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Abstract. Observations show that mass accretion can occur at the sur-
faces of stars in young binaries of all separations. Given that resonant
torques have been expected to clear gaps and dam the inward flow of
material from circumbinary disks, this result begs the question of how
mass accretion is supplied in binary systems. In this paper we address
this question in the context of close binaries. Spectral energy distribu-
tions indicate that dynamical clearing is not complete for close binaries
having massive circumbinary disks. High-resolution infrared spectra of
CO rotational and ro-vibrationallines have also detected small amounts
of gas which can be located in the region of dynamical clearing. Thus
we have signatures of matter from the circumbinary environment through
the predicted gap region to the stellar surfaces. We suggest that accretion
streams may supply both dynamically cleared regions and circumstellar
disks.

1. Introduction

The observation of mass accretion diagnostics in classical T Tauri binaries of all
separations indicates that accretion continues at the stellar surfaces. However,
dynamical theory has predicted that the balance of viscous and resonant forces
at the inner edge of a circumbinary disk would prevent any flow of circumbinary
material across the gap. As such, the source of the accreting material is an
outstanding issue in our understanding of binary-disk interactions and ultimately
in the binary formation process itself.

Presumably the accreting material flows onto the stellar surfaces from cir-
cumstellar disks. The consequence of continued accretion at the stellar surfaces
would thus ultimately be exhaustion of the circumstellar disks and the cessation
of accretion. As such, one might expect the lifetime of accretion for binaries
to be shorter than for single stars, and indeed to differ between close and wide
binaries. In fact there is little observational evidence in support of these expec-
tations. Prato & Simon (1995) find no difference in the frequency of accretion
diagnostics between single and binary stars. Active accretion in wide binaries,
with separations several times greater than typical disk radii (a >> 100 AU), is
not a surprise; here the circumstellar disks are largely unaffected by their distant
companions and thus are likely to have accretion histories similar to single stars.
More surprising, perhaps, is a correlation between the presence of accretion onto
primary and secondary stars, as reviewed by Prato and Monin in this volume.
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Figure 1. SPH simulation of a binary system (e=0.5, q=0.9) sur-
rounded by a circumbinary disk. Material flows from the circumbinary
disk to the binary in two quasi-spiral accretion streams. From Arty-
mowicz & Lubow 1996.

Perhaps most remarkably, the observational diagnostics for accretion are
present among even the very closest binary stars. As one considers binaries of
smaller and smaller separation, eventually a separation must be reached where
the circumstellar disk radii are so small as to not permit circumstellar masses
adequate to supply the observed accretion rate for any substantial duration. And
yet binaries showing accretion diagnostics are found for separations of order 10
AU (DF Tau), 1 AU (GW Ori), and even 0.1 AU (UZ Tau E). These binaries
show evidence for massive circumbinary disks, and there can be little doubt that
the material accreting at the stellar surfaces must derive from these disks.

The essential question, then, is how the circumbinary material flows from
the circumbinary disk to the surfaces of the stars. Clearly, the environment
of the binary must be a more dynamically complex domain than previously
thought. One recent suggestion has been the presence of accretion streams
from the circumbinary disk to the circumstellar disks. Artymowicz & Lubow
(1996) have found in SPH simulations that for sufficiently warm and viscous
circumbinary disks, material can flow in such streams at mass transfer rates
equivalent to those expected from continuous disks around single stars. An
example of such an accretion stream in an SPH simulation is shown in Figure 1.
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This paper describes several classical T Tauri binaries that challenge the
classical picture of dynamically cleared gaps with dammed circumbinary disks.
It then presents a new approach to probing the circumstellar environments of
binaries with infrared emission lines, finding that indeed the gaps still contain
small amounts of gas that may feed the ongoing accretion.

2. Case Studies: Challenges for Disk-Clearing Theory

The past decade saw the first attempts to study disk structure around young
binary stars. Perhaps the most remarkable results have been obtained for the
binary GG Tau, as reviewed by several papers in this volume. This 40 AU binary
resides within the cleared hole of a circumbinary ring, and represents strong
evidence for dynamical clearing. The binary still shows accretion diagnostics and
circumstellar disks, but the presence of material or streams within the cleared
region remains to be seen. Images of UY Aur show similar structures.

