed to be so large that new alleles have effects

independent of their original value. The variance

contributed by a single gene is then C 2µ
i
}s (Turelli,

1984). Given the assumption of large allelic effects,

this is a much lower value than is predicted by the

Gaussian approximation.

Under both the Gaussian and the ‘House of Cards’

approximations, selection on allele frequencies causes

the variance to change much more slowly than the

mean. In the limit of very many loci, the infinitesimal

model is approached, in which the variance at linkage

equilibrium is constant (Fisher, 1918; Bulmer, 1985) ;

changes in variance are then solely due to linkage

disequilibria. These properties of polygenic models

allow the evolution of the variance to be decoupled

from the evolution of the mean, and simplify the

following analysis of clines.

Models with two alleles behave in a qualitatively

different way from those with a continuum of alleles,

because the mean and variance at each locus are

coupled through a single variable, the allele frequency,

this coupling leads to multiple stable equilibria. Wright

(1935) showed that under stabilizing selection alone,

polymorphism could be maintained at most at a single

locus. However, many different allelic combinations

can give a mean which is close to the optimum; for

example, with 100 loci of equal effect, and a mean at

the centre of the range, any genotype with 50 ‘­’

alleles and 50 ‘®’ alleles can be fixed. Mutation

maintains polymorphism, such that if the mean is at

the optimum, a genetic variance �
i
¯ 2µ

i
}s is con-

tributed by each of the 2n genes (Latter, 1960; Bulmer,

1971, 1985). The mean can now be adjusted both by

changes in the number of loci near fixation for ‘­’

alleles, and by changes in allele frequencies at each

locus. This flexibility sustains many more stable states ;

if µ' sα#' nµ, then there are stable equilibria in

which different numbers of loci are near fixation for

‘­’ alleles, and in which the mean deviates from the

optimum to different degrees (Barton, 1986).

3. Clines with a continuum of alleles

(i) General formulae

Suppose that genes at locus i have a continuous

distribution of allelic effects, z
i
; denote the distribution

at position x by ψ
i
[z

i
,x]. There is weak quadratic
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selection of strength s towards an optimum at z
opt

.

Mutations occur at a rate µ
i
, and add a random

increment y to the allelic effect z
i
; the distribution of

mutational effects is m
i
[y], which is assumed to have

zero mean. Assuming linkage equilibrium, we have:

¦ψ
i

¦t
¯

σ#

2

¦#ψ
i

¦x#

®
s

2
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i
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opt
)#®�
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®(za
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®z

opt
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i
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i0&
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m
i
[y]ψ

i
(z
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®y,x)dy®ψ

i
(z

i
,x)1 , (1)

where za
i
, �

i
are the mean and variance of effects of

locus i. Gene flow is represented by diffusion at a rate

σ#, the variance of distance between parent and

offspring (Nagylaki, 1975). In all the following

discrete-time models, population density is held

constant.

The overall mean and variance (za ¯ 2Σ
i
za
i
,

V¯ 2Σ
i
�
i
) can be derived from (1) :
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where κ
$
, κ

%
are the third and fourth cumulants of the

distribution of breeding values, and

V
m

¯ 23
i

µ
i&

¢

−¢

y#m(y) dly

is the increase in trait variance due to mutation. The

effective numbers of loci are defined as

n
e
3 03

i

�
i1#503

i

�#
i1 ;

n$
e
3 03

i

¦
x
za
i1#503

i

(¦
x
za
i
)#1.

To the extent that the variance and gradient in mean

vary across loci, these will be smaller than the actual

number of loci. These equations cannot in general be

solved, because they depend on the higher cumulants

of the distribution of breeding values (κ
$
, κ

%
), and

because they depend on variation across loci through

n
e
, n$

e
.

Slatkin (1978) derived (1), and argued (p. 215) that

when selection is weak (sV'1), the increase in

variance caused by gene flow is negligible. Slatkin’s

argument relies on showing that the gradient in the

mean is small (¦
x
za Co(sV )}σ ; p. 221), so that the

variance generated by gene flow (i.e. the second term

in (3) above) is also small. However, it does not follow

that the effect of gene flow on the variance is small :

the strength of the force returning the variance to its

value outside the cline is also proportional to the small

selection coefficient (third term in (3) above), and so

the two forces are comparable. The analysis below

shows that there can be a substantial increase in

variance under weak selection. However, the increase

does become small when a very large number of loci

are involved.

(ii) The Gaussian approximation

Suppose that the distribution of allelic effects at each

locus is approximately Gaussian. This is a much

stronger assumption than that the overall distribution

of breeding values, 2Σ
i
z
i
, is Gaussian, and requires

that there be a high rate of mutations, with effects

typically small relative to the standing distribution of

effects (Turelli, 1984). We must also assume that all

loci have the same mean and variance, so that n
e
¯

n$
e
¯ n ; this assumption may be less restrictive, in that

variation across loci might be described by taking the

effective numbers of loci to be roughly constant. In the

absence of gene flow, or with a uniform optimum, the

equilibrium genetic variance is V¢ ¯o(2nV
m
}s)

(Lande, 1975; (3) above).

