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TWO AMALGAMS RELATED TO THE ALTERNATING GROUP
ON SIX LETTERS

PANAGIOTIS PAPADOPOULOS

A characterisation is given of some of the parabolics found in C03, and SP4 (9)
using the amalgam method.

1. INTRODUCTION

Leg G be a finite group, p a prime, 5 € SyLp (G) and B = NG(S). A proper
subgroup of G which contains a conjugate of B is called a parabolic subgroup of G. The
set 3 of parabolic subgroups of G ordered by inclusion becomes a partially ordered set
called the parabolic geometry of G. In recent years the parabolic geometry (in particular
for p = 2) has been used to study, construct, characterise and prove uniqueness of many
of the sporadic finite simple groups. The parabolic geometries (again for p = 2) also
play an important role in the ongoing revision of the classification of the finite simple
groups, in particular in the so called quasi-thin and uniqueness cases.

Parabolic subgroups have been studied most intensively for p = 2 but many inter-
esting examples exist (besides the groups of Lie type) for arbitrary primes.

Recall that G is an amalgamated product of Pi and P2 if (G, Pi, P2) has the
following properties:

(i) Pi and P2 are finite subgroups of G.
(ii) G = (PltP2).
(iii) Let 5 G Sylp (Pi n P2) and B = NPinp2 (S); then B = NP{ (S), i = 1, 2.

In particular S € Sylp (Pi), i - 1, 2.
(iv) No nontrivial normal subgroup of G is contained in B.

To any amalgamated product (G, Pi, P2) we can associate a graph F whose vertices
are the cosets of Pi and P2 in G and two cosets are adjacent if they are distinct and
have non-empty intersection We remark that if B = NQ(S) then the graph F can be
embedded into the parabolic geometry of G.

The amalgamation method has proven very successful in determining the structure
of Pi and P2 assuming the action of Pi and P2 on their neighbours A(Pi) and A(P2)
respectively in the graph F is given.
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66 P. Papadopoulos [2]

Let us assume for simplicity that Pi n P2 = B. Let Qi = Op(Pi), U - Op(Pi) =
(SPi) and P/'VOt = Cd/Q^Li/Qi). Then it is easy to see that P/J) is precisely the
kernel of the action of Pi on A(P*) and Lt acts transitively on A(Pi). Hence the group
Li/Qi carries most of the information about the action of P< and A(Pj) and we refer
to the pair {L\/Qx, L2/Q2) as the type of the amalgamated product (G, Pi, P2).

The main task of the amalgam method can now be described as determining
(Pi, P2) from the type (Li/Qi, L2/Q2). For example, in [9] we determined the struc-
ture of (Pi, P2) of type (0,SL2 (3)), where 0 ^ PSL2 (9), MU, M12 or 2 • Af12, for
p = 3.

For the remainder of this paper we shall work under the following hypothesis:
(*) (G, Pi, P2) is an amalgamated product of type (0, \&) for p = 3 so that:

(i) 0 a PSL2 (9), Ma , M12 or 2 • M12,
(ii) * £< PSL2 (9) or SL2 (9),
(iii) CPi (O3(Pi)) ^ O3{Pi) for i = 1, 2.

Introduce now the following notation: G ~ 3di+-•+d»>i7 means that there exists a
normal series

1 = Ho < Hx < . . . «C Hn ^ G,

so that for i = 1, 2, . . . , n, Hi/Hi-i is an elementary Abelian minimal normal sub-
group of G/Hi-i with |.Hi/i-ri_i| - 3d' and G/Hn S if.

Also, by G ~ 2 • H we mean that G/Z(G) 2 /f, |Z(G)| = 2 and Z(iJ) ^ H'.
We are now able to state our main result.

THEOREM. Under hypothesis (*) the possible pairs {L\, L2) are:

(i) (35Mn, 31+4SL2(9)),
(ii) (36PSL2(9), 31+1+4SL2(9)).

iVofce that the above examples can be found in G = C03 and PS p4 (9) respectively.

2. PROPERTIES OF 0, \I> AND THEIR MODULES - THE GRAPH T

A Steiner system S(l, m, n) is a pair (ft, B), where Cl is a set of size n, B is a
set of subsets of size m called blocks and such that every subset of size ! in Q lies in
a unique member of B.

By [10], there exists, up to isomorphism, a unique Steiner system of type 5(5, 6, 12).
Let <S = 5(5, 6, 12). Define then the Mathieu group on 12 points to be the group
Mi 2 = Aut (5) = {n € Sym (12) | B" is a block for all blocks B).