More indirect studies of disk clearing have been made through analysis of
spectral energy distributions (SEDs). The essential idea is that cleared regions
remove emitting material of a characteristic temperature, thereby leading to
a deficit of emission at corresponding wavelengths. First applied to GW Ori
(Mathieu, Adams & Latham 1991), an extensive SED study/has been done by
Jensen & Mathieu (1997). They found several short-period binaries whose SEDs
indicated dynamical clearing - but at the same time they found that the classical
T Tauri binary AK Sco showed no evidence for clearing in its SED (Jensen, this
volume). AK Sco turns out not to be an isolated case - here we describe two
other binaries which present challenges to the dynamical theory of disk clearing.

2.1. Challenge 1: UZ Tau E

After T Tau itself, UZ Tau E is arguably the most classical of all T Tauri
stars. Its properties include: high-amplitude, irregular photometric variability;
Ho emission equivalent width in excess of 100 A; strong ultraviolet excess; very
heavily veiled spectra; and large infrared excesses. Indeed, it has been classified
as an eruptive variable with behavior akin to FU Ori stars (Herbig 1977). All of
these phenomena are now associated with accretion disks actively transferring
matter from the disk onto the surface of the star. In this context, observations
have shown UZ Tau E to be surrounded by a massive (~ O.6Mev) disk with
a large accretion rate of order 10-6Mevyr- 1 (Hartigan, Edwards & Ghandour
1995; Jensen, Koerner & Mathieu 1996). Thus, all of the observational data
suggest a single star surrounded by an actively accreting disk which is continuous
from very near the stellar surface to its outer radius of several hundred AU.

All, that is, except one set of observations: multiple radial-velocity mea-
surements show UZ Tau E to be a binary star with an orbital period of 19.1
days and an eccentricity of 0.3 (Mathieu, Martin & Maguzzu 1996). Only the
primary star has been detected spectroscopically and so the dimensions of the
orbit are not certain. But for an estimated primary mass of 0.2 Mev and a unit
mass ratio, the periastron separation is only 0.07 AU. For a stellar radius of 3
Rev, this periastron separation is only 5 stellar radii.
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Thus, despite all indications that UZ Tau E is the archetype of a single star
and accretion disk, in fact there is a binary star acting like an eggbeater! in
the inner core of the disk. According to classical dynamical theory, this binary
should have cleared a gap (actually, more a central hole in this case) in the disk
with an outer radius of 0.3 AU. Very small circumstellar disks are permitted
around each star, but clearly these disks cannot sustain the observed accretion
rate without being replenished. Furthermore the hole cannot be completely
empty of matter. The infrared SED of UZ Tau E is well represented by a power
law; the SED does not show a deficiency of emission at the shortest wavelengths
(Jensen et al. 1996). However, the amount of matter required to provide such a
power-law energy distribution is very small (e.g., Jensen & Mathieu 1997).

In short, if our interpretation of accretion diagnostics are correct, then in UZ
Tau E we find a close binary with an ample reservoir of mass in its circumbinary
disk, a large accretion rate at the stellar surfaces, and evidence for at least some
material in the vicinity of the dynamically predicted gap. This picture demands
an accretion flow from the circumbinary disk to the stellar surfaces, perhaps
with a brief interlude in circumstellar disks.

2.2. Challenge 2: DQ Tau

The T Tauri star DQ Tau is in many ways a twin of UZ Tau E, except that all
of the disk and accretion diagnostics are reduced in magnitude. /DQ Tau is a
photometric variable, occasionally shows Ho emission equivalent widths in excess
of 100 A, and has a moderately veiled spectrum. Accretion rate estimates range
from 10-8Mevyr-1 to less than 10-9Mevyr- 1 (Hartigan et al. 1995, Gullbring
et al. 1998). DQ Tau shows a power-law infrared SED, and has a moderately
massive circumbinary disk (0.002 - 0.02 Mev; Mathieu et al. 1997).