The simplest case is where there is an infinite linear

cline, with z
opt

¯βx. Then, there is a solution where

the mean is always at the optimum (za ¯βx). Gene

flow contributes to the variance at a constant rate

σ#β
#
}(2n), and has an effect equivalent to mutation,

V
m
. The equilibrium genetic variance is inflated by

gene flow too[(2nV
m
­σ#β#)}s]. Felsenstein (1977) has

analysed this case in the absence of mutation, but

allowing for linkage disequilibrium (see below).

Next, consider a sharp change in the optimum,

from z
opt

¯®∆}2 to ­∆}2 at x¯ 0. Equations (2),

(3) simplify to:

¦za
¦t

¯
σ#

2

¦#za
¦x#

®sV(za®z
opt

), (4)

where z
opt

¯®∆}2 for x! 0, ­∆}2 for x" 0,

¦V

¦t
¯

σ#

2

¦#V

¦x#

­
σ#

n 0
¦za
¦x1

#

®
sV #

2n
­V

m
. (5)

An approximate solution to (4), (5) can be found if

many loci are involved (n(1). Then, the genetic

variance changes much more slowly than the mean,

and hence changes over a broader spatial scale. It can

therefore be taken as constant, at V
!
, around the

region where the mean changes sharply. The equi-

librium for the mean is then:

za ¯®
∆

2 01®exp9­x

σ
o(2sV

!
):1 for x! 0,

za ¯­
∆

2 01®exp9®x

σ
o(2sV

!
):1 for x" 0.

5

6
7

8

(6)
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Fig. 1. The variance and mean across a cline which is
maintained by a change in optimum of ∆¯ 4oV¢

genetic standard deviations (upper and lower panels,
respectively). Trait values are scaled relative to the
variance outside the cline (za}oV¢,V

!
}V¢), and distance

relative to σ}o(2sV¢). The dashed curves show the
approximation of (8). The continuous curves show the
numerical solution of (4), (5) ; calculations were made for
T¯ 30 time units, starting from a linear cline, and over a
range ®15!X!15 (T3 sα#t}2, X3x}σosα#).

This is eq. 24 of Slatkin (1978). Within the region

around x¯ 0, the effects of selection on the genetic

variance can be neglected; gene flow is the dominant

force, and causes a sharp change in the gradient of V,

from ®¦
x
V
!
to ­¦

x
V
!
. Integrating across the central

region (from x
−
! 0 to x

+
" 0, say), we obtain a

boundary condition on the gradient at the centre :

¦V

¦x
r
x=!

¯
1

n&
x+

x−

0¦za
¦x1

#

dx¯
∆#

2nσ
o(2sV

!
). (7)

Away from the centre, the change in genetic variance

is given by dropping the second term on the right from

(5). Integrating:

V¯V¢03 tanh 9(rxr­x
!
)

2σ ’ 0 2sV¢

n 1:−#®21 . (8)

The variance is thus increased over a region of width

σo(n}2sV¢), a factor Con wider than the region

over which the mean changes. The constant of

5

1

10D

V0

Fig. 2. The variance at the centre of a cline, V
!
, plotted

against the size of the change in optimum, ∆. V
!

and ∆ are
scaled relative to the variance outside the cline, V¢. The
continuous curve shows the approximation of (8). The
dotted curves show the further approximations given
below (9). The filled circles show the numerical solution
of (4), (5) ; calculations were made for T¯ 30 time
units, starting from a linear cline, and over a range
®15!X!15.

integration x
!

is determined from the boundary

condition on the gradient (i.e. equating (7) with the

derivative of (8) at x¯ 0). This leads to a cubic

equation for the variance V
!

at x¯ 0 which has the

solution:

V
!
¯

V¢ 2o(1­9α#) cos [φ] where α¯
∆#

24V¢ on
,

φ¯ "

$
arctan²3αo[3(1­9α#­27α%)]´®

π

2
.

5

6
7

8

(9)

The increase in variance is determined by α, which is

proportional to the ratio between the square of the

change in optimum (∆#), and the genetic variance

maintained by a mutation–selection balance with

constant optimum (V¢). It is also inversely pro-

portional to the square root of the number of loci :

with large numbers of loci, therefore, there will be

only a small increase in variance. For a small step

(α'1), V
!
C1­(∆#}8V¢ on), whilst for a large step,

V
!
Co²3[1­(∆%}64nV #)]´ (dashed curves in Fig. 2).

Fig. 1 shows the change in mean and variance

across a cline maintained by a sharp shift in optimum.

The approximation of (8) agrees well with numerical

solution of (4), (5) (compare dashed and continuous

lines in Fig. 1). Equation (8) predicts that the genetic

variance increases by 75% at the centre of the cline,

whereas numerical solution of (4), (5) predicts an

increase in genetic variance at the centre by 61%. Fig.

2 shows how genetic variance increases with the size of

the change in optimum. The approximation of (8) is

an underestimate for larger ∆ ; this is because the

increase in variance does not rise to a sharp peak, as

is assumed in deriving (8), but rather, changes
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smoothly over the narrow region in which the mean

changes. Even with the moderate number of loci used

in this example (n¯10), the approximation that the

mean changes much more sharply than the variance is

quite accurate (compare points and continuous curve

in Fig. 2). Agreement improves with more loci.