Define Mn to be the stabiliser of a point in Mi2. Then Mn is 4-transitive on
eleven points and its corresponding Steiner system is 5(4, 5, 11).

https://doi.org/10.1017/S0004972700032615 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032615


[3] Two amalgams on six letters 67

LEMMA 2 . 1 .

(a) |Mi2 | = 12 • 11 • 10 • 9 • 8 = 26 • 3 3 • 5 • 11.
(b) M\i has two classes of involutions, say D\ and Di. Moreover if D\ =

{x | x fixes a point}, then i g D i ,

if and only if x fixes a point

if and only if x fixes four points

if and only if x belongs to a normaliser of a Sylow 3-subgroups of Mu

if and only ifx lifts to an involution in 2 • Mi2.

PROOF: See [1] and [6]. D

NOTATION 2.2. To avoid repetitions we shall use the following notation throughout:

X ^ (2)H means that either X S*2-H or X Si H.

DEFINTION 2.3: Let X be a finite group. Slightly abusing the standard defintion
we shall say that X is 3-stable provided that the following condition holds: If V is an
irreducible GF{3)X -module and A ^ X is such that [V, A, A] = 1 then [V, A] = 1.

LEMMA 2 . 4 . Let Y be a finite group. Then:

(a) The following statement is equivalent to Y being 3-stable: let V be any
GF(3) -module and A ^ Y with [V, A,A} = 1. Then ACY{V)/CY(V) <
O3(Y/CY(V)).

(b) Y is 3-stable if and only if Y/O3{Y) is 3-stable.

(c) If every element of order 3 in Y lies in a perfect simple 3-stable subgroup
of Y then Y is 3-stable.

PROOF: See [9].

DEFINITION 2.5: A GF(3)X-module V is called an FF-module for X if
Cx(V) — 1 and if there exists a non-identity 3-subgroup A of X such that | V| / |CV(-<4)|
<k\A\.

LEMMA 2 . 6 . 0 is 3-stable; in particular Q does not have an FF-module.

PROOF: The proof that 0 is 3-stable can be found in [9]; Thompson's Replacement
Theorem [5, 8.2.5] implies that a group with an irreducible FF-module is not 3-stable
and hence 0 does not have an FF-module. D

DEFINITION 2.7: Let X £ SL2 (9) and let W be a faithful GF(3)X-module.
Then W is called a natural SL2 (9)-module for X if W carries the structure of a
2-dimensional vector space over GF(9) invariant under the action of X.
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It is worth mentioning at this point that

A6 = PSL2 (9) and 2 • A6 ^ SL2 (9).

R E M A R K 2.8.

(i) PSL2 (9) has four irreducible GF(3) -modules; their dimensions are: 1, 4,
6 and 9.

(ii) Let X = SL2 (9) and let V be an FF-module. Then

V=[V,Z(X)]®CV(X)

and [V, Z(X)] is a natural SL2 (9)-module. [8, p.469 and 470].
(iii) Mn has two non-trivial irreducible G.F(3)-modules of dimension less

than or equal to 8; moreover, both have dimension five and they are dual
to each other [7].

DEFINITION 2.9: Let F = {PiX \ x e G, i = 1, 2}. From now on, small Greek
letters will always denote elements of F. Make F into a graph by defining a to be
adjacent to (3 if and only if a ^ /? and a n P ^ 0. Then G operates on F by right
multiplication.

For S € F, let G& = Stabc (<5), let G"' equal the largest normal sugroup of G&
fixing all vertices of distance at most n from 6 and let A (5) be the set of all vertices
adjacent to S.

LEMMA 2 . 1 0 . Let X be any of our groups 0 or $, Si € Syl3 (X) and Bx =
Nx(Si). Then B\ is irreducible on Z(Si); in particular B\ is irreducible on Si for
X S (P) SL2 (9) or Mn and S = QaQp.

PROOF: See [9]. D

LEMMA 2 . 1 1 . The normaliser of a Sylow 3-subgroup is maximal in SL2 (9).

PROOF: See [3, 8.3.2 and 11.3.2]. D

LEMMA 2 . 1 2 . Let i= 1,2. Then:

(a) GPiX = P?,

(b) The edge-stabilisers in G are conjugate to B,
(c) Let Si - Pt. Then A(Si) S P{/B as a GSi -set; in particular, Gs{ is

transitive on A(<5i),
(d) Let (6,X) be an edge of X; then G — (Gs, G\),
(e) G acts faithfully on F,
(f) F is connected.