DQ Tau also is a close binary (Mathieu et al. 1997). Having a period of
15.8 days, an eccentricity of 0.56, and a mass ratio of 1.0, the orbital geometry
is remarkably similar to UZ Tau E. The periastron separation is 0.06 AU (or
13 Rev) and the apastron separation is 0.4 AU. Again the binary is expected to
dynamically clear a hole in the circumbinary disk, through which material must
flow to support the observed mass accretion at the stellar surface. And once
again, the power-law infrared SED suggests that such a gap, if present, retains
at least a small amount (~ 5x10- 10 Mev) of matter. But DQ Tau provides a
critical additional clue, for all of the accretion diagnostics are periodic.

The first evidence for periodic accretion was provided by broadband pho-
tometric monitoring. The light curves in VRI are shown in Figure 2 of Stassun
(this volume). DQ Tau was seen to have repeated brightening events which were
brief in duration. Time series analyses showed these events to be periodic with
a period of 15.8d - identical to the binary orbital period. More specifically, the
brightenings are phased with periastron passage of the stars.

During the brightenings the integrated light of the system becomes bluer,
suggesting an accretion origin. The linkage to accretion became secure with
spectroscopic monitoring, where both the spectral veiling and Ho emission were

lWith" regards to Gibor Basri.
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shown to also increase in phase with periastron passage (Figure 4 in Stassun;
Basri, Johns-Krull & Mathieu 1997).

The significance of this discovery lies in the contemporaneous discovery of
accretion streams by Artymowicz & Lubow (1996), as discussed in the Intro-
duction. For a binary system very similar to DQ Tau (q==0.9, e==0.5), they
find a pulsed accretion stream, with the maximum accretion rate occurring at
periastron passage (Figure 1). The agreement of the theoretical phasing with
the periodic accretion observed in DQ Tau is very encouraging for the accre-
tion stream mechanism. At the same time it is noteworthy that the periastron
brightenings of DQ Tau have a stochastic character, with small shifts in phase
and occasional periastron passages without any evident brightening.

2.3. Summary

Close binaries such as UZ Tau E, DQ Tau, and AK Sco present important chal-
lenges to our understanding of dynamical clearing. But they also provide critical
clues for a new picture of the binary environment. Specifically, the presence of
high accretion rates at stellar surfaces is typically associated with power-law
SEDs which suggest that material is present throughout the immediate binary
environment, including in the predicted dynamically cleared gap. Evidently
dynamical clearing is not complete. The residual material in the gap may be
plausibly identified as a source for the mass accretion at the stellar surfaces.
Finally, in every case a circumbinary disk presents a ready reservoir to supply
material in the gap. Thus in classical T Tauri close binaries, we have signatures
of matter from the circumbinary environment through the predicted gap region
to the stellar surfaces. In order to identify the actual process of mass flow, we
need more precise probes of the inner disk structures and physical conditions.

3. Probing the Binary Environment with Gas Emission

Until imaging of the inner binary environments is possible - which is in the
realm of upcoming optical/infrared and millimeter interferometers - only indirect
probes are available. SED studies have made initial forays into these domains.
However, the high emissivity of dust results in saturation of this diagnostic even
with small amounts of material, and mapping the location of emitting material
is dependent upon temperature distributions that are not securely understood.

Line emission from gas represents a promising alternative. Line emission
provides kinematic information which allows mapping the emitting material in
the context of a dynamical model (e.g., Keplerian rotation). In addition, obser-
vation of several transitions allows determination of temperatures and surface
densities. Finally, gas emission can probe somewhat higher column densities
than dust. Because gas temperatures within 1 AU of the star will be a couple
hundred to a couple thousand degrees, rotational and ro-vibrational transitions
of molecules in the infrared are good tracers of the gas.