(iii) Accuracy of the Gaussian approximation

Although the Gaussian approximation has been

widely used to analyse the balance between mutation

and stabilizing selection, it is only accurate when

mutations have small effects relative to the standing

variation; this implies unreasonably high mutation

rates (Turelli, 1984). Here, we examine the accuracy of

the Gaussian approximation in the presence of gene

flow by using (1) to find the full distribution of allelic

effects, ψ
i
(z

i
,x), for an infinite linear cline. Then, there

is a solution in which the mean tracks the optimum

(za ¯ z
opt

¯βx) and the distribution of effects of each

locus has a constant form: ψ(z
i
,x)¯ ζ

i
[z

i
®α

i
®β

i
x].

For the moment, we allow the form of the distribution

ζ
i
to vary across loci, and allow the mean effect of

each locus to vary, with the constraint that 0¯Σ
i
α
i
¯

Σ
i
β
i
. Equation (1) can then be solved numerically.

First, consider mutation–selection balance, in the

absence of gene flow. If mutations have small effects,

(1) canbe approximated byadiffusion equation,whose

solution is a Gaussian with variance o(µ
i
�
m,i

}s),

where �
m,i

is the variance of mutational effects at

locus i (Kimura, 1965). If all loci have equal effects,

the total genetic variance is o(2nV
m
}s), where V

m
¯

2nµ�
m
. At the other extreme, if mutations have effects

large compared with the standing distribution, they

can be taken to have a distribution independent of

their original (the ‘House of Cards’ approximation;

Turelli, 1984). Replacing the last term in (1) by

µ
i
(m

i
(z

i
)®ζ

i
(z

i
)) gives an equilibrium

ζ¯
µ
i
m

i
(z

i
)

µ
i
­s}2(z#

i
®�

i
)
.

The constraint that

& ζ
i
dz

i
¯1

determines �
i
.

Now, consider the additional effect of gene flow.

Because we have assumed that gene flow is sufficiently

localized that it can be represented by a diffusion

equation, it has an effect equivalent to mutations of

small effect, and tends to produce a Gaussian

distribution (Felsenstein, 1977; Slatkin, 1978). (If

dispersal were highly leptokurtic, it would need to be

represented by an integral of the same form as that

used to represent mutation in (1). The Gaussian

approximation would then fail, just as it fails when

1 2 rbi

2

1

Vi

Fig. 3. The variance maintained at a single locus by gene
flow and mutation, plotted against the gradient of the
cline of that locus, σβ

i
. The mutation rate is µ

i
¯ 0±1s,

and the variance of mutational effects per locus is �
m,i

¯
10. The continuous curve shows the numerical solution of
(1) ; this is compared with the ‘House of Cards’
approximation in the absence of gene flow (lower
horizontal line), and the Gaussian approximation
o[(µ

i
�
m,i

­σ#β#
i
)}s] (dashed curve).

mutations have large effects). Fig. 3 shows how the

variance increases as the gradient in the cline becomes

steeper. With no gene flow, the variance is close to the

House of Cards approximation, and fivefold smaller

than the Gaussian prediction (left of Fig. 3). However,

as gene flow increases, the per locus variance increases

linearly, and approaches the Gaussian prediction.

4. Clines with rare alleles

(i) Change in allele frequencies

Suppose that we ignore linkage disequilibria, and

assume weak selection; then, a cline in a trait involving

n loci can be described by a set of diffusion equations

for n allele frequencies. Following Barton (1986),

suppose that there are equal allelic effects,α, stabilizing

selection towards an optimum z
opt

, and that variation

is maintained by mutation µ :

¦p
i

¦t
¯

σ#

2

¦#p
i

¦x#

­
sα#

2
p
i
q
i
(p

i
®q

i
®2δ)®µ(p

i
®q

i
), (10)

where

δ¯
(za®z

opt
)

α
¯3

i

(p
i
®q

i
)®

z
opt

α
.

The outcome depends on how the optimum changes.

First, suppose that there is a step change in z
opt

. Then,

for x' 0, some loci will be near fixation for ®alleles,

and some near fixation for ­alleles ; let their numbers

be m
−
, M

−
, respectively. We can suppose for simplicity

that this combination brings the mean to the optimum.

For x( 0, we have (m
+
,M

+
) near fixation for ® and

­alleles. The set of loci that changes could be the
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V

Fig. 4. Over most of the range, 50 loci are near fixation for ­alleles, and 50 for ®alleles ; γ¯ 0±05, and so V
g
¯2nγα#¯

10α#. The graph shows the allele frequencies, together with the change in genetic variance (scaled relative to α#) across a
region where four pairs of loci switch in opposite directions. The mean remains at the optimum throughout, while the
variance increases from V

g
¯ 2nγα#¯10α# to 2α#(92γ­2)¯13±2α# at its maximum.

minimal number, or could be larger ; indeed, even if

the optimum is constant, a set of cryptic clines may be

maintained. The simplest situation, then, would be

where we have four kinds of loci (®U®,®U­,

­U®,­U­), each set changing in parallel : this

gives four coupled equations. The outcome could be

more complicated, however : it is not clear that all loci

in a class will change together.