PROOF: See [4, 2.1, 2.2 and 3.1] D
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NOTATION 2.13. Let d(, ) denote the usual distance on the graph T. For S € T and

AW(*) = {XeT\d(S,X) < t } ,

Q5 = O3(G5) ,

Zs = (il1Z(T)\T€Syl3{Gs)),
Vs = (Zx\XeA(S)),

bs = mm{d(6,6')\Zs£G{
s
1}},

{s},

= GsnGx and Qsx = QSnQx if <5e A(A).

A pair of vertices (6, 6') such that Zs £ Gg, and d(6, 6') = b is called a critical pair.

The bounding of the parameter b which we just introduced, will allow us to deduce

a considerable amount of information about Pi and P2 •

LEMMA 2 . 1 4 .

(a) G acts edge- but not vertex-transitively on T,
(b) Gs is finite,

(c) CGf(Qs)CQs,
(d) if a is adjacent to 0 they Syl3 (GQ n Gp) C Syl3 (Ga) n Syl3 (G^).

PROOF: See [4, p.73]. D

REMARK 2.15. Notice that as G acts edge-transitively, b = min{6Q, bp) for any pair

of adjacent vertices a,0. Thus, we are allowed to choose a, 0 such that ba = b ̂  bp

and {GQ, Gp} = {Pu P2}. In particular, GanGp = B and 5 € Syl3 (GQ)nSyl3 (Gp).

Let a € F be such that d(a, a) — b and Za ^ G^,. Let p be a path of length b

from a to a. We label the vertices of p by

p=(a, a+1,... ,a + b) = (a' -b,... , a' -1, a'),

that is, a + i (respectively a — i) is the unique vertex in p with d(a, a + i) = i

(respectively d(a - i) —i). furthermore, from 2.12 (c) we may assume that

Note also that if Qs = Qx for some 6 e A(A) then Qs < (Gs, Gx) = G, a
contradiction. Hence

Qs / Qx V<5 6 A(A).

LEMMA 2 . 1 6 . Let (6, A) be an edge and let N be a subgroup of Gs, X such that
NQ^(N) acts transitively on A(n) for (j, 6 {6, A}. Then N — 1.

P R O O F : See [4, (3.2)]. D
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LEMMA 2 . 1 7 . For S e T,

(a) Qt^GP,
( b ) Zs ^ Z ( Q S ) n Vg; i n p a r t i c u l a r , b^l and Z a & Qa,,
( c ) Za> ^ Ga and [Za, Za,] ^Zan Za>
(d) Za^Q1Z(T), TeSyl 3 (G a ) ,
(e) If S € Syl3(5) and Qi(Z(S)) is centralised by a sugbroup R of Gp

which acts trasitively on A(/3) then Z(La) = 1.

PROOF: See [9]. D

REMARK 2.18.

(i) Zg ^ G1 V7 e AW(6), B = Gap, Za^B, Z0^B.
(ii) Also Syl3 (B) C Syl3 (P0 D Syl3 (P2).

(iii) A Prattini argument gives that LgS = Lg and for n G A(S), Gg = LgGg^.

A list of properties follows, the proofs of which can be found in [9].

LEMMA 2 . 1 9 .

(i) [Za,Zai,ZQi] = l.

(ii) vs<Gsv6er.
(iii) Za normalises Va .
(iv) If f3 > 2 then Vp is Abelian.
(v) If Z5 ^ Z(LS) then Z5 ^ Zx VA € A(<5).

(vi) Za£Z(La).
(vii) If Zai ^ Z(Lai) then a is not conjugate to a'.

(viii) Za n Qo, ^ C2O (Za#) if and only if Za, ^ Z(Li,).
(ix) Let S € {a, (3} and A be a 3-subgroup of Gg with A £ Qs • Then

O3(L5) ^ {AL*) and Ls - (ALt)Qs.

REMARK 2.20.

(a) By 2.19 (vi), Za £ Z(LQ) and so by 2.19 (ix) CGa(Za)/Qa is a 3-group.
(b) If Za, ^ Qa then [Za,Za>] = 1 and so Za = CZa{Zai). Hence Za D

Qa, / 2Q and ZQ nQa, ? CZa(ZQ,).

(c) If Za> & Qa then by (a) CZa{Za') = Za D QQ/ and since we have a
complete symmetry between a and a' in this case, we get that
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DEFINITION 2.21:

(a) rs = Ls/O3(Ls).
(b) Let K be a complement for 5 in B and

Ka = K n La and K0 = K D L0.