To explore this idea, we (J. Carr, J. Najita, and the author) have obtained
high-resolution infrared spectra of DQ Tau to search for emission from the CO
fundamental transitions near 4.7 us»: Using the CSHELL spectrograph on the
NASA IRTF, we searched for and detected CO 1/==1-0 and 1/==2-1 emission. In
the left panel of Figure 2 we show the 1/==1-0 R(3) line, flanked by two R-branch
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Figure 2. Infrared high-resolution spectra of the classical T Tauri
binary DQ Tau. The left panel shows the CO v=1-0 R(3) line, flanked
by the CO v=2-1 R(10) and R(ll) lines. The right panel shows the
CO v=1-0 P(18) line. The gap in the spectra is the core of the telluric
CO absorption. The curve shows predicted emission from a disk with
residual material in a dynamically cleared hole. The model surface
density of material in the hole is 5x 10-4 g cm-2, the inner radius is <
0.1 AU, the outer radius is 0.5 AU, and the temperature at the inner
edge of the circumbinary disk is 775 K.
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Figure 3. Excitation temperature from CO lines observed in DQ Tau.
The figure shows the natural log of FUljv9uAul versus the upper energy
level, where Ful is the line flux, v the line frequency, gu the statistical
weight of the upper level, and AUl the transition probability. The solid
line is a fit to all four data, yielding T = 1252 ± 49 K. The dotted line
is fit to only the v=1-0 R(3) and P(18) lines, yielding T == 1143 ± 180
K.

lines of the v==2-1 transition. The right panel shows the v=1-0 P(18) line. These
are the first detections of these lines from a low-mass T Tauri star (Carr, Mathieu
& Najita 2000).

The detection of line emission from three different energy levels permits de-
termination of the excitation temperatures in the optically thin approximation.
In Figure 3 we show flux as a function of energy level, appropriately scaled for
the physics of each transition. A fit to all four data points yields T == 1252 ± 49
K. This is not significantly different from a fit to only the two v==I-0 lines, which
gives T == 1143 ± 180 K, suggesting that the rotational and vibrational levels
are close to being in LTE up to at least the v==2 level. More importantly, these
temperatures are suggestive of circumstellar material in the immediate vicinity
of the binary.
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4. Modelling Inner Disk Conditions

We envision that the binary system lies at the center of an optically thick cir-
cumbinary disk. The binary has cleared a hole in this circumbinary disk, and
in this hole resides optically thin dust and gas which is taken to be the origin
of the emission lines. Surrounding each star may be very small, optically thick
circumstellar disks.

The disk modeling procedure is similar to that described in Najita et al.
(1996), except that here the line emission region is modeled as a single layer
and dust opacity was included. The CO abundance relative to hydrogen was
calculated assuming chemical equilibrium, and LTE is assumed. We take the
combined binary mass for DQ Tau to be 1.3 M8 with a system inclination of
23° (Mathieu et al. 1997). Finally, we are not in a position to model the two-
dimensional spatial distribution of gas flows in a binary system. Hence we model
the system with an axisymmetric, Keplerian model using the combined masses
of the stars. This model will be reasonably accurate near the inner edge of the
circumbinary disk and near the stars. In the vicinity of the binary orbit we
can only claim that the Keplerian model approximates the scale of the orbital
motions.

In the modeling, the free parameters which can be varied to fit the observed
lines are the radial variation of the gas temperature and surface density, and
the inner and outer radii of the gap. The relative line strengths are largely
determined by the gas temperature, while the absolute line fluxes are determined
by the combination of gas temperature, surface density, and emitting area. The
model line profile is set by the inner and outer radii of the gap, as well as by
the radial dependence of the emission surface brightness (i.e., temperature and
surface density).

The best-fit model is also shown in Figure 2. The spectra are not well-fit
by a constant temperature model; the model shown adopts T ~ R-O.5 and a
constant surface density. The model outer radius is 0.5 AU ± 0.1 AU, at which
the temperature is 775 K; because of the low signal-to-noise the inner radius -
largely set by the width of the base of the line - is not well determined but is
securely less than 0.1 AU. The surface density of 5xlO-4 g cm-2 represents a
total mass of 4x10-11M8' or only 10-5Mffi ! Thus the observed gas emission
is consistent with a dynamically cleared inner region containing a small amount
of residual material.