(ii) Uniform optimum

First, suppose that a pair of loci switch in opposite

directions. The mean remains at the optimum

throughout, and so this pair of clines will have no

effect on other such pairs : we have a simple two-locus

problem. Integrating (10) leads to a cline of width

4

1®4γ ’
σ#

2sα#

.

p®q¯o(1®4γ) tanh 9x2 ’ 0
sα#

σ#
1o(1®4γ): . (11)

The increase in genetic variance due to each pair of

clines is (α#®8µ}s), which compares with an equi-

librium variance of 4nµ}s. The increase may be fairly

small, and restricted to a small region (Fig. 4). In

principle, there could be any number of such pairs.

However, adjacent clines would tend to annihilate

each other, and some mechanism is needed to generate

cryptic divergence. Spatially and temporally fluctu-

ating optima could generate divergence (cf.

Kondrashov & Yampolsky, 1996; Phillips, 1996), but

this may be a weak effect (cf. Lythgoe, 1997).

(iii) Step change in optimum

Now, suppose that the optimum changes from ®∆}2

to ∆}2 at x¯ 0. Consider a solution where m
!,!

loci

are near fixation for ®alleles, at both x' 0,x( 0;

m
!,"

are near fixation for ®alleles for x' 0, and for

­alleles for x( 0, etc. The simplest solution would be

one where the population is at the optimal equilibrium

for large x, and where the minimum number of loci

change, and change in parallel (i.e. m
",!

¯ 0). A more

complicated possibility is that some loci might change

from ­ to ®, and some larger number in the opposite

direction (i.e. m
!,"

"m
",!

" 0). If all loci in each of the

four classes change in parallel, the solution can be

found by following four coupled diffusion equations,

with the form of (10).

Fig. 5 shows an example in which the optimum

changes abruptly from ®4α to ­4α at x¯ 0. To the

left, 52 loci are near fixation for ®alleles, and 48 for

­ ; the mean is at the optimum. To the right, 48 loci

are near fixation for ®, and 52 for ­ ; thus, four loci

change from ® to ­ across the cline. The upper right

panel shows that these four loci change in a set of

clines with scaled width w¯ 2±64. However, the cline

in the mean is much narrower (w¯ 0±59; upper left of

Fig. 5). This is because the allele frequencies at the 96

loci that remain near fixation change slightly in

response to the change in optimum. Since these 96 loci

contribute most of the genetic variance (upper dashed

line in lower left of Fig. 5), they are collectively

responsible for most of the selection response. In

contrast, most of the increase in genetic variance is

due to the four loci that shift allele frequencies from

low to high (lower dashed line in lower left of Fig. 5).

Since the clines at these loci are wider than the clines

in the mean, the increase in genetic variance is spread

over a broader region than the change in mean. This

is a consequence of the inherently weaker response to

selection on the variance, compared with selection on

the mean.

Because the genetic variance stays approximately

constant across the cline, quantitative genetics can be

used to make a simple prediction for the change in

mean, as for the Gaussian approximation (6). This

was derived by neglecting selection on the variance,

which is mediated by the skew, κ
$
, in (2). This

corresponds to neglecting the term (p
i
®q

i
) relative to

the term ®2δ in the second term on the right of (10);

it should be a good approximation when the mean

deviates from the optimum by much more than the

effect of a single locus. Including the effect of selection

on the variance will steepen the cline. Indeed, if pairs

of loci switch over in opposite directions, with the
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Fig. 5. The cline maintained by a step change in optimum from ®4 to ­4 (i.e. ∆¯ 8). For X' 0, 52 loci are near
fixation for ®alleles, and 48 for ­alleles ; the mean is at the optimum. For X( 0, 48 loci are near fixation for ®alleles,
and 52 for ­alleles ; the mean is again at the optimum. Thus, four loci change from ® to ­ around X¯ 0. The top
right panel shows the change in allele frequency ratio, p}q, at each of the three kinds of loci. (The ratio is plotted on a
logarithmic scale to show changes near to fixation more clearly.) The top left panel shows the abrupt change in mean
near X¯ 0. The continuous line in the lower panel shows the change in genetic variance; the dashed lines show the
contributions of the 96 loci that remain near fixation (upper dashed line) and of the four loci that change over (lower
dashed line). Diffusion equations were solved numerically using the algorithm NDSolve of Mathematica 3.0 (Wolfram,
1996). The starting step size was set to 0±2 scaled distance units, to increase the accuracy where selection changes
abruptly at x¯ 0. Reducing the step size further, to 0±1, made no appreciable difference, and was much slower.

mean remaining at the optimum (as in the previous

section), clines are maintained entirely by selection on

the variance.

The genetic variance in mutation–selection balance,

with the mean at the optimum, is

V
g
¯

4nµ

s
¯ 2nγα#.

The width, calculated by substituting this predicted

V
g
into (6), is

2σ

o(2sV
g
)
¯

σ

o(2nµ)
.

Remarkably, this is independent of the strength of

stabilizing selection, s : the direct effect of increased

selection is counterbalanced by a reduced genetic

variance. In scaled units (X¯xo[sα#}σ#]), the pre-

dicted cline width is w¯o(1}nγ), which is 0±45 for

the parameters of Fig. 5. The discrepancy between this

and the numerical solution, w¯ 0±59, arises in part

because selection changes abruptly at x¯ 0. However,

numerical errors are restricted to a small region

around x¯ 0: the difference from the approximation

of (6) is less than 1±6% for rX r" 0±2.