(c) Let 6 € {a, /?}. Let tg be an element of order 2 in ifa with tsQs/Qs €
Z(Lg/Qs) if Lg/Qs is isomorphic to one of the groups SL2 (9), 2 • Mi2;
otherwise let tg = 1.

The following corollary will be useful for the proof of 3.6.

COROLLARY 2 . 2 2 . If S e A(A), ts # 1 and Z,A/<?A ^ (P)SL2(9), Mn or
(2)Mi2 then ts does not centralise S/Q\.

PROOF: See [9].

3. THE CASE [ZaZQ>] ^ 1

In this section we work under the hypothesis Za> £ Qa. Notice that under this
hypothesis, we have a complete symmetry between a and a', so Za> $£ Z(La>).

PROPOSITION 3 . 0 . The hypothesis of this section leads to a contradiction.

LEMMA 3 . 1 .

(a) Za D Qai = Cza {ZQ>); in particular b is even,
(b) Za,nQa = CZo,(Za),

PROOF: See [9].

DEFINITION 3.2: e - 1 if Zp ̂  fiiZ(S) and e = 2 if Zp - QiZ(S).

LEMMA 3 . 3 .

(a) La/Qa S La,/QQl ^ SL2 (9) and Za is an FF-module for La/Qa.

(b) Za = [Za,La] ®QiZ(La) and [Za,La] is the unique natural SL2(9)-
module for La/Qa.

PROOF: (a) Since [Za,Zai,Za>] = 1 and [Za,Zai] / 1 and as Za ^ Qa> we get
that Lai/Qai cannot be 3-stable. Similarly LQ/Qa is not 3-stable. Hence

Without loss of generality we may assume that

\ZaQQ'/Qa'\^\ZalQa/Qa\.
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Let V = Za and A = Za,Qa/Qa. Then

Therefore Za is an FF-module for La/QQ.
(b) Follows from 2.8. D

By 3.3, La fixes some symplectic form on ZQ with Q.\Z{La) in its radical. In
what follows "±" and "singular" is meant with respect to that form on Za (or also on
Za,).

LEMMA 3 . 4 . Let X < GQ/. Then C ^ PO"1 = [Za/, A"] + fiiZ(La/).

PROOF: See [2, 22.1]. D

DEFINITION 3.5: Let A(a,a') = A = A(a)\{/3}. It is clear that A ^ 0.

LEMMA 3 . 6 . e = 2. In particular Za is a natural SL2 (9) -module and Zg ^ Za.

PROOF: Suppose e — 1. Let a - 1 € A. D

If Za_i ^ <3Q'-i then (a — 1, a' — 1) has the same properties as (a, a'), which
can't happen as the vertices alternate in terms of 3-stability. Hence

Za-l ^ Qa'-l ^ ^a ' - l ^ ^ " '

and
[za-1,za,nQa,za,nQa] ^ [Ga,,za,, za>] = 1.

Now, 3-stability of G a - i implies [ZQ_i, Zai nQo] = 1 which gives

Cza,{Za) = Za,nQa ^ CZo,(Za_i).

Hence
C v ( Z a _ 1 ) ± < C Z a , ( Z Q ) x

and by 3.4,
[Zai,Za-i ^ [Zai,Za].

Since Za-\Za is normalised by ZQ/ and by G a _ i n G Q we get by choice of a - 1 that

Za-\Za < Ga and therefore

C G a ( Z a _ i Z a ) < G a .

By [9] now, O3(CGa(Za-iZa)) = Qa n <5a-i and so we conclude that

Q a - i n Qa < Ga and Q^ n Qa < Ga.
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Let L = (Qpa). As [Qp, Qa] ^QpC\Qa< Ga, [L, QQ] ̂ QanQp^Qp. Recall the
definition of ta (see 2.21) now. Since Qp $£ Qa 2.19 (ix) implies that ta € O3(La) ^ L.
Hence

[to. Qa) ^QanQ0^ (tQ)(Qa nQp) < (ta)QQ

and
O2((ta)(Qa n Qp)) < (ta)(Qa n Qp).