The outer gap radius of 0.5 AU ± 0.1 AU is consistent with the ~ 0.4
AU outer radius that is expected for the DQ Tau system based on the analytic
calculations and smoothed particle hydrodynamic simulations of Artymowicz
& Lubow (1994) for eccentric binary systems. Furthermore the temperature
derived for the gas is reasonable for material at these distances from the stars
and is the same as that of the optically thin dust proposed by Mathieu et al.
(1997) to reside within the gap. A connection between the gas responsible for
the CO emission and the dust producing the near- to mid-infrared excess is also
suggested by correlated brightness variations between the CO line and 4.6 jjm
continuum strengths.

Because material must cross the gap in order to supply the on-going mass
accretion onto the stars, the discovery of residual gas and dust within the gap is
important. However, the relation of the emission to an accretion stream is not
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clear. Gas with a surface filling factor as small as an accretion stream would
have great difficulty producing the observed emission-line fluxes. While such an
optically thick stream can produce the R(l) emission, the v==2-1 lines then also
become optically thick and too luminous.

Alternatively, an accretion rate of ~ 10-8M8yr-1 and a dynamical time for
the streaming material comparable to the binary orbital period imply a stream
mass of 5x10-10M 8. This mass is very similar to the mass in the gap proposed
by Mathieu et al. (1997) based on the SED. However, it is an order of magnitude
larger than the mass derived from gas. Again, the emission from such a stream
would dominate the observed emission.

Finally, the dust associated with the derived gas mass is not sufficent to
provide the observed near-infrared continuum. Interestingly, all of these diffi-
culties would be resolved if our estimate of CO emissivity per gram is too high
by at least an order of magnitude. At this early stage of study of the gas, such
an uncertainty is possible.

Pending resolution of the CO emissivity question, we suggest that most of
the observed CO emission derives from material distributed throughout the gap.
Such a dispersed component would be consistent with a low-level of constant
accretion that is seen at all orbital phases (Basri et al. 1997), and could be
easily supplied by an accretion stream with a mass of order that inferred from
the accretion rate.

5. Conclusion

A primary goal of this paper is to bring to the fore the fact that while we can be
reasonably confident that mass accretion occurs at the surfaces of stars in binary
systems, we do not have a complete understanding of how the accreting material
is supplied. The problem can be divided into several domains distinguished by
binary separation.

• Wide binaries (e.g., a ~ 10,000 AU) - With separations comparable to
the size of dense molecular cores and orbital periods comparable to infall times,
each star in these very wide binaries likely goes through more or less independent
formation events. As such, their mass accretion evolution would differ little from
single stars.

• Intermediate-separation binaries (e.g., a ~ 100 - 10,000 AU) - Binaries in
this domain have separations small compared to typical protostellar envelopes,
but large compared to typical disk radii. Prato and collaborators have argued
that the accretion in these systems is fed by infall from a single protostellar
envelope onto both stars.

• Close binaries (e.g., a ~ 100 AU - The focus of this paper, these binaries
are too close for substantial replenishment of their circumstellar disks by infall.
The ubiquitous association of circumbinary disks with accretion diagnostics sug-
gests that the circumbinary disks are the reservoirs for the mass accretion. These
binaries should motivate theoretical and observational study of matter flow in
the immediate environments of binary stars.

Both power-law spectral energy distributions and the detection of 1200 K
CO fundamental emission are consistent with dynamically cleared gaps still hav-
ing small amounts of gas and dust within them. The orbits of such material are
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unstable, suggesting that the duration of any particular bit of matter in the gap
is short. While the origin of material in the gap is not yet clear, its presence
is intriguing in the context of previously suggested accretion streams from the
circumbinary disk to the stars. More generally, in classical T Tauri close bi-
naries, we now have signatures of matter from the circumbinary environment
through the predicted gap region to the stars. Our hypothesis here is that these
signatures are in fact linked to a continuous flow of matter from the circumbi-
nary disks to the stellar surfaces. Testing this hypothesis, and if found true,
determining the physical processes by which this flow occurs, is the challenge
before us.
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