Fig. 5 shows the most straightforward case, where

the mean is at the optimum on either side of the cline,

and where the minimal number of loci change their

predominant allele. Fig. 6 shows an example with the

same parameters but where, throughout, 50 loci are

near fixation for ®alleles and 50 for ­alleles. The

response to selection is thus entirely due to changes in

the frequency of rare alleles. Away from the central

step, the mean now deviates slightly from the optimum

(za ¯ 3±87α, rather than 4α), and the genetic variance is

slightly inflated (V
g
¯11±17α# rather than 10α# for

rXr(1). However, the change in mean and variance

across the cline are qualitatively the same: the simple

approximation of (6) still fits closely, with a dis-

crepancy of less than 2±5% for rX r" 0±2.

Fig. 7 shows an example where the mean is at the

optimum away from the cline but where more loci

change their predominant allele : eight loci shift from

® to ­, and four loci from ­ to ®. There is now a

large increase in variance, from V
g
¯10α# at the edges

to V
g
¯15±6α# at the centre. The agreement with (6) is

less close, though still surprisingly good: the error is

less than 8% for rXr" 0±2.

In principle, loci could change over at different

places. This possibility can be investigated by fol-
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Fig. 6. The cline maintained by a step change in optimum from ®4 to ­4 (i.e. ∆¯ 8). Throughout, 50 loci are near
fixation for ®alleles, and 50 for ­alleles. Otherwise, details are as for Fig. 5.
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Fig. 7. The cline maintained by a step change in optimum from ®4 to ­4 (i.e. ∆¯ 98). For X' 0, 52 loci are near
fixation for ®alleles, and 48 for ­alleles ; the mean is at the optimum. For X( 0, 48 loci are near fixation for ®alleles,
and 52 for ­alleles ; the mean is again at the optimum. However, in contrast to Fig. 5, more loci change their
predominant allele : eight loci change from ® to ­ around X¯ 0, and four loci from ­ to 0. Otherwise, details are as
for Fig. 5.

lowing all n diffusion equations, and by starting these

from random initial conditions to ensure that if the

simple symmetric solution is unstable, it will evolve

towards some asymmetric solution in which clines at

different loci in the same class are scattered. This is

not feasible for 100 loci, and so one cannot be sure
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Fig. 8. The top right panel shows the allele frequency ratios, p}q, at 20 loci that determine a polygenic trait subject to
stabilizing selection. The optimum changes linearly, as z

opt
¯βW X, with βW ¯ 0±2; thus, the optimum changes from ®4 at

X¯®20 to ­4 at X¯­20. To the left (X¯®20), seven loci are near fixation for ­alleles, while to the right (X
¯­20), 13 loci are near fixation for ­alleles. Six loci change from low to high frequency of ­alleles, in six roughly
evenly spaced clines. The upper and lower lines show the allele frequencies at those loci that remain near fixation for the
same allele throughout. The top left panel shows the deviation from the optimum, plotted against distance, and scaled
relative to the effect of a single allele : δ¯ (za®z

opt
)}α. The continuous line shows the numerical solution to the 20

coupled diffusion equations. The dashed line shows the prediction of (13). The dotted line shows the prediction obtained
by solving 0¯ pq(p®q®2δ )®γ(p®q), instead of using the approximation of (12). The lower left panel shows the
genetic variance plotted against distance. The lower right panel shows cline position plotted against time. Cline position
is defined by the net frequency of the ­allele, integrated over the whole range. The six loci that changed from low to
high frequency of the ­allele were initiated as clines scattered randomly around X¯ 0 (left of figure) ; the other 14 loci
were started at random allele frequencies randomly scattered around their equilibrium values. Calculations were made
up to T¯100.

that the solutions in Figs 5–7 are stable. However,

runs for 20 loci show no tendency for clines to

scatter ; since the directional selection due to the

deviation of the mean from the optimum is sharply

concentrated over the central region (a region much

narrower than the underlying clines) no such tendency

is expected.

(iii) A linear gradient

Suppose now that there is a shallow linear gradient in

the optimum, z
opt

¯βx. Initially, suppose that the

population is everywhere in the same state, with loci

near fixation for one or other allele. Where the

optimum deviates sufficiently from the initial mean,

this state becomes unstable, and some random locus

will shift to near fixation for another allele. A set of

clines will form, and will move so as to reduce the

deviation of the mean from the optimum. The habitat

will be divided into regions in which different numbers

of loci are near fixation for ­alleles ; within these

regions, allele frequencies will change smoothly, whilst

between them, there will be a cline of width

Co(σ#}sα#) at a single locus (Fig. 8). Despite abrupt

changes at the underlying loci, the mean remains close

to the optimum throughout (δ¯ (za®z
opt

)}α! 0±046;

top left of Fig. 8). The genetic variance is also little

affected by the sharp shifts in allele frequency (lower

left of Fig 8), primarily because most variance is

contributed by loci that remain near fixation: shifts at

single loci make a relatively small contribution. If the

mean coincides with a spatially uniform optimum,

then the genetic variance is V
g
¯ (4nµ}s)¯ 4. The

maximum genetic variance contributed by a cline at a

single locus is α#}2, which is an order of magnitude

smaller than the background contribution of mutation

at the majority of loci, which are near fixation.