Thus

[tf ] ̂  (taS) n QQ ^ O2((tQ)Qa) n QQ ^ ((ta>Qa n Q^) n Qa ^ QQ n Q

Hence tQ centralises S/Qp, a contradiction by 2.22. Thus e = 2. So 2"̂  =
Q\Z{S) and by 2.17(e), £liZ(La) — 1. The last statement of the lemma follows from
3.3(b). D

LEMMA 3 . 7 . Zp = CZa{Za>) = [Za, ZQ,\ + fiiZ(LQ) = [Za,Qp) +

PROOF: As e = 2, [Za,La] is 2-dimensionalover GF(9). Hence [Za,La], Cza(Za>),
[Za, Za>], [Za, Qp] and C[Za,La](Qp) are all 1-dimensional over GF(9). Moreover
[Zp, Qp] = 1 = [Zp, Za>] and the lemma follows. D

LEMMA 3 . 8 . Let a - l e A . Then (Ga-ita,Za>)Ga.

PROOF: Lemma 3.7 implies [Za-i,Zai] ^ 1 and so Zai $£ GQ_i,Q. By 2.10,
Ga-i,a is maximal in Ga and so {GQ-i<Q,Zai) = Ga. D

REMARK 3.9. The following are equivalent:

(i) Za-\,JL[Za,Zai\;
(ii) C Z Q _ 1 (Z Q , ) = 1;

Define now Yp and Yp by

and
Yp = CZa(O

3(Lp)).

Note that [l^.Q/j] ^ Zp.

LEMMA 3 . 1 0 . b - 2 .

PROOF: Suppose b > 2. Then, by 3.7 CZa/Zp(Qp/Zp) = Za. As by [9] Y^ ^ Za

for 6 > 2 we get
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whence

za = y; < (Ga

a contradiction. D

PROOF OF THE PROPOSITION: Since [tQ, K] < Qa n K - 1 we have [ta, Kp} = 1
and the order of ta is 2. By [9], ta induces an inner automorphism on Lp/Qp.

By 2.22 ta does not centralise Lp/Qp. Also, as ta is an inner automorphism we
can pick t S Kp which acts on the same way on Lp/Qp, that is, pick t € Kp so that
xp = tQt and xp centralises Lp/Qp.

I now claim that the order of t is 2 as well. By choice of t,

\t\ = \tQ*/Qa\

and the image of t in Lp/(tp)Qa = Lp{xp)/(tp, xp)Qa is ta which has order two.
Hence the claim holds if tp = 1 and so we are done for the cases PSL2 (9), M n or
M\2 • The only problem could appear in 2 • Mj2 since when we lift M\i to 2 • M\i the
order of t could become 4. But this does not happen by 2.1(b). Moreover in any case
xp centralises Lp/Qp and the order of xp is also one or two.

Now ta acts non-trivially on Za which is irreducible for La so ta inverts Za. Ka

acts on Yp faithfully and Kp centralises Yp so [Ka,Kp\ = 1.

As Zp ^ Yp and Z\ = \Za\ for La/Qa =* SL2 (9), we get that \Za\ ^ \Yp\2.

Ka acts on Yp faithfully and Kp centralises Yp so [Ka, Kp] = 1. Since Ka

centralises t and Ka centralises ta we get that Ka centralises xp. Thus [xp, Ka] = 1.

Now define Yp = CZa(O
2{LP)). Let A = Zp.

Since t centralises Yp and tQ inverts Yp, xp inverts Yp and so xp inverts A.
This means that if x'p is the image of xp in Aut(A) then x^ e Z(Aut(A)) and so
[NGa(A), x'p] centralises A.

Let L - NLQ (A) and Q - CLa (A). Since ZQ is a natural SL2 (9) -module,
L/CL{A) = GLF(A) where F - GF(9) and L acts irreducibly on A. Since A = Ax,
[Za,Q] < Ax = A. Hence [Za,Q,Q] = 1 and Q is a 3-group. So Q = O3(L).
Now [L,xp] ^ Q and so by a Prattini argument L = CL{XP)Q. Hence C L ( X ^ ) acts
irreducibly on A and on ZQ/A (which is isomorphic to the dual of A). In particular
xp inverts or centralises Za/A. Since

we conclude that xp inverts or centralises Vp/A.

Note that xp inverts A so if xp inverts Vp/A, xp inverts Vp and Vp is Abelian,

a contradiction to 1 ̂  [Za, Zat] ^ Vp.
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If xp centralises Vp/A then Vp = Cy0(Zp)A = CVfj{Zp) x A. Hence V£ ^

{Cv0(Zp))' (as A ^ pi 21 *C Z{Vp)) and so
G

Hence Cy0, (S) = 1 and Vp> = 1, again a contradiction.

4. T H E CASE [Za, Za>] = 1

In this section we will deal with the case Zai ^ Qa.

It follows from the hpothesis that there is no symmetry between a and a' any
more. Also [Za,Zai] ^ [Za,Qa] = 1 gives

Cza(Za') = Za.