Some analytic results can be obtained for the

limiting case of a shallow gradient. First, consider a

region in which there are m loci near fixation for

®alleles, and M for ­alleles. Let the frequencies of

the ­allele at these loci be P, 1®Q, respectively ;
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Fig. 9. The top right panel shows the allele frequency ratios, p}q, at 30 loci that determine a polygenic trait subject to
stabilizing selection. Details are as for Fig. 8, but for βW ¯ 2.

P, Q'1. Further, assume 4ny(1. With a spatially

uniform optimum, the equilibria are, from (10):

P¯
γ

1­2δ
Q¯

γ

1®2δ
,

where

δ¯
(za®z

opt
)

α
¯

(M®m) (1®2γ)®z
opt

1­4nγ
. (12)

If δ is indeed small, then clines at each locus have

the same form as with a uniform optimum (11).

Suppose that J such clines are centred at X
!
, and

separate a region to the left, where ²m,M ´ loci are

near fixation for ®, ­alleles, from a region to the

right, where ²m®J,M­J ´ loci are near fixation for

®, ­alleles. Approximating o(1®4γ) by (1®2γ),

the mean in this region deviates from the optimum by

δ¯
1

1­4(n®J )γ

-(M®m­J91­tanh 0(X®X
!
)

2
(1®2γ)1:*

(1®2γ)®z
opt. . (13)

In the example of Fig. 8, one locus changes at a time,

and so J¯1. The top left panel in Fig. 8 shows that

the prediction of (13) (dashed line) is reasonably close

to the numerical solution of (10) (continuous line), but

overestimates the deviation from the optimum towards

the edges. The quantitative disagreement is not

surprising since, in this example, mutation at each

locus is appreciable (γ¯ 0±1) ; the total mutation rate

is not very large (4nγ¯ 4) ; and the gradient is steep

enough that the clines overlap (top right of Fig. 8).

Most of the error arises from approximating

the solutions to 0¯ pq(p®q®2δ )®γ(p®q) by

γ}(1­2δ ), 1®γ}(1®2δ ) (12). Agreement is much

closer if the exact solution to this cubic equation is

used (dotted line in top left of Fig. 8).

If the gradient in the optimum is steep, the

component clines overlap, and one can no longer

separate the range into homogeneous regions

separated by sharp clines. However, numerical

solutions suggest that the outcome is qualitatively

similar, in that a set of scattered clines is maintained.

Fig. 9 shows an example with σβ¯ 2o(sα#), and n¯
30 loci, on a habitat which runs from x}σo(sα#)

¯®20 to ­20; the scaled mutation rate is γ¯ 0±1. At

the edges, the optimum is ³40α, and so the population

approaches fixation for all ®alleles, or all ­alleles ;

the mean is then at its maximum possible magnitude

of ³30α. Initially, clines are randomly scattered

around the concordant solution. This solution is

unstable, and five clusters, each of six clines, are

formed (upper right of Fig. 9). At the edges, the mean

necessarily deviates substantially from the optimum.

However, the mean remains quite close to the optimum

within the central region: for rX r!10, (za®z
opt

)!
0±31α (upper left of Fig. 9). Though small relative

to the change in mean (40α), this deviation is

substantially larger than seen for a shallow gradient
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(σβ¯ 0±2o(sα#) ; top left of Fig. 8). The two

approximations used in Fig. 8 now underestimate the

deviation from the optimum (dashed and dotted lines

in upper left of Fig. 9). In a spatially uniform

population, V
g
¯ (4nµ}s)¯ 6α#. Each cline contri-

butes an additional genetic variance of α#}2 at its

centre. Thus, we expect a genetic variance of approx-

imately 3a# at the centre of a cluster of six clines,

plus a contribution of 4±8α# due to mutation at the

remaining 24 loci. This rough prediction of V
g
¯ 7±8α#

is close to the value observed across most of the range.

At the edges, however, the genetic variance tends to

zero as the trait approaches its limit, and loci approach

fixation (lower left of Fig. 9).

5. Linkage disequilibria

When a trait is determined by many loci, selection on

each becomes small, and so allele frequencies change

slowly. In the short term, the genetic variance then

changes primarily because of changes in linkage

disequilibrium (Bulmer, 1971, 1985). When selection

or gene flow are strong, the genetic variance can

change substantially, even when loci are loosely linked.

The limit of very many unlinked loci is described by

the ‘ infinitesimal model ’, under which offspring are

normally distributed about the mean breeding value

of the parents, with a constant variance independent

of parental phenotype (Fisher, 1918; Bulmer, 1971).

We now consider how quantitative traits respond to

spatially varying selection under the infinitesimal

model.

Analytical results are complicated by the need to

examine strong selection and gene flow: weak forces

have negligible effects on the variance under the

infinitesimal model. Therefore, continuous time is

used, allowing gene flow to be described by diffusion,

as in the weak selection approximations above.

However, note that quadratic selection does not

maintain a Gaussian distribution in the absence of

gene flow, as would be the case with Gaussian

selection and discrete generations. Another com-

plication is that with continuous mortality and

reproduction, we cannot suppose that population

density remains constant, as was assumed in the

discrete-time models above.

Suppose that in some small interval of time, δt, a

fraction δt of individuals produce offspring according

to the infinitesimal model ; these disperse with variance

σ#δt ; and there is density- and genotype-dependent

mortality at a rate (µ[ρ
T
]­s}2 (z®z

opt
)#)δt where ρ

T
3

!ρ[z] dz is the net population density. The mortality

is the sum of a density-dependent mortality, and a

mortality due to stabilizing selection towards an

optimum z
opt

. Time has arbitrarily been scaled relative

to the rate of reproduction; reproduction may be

density-dependent, but such dependence can be

absorbed into the other parameters. The equation for

total density is :

¦ρ
T

¦t
¯

σ#

2

¦#ρ
T

¦x#

®µ[ρ
T
] ρ

T
®

s

2
(V­(za®z

opt
)#) ρ

T
­ρ

T
.

(14)

The equation for the distribution of breeding values,

ψ¯ ρ}ρ
T
, is

¦ψ

¦t
¯

σ#

2

¦#ψ

¦x#

­σ#
¦ log[ρ

T
]

¦x

¦ψ

¦x

®
s

2
((z®za )#­2(z®za ) (za®z

opt
)®V )ψ

­0&ψ[z*]ψ[z**]

o(πV
LE

)
exp

9® 1

V
LE

0z®(z*­z**)

2 1#:dz*dz**1®ψ. (15)

Variations in density, due to variations in mean

fitness, cause asymmetric gene flow (second term on

the right of (15). This can lead to a positive feedback,

such that poorly adapted regions decrease in density,

and so receive more locally maladapted immigrants

(Kirkpatrick & Barton, 1997). For simplicity, we

assume here that density is strongly regulated towards

a spatially uniform carrying capacity: µ is zero below

a threshold, and very high above it. Then, the

population attains the threshold density provided that

the mortality due to selection, s}2(�­(za®z
opt

)#), does

not exceed the rate of reproduction (here set to 1).

Equation (15) can readily be solved numerically

using Fourier transforms (Turelli & Barton, 1994).

Fig. 10 shows an example, in which the optimum

changes by ∆¯ 4o(V
LE

), and stabilizing selection has

strength s¯ 0±4. This maintains a sharp cline, with

width 2±48σ}o(2sV
LE

) ; the mixing of populations

increases the genetic variance to 2±17V
LE

, over a

region of similar width. This contrasts with a reduction

in genetic variance outside the cline, to 0±66V
LE

due to

the negative linkage disequilibria generated by stab-

ilizing selection. The selection strength was chosen as

the largest value at which the genetic load does not

exceed the fecundity ; if s were any larger, the

population would collapse at the centre, and the cline

would become much steeper.

Under the Gaussian approximation, and constant

density, (15) gives an equation for the mean which is

identical to (4). The variance is given by

¦V

¦t
¯

σ#

2

¦#V

¦x#

­σ#0¦za
¦x1

#

®sV #®"

#
(V®V

LE
). (16)

(Felsenstein (1977) has analysed this model for the

case of a linear gradient, but allowing for a finite
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Fig. 10. A step cline in a trait determined by an infinite number of unlinked loci. The optimum changes by ∆¯ 4oV
LE

at x¯ 0, and stabilizing selection has strength s¯ 0±4. Distance, X, is scaled relative to σ}o(2sV
LE

). The top right panel
shows the distribution of breeding values, z. Distributions are superimposed for X¯®8 to X¯­8, in unit steps. The
top left panel shows the cline in the mean. The continuous line is the numerical solution of (15), while the dashed line is
the Gaussian approximation of (16). The bottom left panel shows the same for the variance; the more sharply peaked
dotted line shows the quasi-linkage equilibrium approximation. Calculations were started from a sharp step, and
continued to t¯10, by which time the population was close to equilibrium.

number of loci with a multivariate normal distribution

of effects.) These equations for the mean and variance

are similar to (4), (5), which describe changes in allele

frequencies. However, the inflation of the variance by

gradients in the mean, and the reduction by selection,

are both greater by a factor equal to twice the effective

number of loci (second and third terms in (16). Also,

genetic variance is maintained by the rapid segregation

of variation within families (CV
LE

}2), rather than by

a weaker mutation rate (V
m

in (3)). The dashed lines in

Fig. 10 show that this approximation is close, even

when selection is so strong that the distribution in the

cline is appreciably non-Gaussian (top right panel in

Fig. 10).

A more drastic approximation is to assume ‘quasi-

linkage equilibrium’ (Turelli & Barton, 1994) : that is,

to assume a short-term balance between the forces

generating genetic variance, and recombination. Then,

V is given by the solution to (16), disregarding the first

diffusion termon the right. This approximation applies

when selection is weak, and numerical results for allele

frequency clines show that it gives an accurate

approximation to linkage disequilibrium for mod-

erately strong selection (Barton & Gale, 1993; Barton

& Shpak, 1999; Kruuk et al., 1999). It can yield simple

analytical results, by reducing the system to a single

equation for the mean. However, in this example it

performs poorly: gene flow and selection are so strong

that the excess variance diffuses over a broad region

before a quasi-equilibrium is reached (dotted line in

bottom left panel of Fig. 10).