Now notice that Za n Qai ^ Za (otherwise we get Za ^ Qai, a contradiction).
Hence, CZa{Za>) ^ Za C\Qa, and by 2.19 (viii), Za, ^ Z(Lai), a and a' are not
conjugate and b is odd. Therefore we have

Zp = niZ(Lp) and Za, = Q1Z(La,).

LEMMA 4 . 1 . La,/Qa, ^ L^/Q^ ^ SL2 (9).

PROOF: If b > 1 then [VQ,, ZQJ Za] < [V^-, Vp, Vp] ^ [Vp, Vfi] = 1 by 2.19 (iv), so,

since Za £ Qai, we conclude that Lp/Qp is not 3-stable and the claim follows by 2.5.

If b = 1, Za £ Qp and [Qp, Za, Za] = 1 (by [9]) again imply that Lp/Qp is not

3-stable and the claim follows by 2.5. D

NOTATION 4.2. For 7 e T let £>7 = CQy(O
3(Ly)).

LEMMA 4 . 3 . Z(La) = Da = 1.

PROOF: See [9] D

P R O P O S I T I O N 4 . 4 . 6 = 1.

PROOF: Assume that b > 1. Since b is odd, 6 ^ 3 .

4.4.1. Vp has a unique non-central Lp-composition factor; moreover, this composition
factor is the natural module for Lp/Qp.

PROOF: By [9], [VpC\Qa,, Va>] - 1 and hence VpnQa> ^CV0{Va,). By a similar
argument we also have that VQi C\Qp ^ Cv , {Vp) • Without loss of generality, assume

\VpQa./Qa,\^\Va,Qp/Qp\.
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Now let X = Y/Z be a non-central chief factor in Vp. As

CY(Va,)Z/Z ^ CY,z{VQ<)

we get that

\X/Cx{Va,)\ = \Y/Z/CY/z(Va,)\ < \Y/Z/CY(Va,)Z/Z\

= \Y/CY{Va,)Z\ ^ \Y/CY{Va,)\ = \Y/Y nCVg(Val)

= Y-Cv0(Va,)/CV0{Val)\ < \VpfCvpWa,)

so X is an FF-module; similarly, the direct sum of the Lp chief factors on Vp is still
an FF-module for Lp/Qp and the lemma follows by 2.6. D

4.4.2. [V

P R O O F : Assume that [Vp, Qp] £ Dp. Then by 4.4.1, Za[Vp, Qp] is normalised
by GapO3{Lp) = Gp and we get that Za[V0, Qp) = Vp. Hence V0/Za = [Vp/Za, Qp}.

Since Qp is a 3-group acting on the 3-group Vp/Za in the above manner, we conclude
that Vp/ZQ = 1. Therefore Vp = Za, a contradiction. Hence [Vp, Qp] ^ Dp. D

4.4.3. Let Qp = [Qp, O3(Lp)].

By 4.4.2, [Vp, Q*0] < [Vp, Qp} ^ Dp. Note that Qp ^ 03{Lp) and therefore

[Vp, Qp, Qp] ^ [Dp, QP] ^ [Dp, O3(LP)} = 1.

Hence [Za, Qp, Qp] = 1 and 3-stability of La gives that [Za, Q*g] = 1 whence

Qp^Qa- 0

4.4.4. The hypothesis that b > 1 gives a contradiction.

PROOF: By 4.4.3, Qp centralises Za and so it centralises (Za
0) — Vp as

well. Since [tp, Qp] ^ Qp, tp is the unique involution in tpQp/Qp and so tpQp €

z(Lp/QpJ. In particular, Lp normalises [Vp, tp]. By 4.4.1, [Vp, tp] ^ 1 and so

\. Hence

On the other hand, since
Vp-CV0(tp)x[Vp,tp]

and [Zp, tp] ^ [Zp, Lp] = 1, we have a contradiction.
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NOTATION 4.5. For 7 e F let F 7 be a normal 3-subgroup of L7 minimal with respect
to the property F 7 $£ £>7.

REMARK 4.6. As F 7 is a 3-group we get F1 < Q7 and Fy ^ F 7 . Also, the definition
implies F 7 ^ 1. Since Q7 is a 3-group acting on the 3-group F^,F^ ^ [F7,Q7]
and by minimality of F-,, [F7,Q7] ^ £>7. Also it is clear from the definitions that
Fp = [Fp, 03{Lp)] ^ O3(Lp) and therefore:

[Dp, Fp] ^ [Dp, O\Lp)] = 1.

LEMMA 4 . 7 . Fp £QQ and Dp < Qa.

PROOF: See [9]. D

LEMMA 4 . 8 . Qa is elementary Abelian, [Qa, O3(La)] is an irreducible La-
module and Fa = Za = [Qa, O3(La)]. In particular, <j>(Dp) = 1.

PROOF: See [9]. D

COROLLARY 4 . 9 . CGa(Qa) = Qa. In particular, if X < Ga then Z C\Qa -

Cx(Qa).

PROOF: See [9]. D

PROPOS IT I ON 4 . 1 0 . 0 p (2) • M12; in particular, 0 = PSL2 (9) or M n .

PROOF: By 4.1, Lp/Qp ^ SL2 (9). Also from QaQp = S we get

[FpQQ/QQ,S] = [FpQa/Qa, Q3]

and as [FpQp] ^ Dp < Qa (see 4.6 and 4.7) 23 conclude that

[FpQQ/Qa, Qp] = l.

Hence FpQQ/QQ ^ Z(S/Qa).

Since |S/<2Q| = 33 and S/Qa is not Abelian we get that

\Z(S/Qa)\ = Z

and therefore FpQa/Qa = Z(S/Qa). But Fp ^ Ga and therefore 4.9 gives

\Fp/CF0{Qa)\ = 3. In particular Fp/Dp is an FF-module for Lp/Qp. As Lp/Qp =*

SL2 (9), by 2.8, Fp/Dp is a natural SL2 (9)-module, a contradiction to \F^/CF0 {Qa)\ =

3. D

REMARK 4.11. Since a Sylow 3-subgroup of 0 is elementary Abelian we have

Similarly
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LEMMA 4 . 1 2 . If N ^ S, N < B, 6 e {a,(3} then N ^ Qs or NQ5 = S. In

particular, S = ZaQp.

PROOF: See [9]. D

LEMMA 4 . 1 3 . Let Xp = fl Qs- Then:

(a) Qp/Xp is an irreducible Gp -module,
(b) [Qp/Dp, tp] = Qp/Dp and CQ0/D0 = 1,

(c) CQfl(tp) £ Dp and
(d) Xp = Dp.

PROOF: Let Xp < A ^ Qg with A <Gp. Then A ^ Qa (since if A ^ Qa and
7 = /39 with g € Gp then since A < G^ we get

A + A» < Q | = Q^g = Q7

which gives A ^ X/3, a contradiction). Hence by 8.2, AQa — 5 and therefore

[Za, Qp] < [ZQ, A] ^ A. By 4.11 Qp, < XB and so

[L^, Qp] = [{ZGJ)QB, Qp] ^ A.

Let Qp + Qp/XB. Then Qp is Abelian. Now Q = C~ (tp) x [Q^, t^] and both parts

are normalised by Lp.

If Cg {tp) / 1, we may assume A — CQp(tp)Xp (since then A ^ Q^, A < G^

and a s C r (t^) ^ 1 we also have Xp ^ A). Hence
«/3

and we get [[Q/s,^],^] ^ [[Lp,Qp],tp] ^ [A,t^,^] = 1. Hence (element of order

2 acting on a 3-group) [Qp, tp] = 1, a contradiction to [Q^, QQ, Qa] = 1 and the

3-stability of Lp/(tpQp). Therefore C~ (tB) = 1 and Qp = [Qp, tp] = [Qp, Lp]. Thus

Qp ^ [̂ /3i Qp] ^ -A which implies A— Qp and Qp/Xp is an irreducible G^-module.

Now by 4.7, Dp ^ Qa and as Dp < Gp we get Dp ^ Xp. But [X^, ZQ] ^

[Qa, Za] = 1 and ZQ & Qp give Xp^Dp. Hence Xp = Dp.

LEMMA 4 . 1 4 . There is g e Gp such that tp € (Za, Zg)Qp.

PROOF: If \& = 2 • A5 it is clear since in this case

Lp = (Za, Z«a)Qp

for some g & Gp and t^ € -L/3 by defintion. Since inside SL2 (9) we can generate a

2 • A5 this case is also clear. D
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NOTATION 4.15. Q^ = Q1/D1.

LEMMA 4 . 1 6 . |Q^| = 3 4 .

PROOF: By 4.14, pick g &Gp such that

tp € (Za, Zg)Qp.

Since \Qp/CQ/l(Za)\ = \QpQa/Qa\ + \S/Qa\ = 3 2 , we get

a^tfi)\ ^ 34 .