6. Discussion

Understanding the evolution of quantitative traits

across clines is hindered by our ignorance of the

processes which maintain polygenic variation. Unless

there are very many genes, the outcome depends on

genetic details of which we are usually ignorant. The

models analysed here are restricted to stabilizing

selection towards a spatially changing optimum, and

to the separate effects of allele frequency change, and

of linkage disequilibria. However, some general

features do emerge, which are likely to apply more

widely. First, the mean changes over Cσ}o(2sV ),

regardless of the genetic basis of the trait (Slatkin,

1978). Because the response to selection is pro-

portional to the total genetic variance, summed over

all loci, this scale may be just a few dispersal ranges,

Cσ, and so the mean can track the optimum closely.

Second, with discrete alleles the underlying clines

change over a much broader scale (Cσ}o2sα#),

because individual alleles are subject to much weaker

selection than the trait mean. Consequently, the
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genetic variance may change over a much broader

region than the change in mean. Third, in the

infinitesimal limit, linkage disequilibria can generate a

substantial increase in variance, which is concentrated

around the region where the cline in the mean is

steepest. The increased variance accelerates the resp-

onse to selection, steepens the cline, and so further

increases the variance. This positive feedback may

lead to a sharp step at the centre of a polygenic cline,

a phenomenon found in other models of multilocus

clines (Barton, 1983; Baird, 1991 ; Kruuk et al., 1999).

Under stabilizing selection, the same phenotype can

be maintained by many different combinations of

alleles (Wright, 1935). Thus, while the trait mean may

closely track the optimum, and the trait variance may

stay approximately constant, there can be considerable

cryptic divergence in the constituent allele frequency

clines. This discordance suggests caution in inter-

preting clines in quantitative trait loci (QTL). In

particular, the change in mean and variance may be

influenced at least as much by a large number of loci

which remain near fixation as by a small number

which shift from low to high frequency, and which

may therefore be identified as QTL. Moreover, even if

a QTL is identified which accounts for a large part of

the change in mean, theremay be many other divergent

genes which alter the mean in opposite directions, and

so are not detected.

Goldstein & Holsinger (1992) suggest that gene

flow between populations containing alternative allelic

combinations may maintain substantial genetic vari-

ance. For the parameters illustrated in Figs. 4–9, the

increase in genetic variance due to gene flow is smaller

than the standing variance due to mutation. However,

in these examples a rather high mutation rate is

assumed. Since in general mutation rates are much

lower than migration rates, this mechanism is po-

tentially important. The key difficulty is that different

allelic combinations must be established despite the

gene flow which is required to maintain variation

within populations. In the island model at least,

random drift is unlikely to achieve this unless the

number of migrants, Nm, is small (Coyne et al., 1997,

appendix) ; then, m is so small that little variation is

maintained. A spatially varying optimum can generate

genetic variance. Linkage disequilibria maintain an

excess variance equivalent to an increase in V
LE

of

2σ#β#, where β¯ ¦za}¦x is the gradient in trait mean

(16). In the continuum of alleles model, mixing along

a linear cline inflates the genetic variance to

Co(σ#β#}s) for 2nV
m

'σ#β#. This is likely to be

larger than the contribution of linkage disequilibria

unless the genetic load due to mixing of populations

approaches 1. With discrete alleles, a shift at one locus

causes a change in trait mean of 2α. Therefore, a

gradient in optimum of β requires loci to shift at a

rate of β}2α per unit distance. The increase in

variance per cline, integrated over the cline, is

Co(4σ#α#}s) (13). Hence, the net increase in variance

is o(σ#β#}s), just as for a continuum of alleles model

(see Barton & Turelli, 1989). Taking the strength of

stabilising selection as s¯ 0±2oV
E

(cf. Turelli, 1984),

we see that substantial heritability could be maintained

if the optimum changes by σβC 0±2oV
E

in one

dispersal range.

There has been surprisingly little empirical work on

the quantitative genetics of clines. While there are

many studies of morphological change across clines or

hybrid zones (e.g. Endler, 1977; Barton & Hewitt,

1985), most reduce trait variation to a discriminant

function, and concentrate on changes in mean. The

theory presented here suggests several ways of

investigating polygenic clines in nature. First, any

increase in genetic variance due to changing allele

frequencies should be spread over a wider region than

the cline in mean; the ratio of widths should give a

measure of the number of loci involved. Secondly,

even where the trait mean is uniform, there may be

cryptic divergence at the underlying loci. This might

be revealed by an increase in genetic variance either in

nature, or in crosses between divergent populations.

Finally, the increase in genetic variance due to linkage

disequilibrium can be distinguished from other sources

of excess variance by examining covariances between

unrelated traits, or associations between Mendelian

markers : all are generated in the same way by the

mixing of populations. Nurnberger et al. (1995) found

significant covariances between a variety of unrelated

traits in the Bombina hybrid zone, but also found that

these were half as strong as expected from associations

between Mendelian markers. However, Kruuk (1997),

using a much larger sample, found good agreement

between these two measures of linkage disequilibrium,

giving confidence that the variance due to linkage

disequilibrium can be estimated from associations

between traits and markers. Since linkage disequilibria

are primarily generated by dispersal, such measures

also lead to robust estimates of dispersal rates. It may

be that the study of clines involving multiple traits and

loci can shed light on the selection which maintains

them, and on the genetic basis of divergence in

quantitative traits.
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