By 4.13(b), C-Q-{tp) = 1 and therefore \Qp~\ ^ 3 4 . Suppose |Q^| < 3 4 . Since 5 does

not divide |GL3(3)| we conclude that Lp/Qp ^ SL2(9), and contradiction. Hence

|Q^|=34. D

LEMMA 4 . 1 7 . | [ Z a , e ^ ] | = \Qa~p~\ = \QfinZa\ = 9.

PROOF: If \[Za, Qp]\ = 3, then, with same argument as before, we get

a contradiction. Hence

9 ^ | [Za, Qp~\ | ^ \\CQpnAa\ ^ \Q^\ < 9

and the lemma is proved. D

LEMMA 4 . 1 8 . Dp = Z0.

PROOF: First, show Dp s$ Zp. Let L = {Za0)- Then by 2.19 (ix), O3(Lp) ^ L

and Lp = LQp. Since Qp is irreducible for Gp we get [Qp, L] — 1 or Q0. If
[Q^, L] - 1 then [Qp, L] ^ Dp so [Q^, O3(L^)] = 1 a contradiction. Therefore
[Q/3, L] = Q^ which gives [Q/j, L]£>^ = Q^.

Also, as L < G^, we have Qp ̂  NGp(L). Hence [Q/3, L] C L, Qp < £>^i and
L,3 = L P ^ . But from 4.9 now, [I>^, £> ]̂ ^ ®(Dp) = 1. As Dp ^ Qa, [L,Dp] = 1
so I?/3 and L both centralise Z?^. But then, we also get [Dp, Lp] = [Dp, LDp] = 1.
Thus Dp ^ Z(Lp) ^Zp. Therefore Dp ̂  Zp.

Since 2,3 = CliZ(Lp) ^ CQ0(O
3{Lp))Dp the lemma follows. D

LEMMA 4.19. QanQp = ZanQp.

PROOF: It is enough to show that Qa<^Qp ^ ZanQp. Let X € Qa D Q/3. Then
xDp eQanQp/Dp = ~Q^p = QpDZa = ZanQfl/i^• Therefore, xD ĝ = yDp, where
yeZoDQp. Then x = yd, de Dp. 2.19 (v) gives
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By 4.18, Dp = Zp ^ Za. Therefore x € Za and hence x€ Zaf\Qp. D

COROLLARY 4 . 2 0 . Qa = Za.

PROOF: Since Qa C S = ZQQp we get Qa C ZaQpC\Qa = Za(QanQ0) and

hence QQ = Za{Qa nQp) = Za. D

LEMMA 4 . 2 1 .

(1) Qa = ZQ is irreducible as an La-module
(2) If 9 ^ PSL2(9) then \Za\ = 36 , \Zp\ = 32 and \Qp\ = 36 ; moreover

(La, Lp) ~ (36 PSL2 (9), 3W+* SL2 (9)).
(3) If 9 = M u then \Za\ = 35 , \Qp\ = 35 and \Zp\ = 3; moreover

(La> Lp) ~ (35MU) 3
1 + 4 PSL2 (9)).

PROOF: 2.19 (v) and 4.18 give Dp = Z0 ^ Za. Hence

\ZJZp\ = \ZaQp/Q0\ \Za n Qp/Za n Dp\ = \ZaQp/Qp\ \Za n

Recall now 4.17 to get \Za n Qp/Zp\ = 32 and hence

| Z Q / ^ | = 32 IZaQ/j/Q^I = 32

Since 5/Q^ e Syl3 (*) we get that

= 32.

Hence \Za/Zp\ZA; in particular, \Za/Zp\ ^ 34 . Since by [9] we can generate La by

two Sylow 3-subgroups we get \Za\ ^ 38 .

By 4.8, Za is irreducible as an La-module.

CASE 6 = PSL2 (9). Then by 2.8 \Za\ = 34 or 36 and since \Za/Zp\ - 34 we get that
|Za | = 36 and &

CASE 6 = M u . 2.8 gives that \Za\ = 35 and \Zp\ = 3.

Notice now that in both cases, Dp is central as by 4.18 we have Dp = Zp. Moreover

if 6 = PSL2 (9) then \Dp\ = 3 and if 6 ^ M u then \Dp\ = 32 . Finally, in both cases,

\Qp/Zp\ — 34 and hence Qp/Zp is an irreducible Lp -module. This completes the proof

of the lemma. U

PROOF OF THEOREM: It follows from 4.10 and 4.21. D
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