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Abstract

In this paper, we count a dual set of Stirling permutations by the number of alternating runs and study
properties of the generating functions, including recurrence relations, grammatical interpretations and
convolution formulas.
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1. Introduction

Denote by
{
n
k

}
the Stirling number of the second kind, which is the number of ways to

partition [n] = {1, 2, . . . , n} into k blocks. Let D be the differential operator d/dx and
let ϑ = xD. It is clear that Dx = xD + 1. A classical result in the theory of normal
ordering is the following (see [15]):

ϑn =

n∑
k=1

{
n
k

}
xkDk for n ≥ 1.

Let

r(x) =

√
1 + x
√

1 − x
.

By induction, one can easily verify that

ϑn(r(x)) =

∑2n−1
k=1 T (n, k)xk

(1 − x)n(1 + x)n−1
√

1 − x2
for n ≥ 1,

where the T (n, k), k ∈ [2n − 1], are positive integers. It is clear that the numbers
T (n, k) satisfy the initial conditions T (1, 1) = 1 and T (1, k) = 0 for k , 1. Let
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Tn(x) =
∑2n−1

k=1 T (n, k)xk. Using ϑn+1(r(x)) = ϑ(ϑn(r(x))), we see that the polynomials
Tn(x) satisfy the recurrence relation

Tn+1(x) = (2nx + 1)xTn(x) + x(1 − x2)T ′n(x) (1.1)

for n ≥ 0, with the initial values T0(x) = 1. In particular, Tn(1) = −Tn+1(−1) =

(2n − 1)!! for n ≥ 1. The first few Tn(x) are

T1(x) = x,

T2(x) = x + x2 + x3,

T3(x) = x + 3x2 + 7x3 + 3x4 + x5,

T4(x) = x + 7x2 + 29x3 + 31x4 + 29x5 + 7x6 + x7.

Equating the coefficients of xk on both sides of (1.1), we see that the numbers T (n, k)
satisfy the recurrence relation

T (n + 1, k) = kT (n, k) + T (n, k − 1) + (2n − k + 2)T (n, k − 2). (1.2)

The motivating goal of this paper is to find a combinatorial interpretation of the
numbers T (n, k).

In [5], Carlitz introduced Cn(x) defined by
∞∑

n=0

{
n + k

k

}
xn =

Cn(x)
(1 − x)2k+1

and asked for a combinatorial interpretation of Cn(x). Riordan [16] noted that Cn(x) is
the enumerator of trapezoidal words with n elements by number of distinct elements,
where trapezoidal words are such that the ith element takes the values 1, 2, . . . , 2i − 1.
Gessel and Stanley [7] gave another combinatorial interpretation of Cn(x) in terms of
descents of Stirling permutations. A Stirling permutation of order n is a permutation
σ = σ(1)σ(2) · · ·σ(2n − 1)σ(2n) of the multiset {1, 1, 2, 2, . . . , n, n} such that for each
i, 1 ≤ i ≤ n, all entries between the two occurrences of i are larger than i. Denote by
Qn the set of Stirling permutations of order n. For σ ∈ Qn, let σ(0) = σ(2n + 1) = 0
and let

des (σ) = #{i | σ(i) > σ(i + 1)},
asc (σ) = #{i | σ(i − 1) < σ(i)},
plat (σ) = #{i | σ(i) = σ(i + 1)}

denote the number of descents, ascents and plateaux of σ, respectively. Gessel and
Stanley [7] proved that

Cn(x) =
∑
σ∈Qn

xdesσ.

Bóna [3, Theorem 1] introduced the plateau statistic on Qn, and proved that descents,
ascents and plateaux are equidistributed overQn. The reader is referred to [8, 9, 13, 14]
for recent progress on the study of Stirling permutations.

In the next section, we show that Tn(x) is the enumerator of a dual set of Stirling
permutations of order n by the number of alternating runs.
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2. Combinatorial interpretation of T(n, k)

Let σ = σ(1)σ(2) · · ·σ(2n) ∈ Qn. Let Φ be an injection which maps each first
occurrence of entry j in σ to 2 j and the second j to 2 j − 1, where j ∈ [n]. For example,
Φ(221331) = 432651. The dual set Φ(Qn) of Qn is defined by

Φ(Qn) = {π | σ ∈ Qn,Φ(σ) = π}.

Clearly, Φ(Qn) is a subset of S2n. For π ∈ Φ(Qn), the entry 2 j is to the left of
2 j − 1, and the entries in π between 2 j and 2 j − 1 are all larger than 2 j, where
1 ≤ j ≤ n. Let ab be an ascent in σ, that is, a < b. Using Φ, we see that ab maps
into (2a − 1)(2b − 1), (2a − 1)(2b), (2a)(2b − 1) or (2a)(2b) and vice versa. Note that
asc (σ) = asc (Φ(σ)) = asc (π). Therefore,

Cn(x) =
∑

π∈Φ(Qn)

xasc (π).

Let Sn denote the symmetric group of all permutations of [n]. We say that π ∈ Sn
changes direction at position i if either π(i − 1) < π(i) > π(i + 1) or π(i − 1) > π(i) <
π(i + 1), where i ∈ {2, 3, . . . , n − 1}. We say that π has k alternating runs if there are
k − 1 indices i such that π changes direction at these positions. Denote by altrun (π) the
number of alternating runs in π. It should be noted that π ∈ Φ(Qn) always ends with a
descending run. We now present the following result.

Theorem 2.1. We have T (n, k) = #{π ∈ Φ(Qn) | altrun (π) = k}.

Proof. There are three ways in which a permutation π ∈ Φ(Qn+1) with altrun (π) = k
can be obtained from a permutation σ ∈ Φ(Qn) by inserting the pair (2n + 2)(2n + 1)
into consecutive positions.

(a) If altrun (σ) = k, then we can insert the pair (2n + 2)(2n + 1) right before the
beginning of each descending run, and right after the end of each ascending run.
This accounts for kT (n, k) possibilities.

(b) If altrun (σ) = k − 1, then we distinguish two cases: when σ starts in an
ascending run, we insert the pair (2n + 2)(2n + 1) to the front of σ; when σ
starts in a descending run, we insert the pair (2n + 2)(2n + 1) right after the first
entry of σ. This gives T (n, k − 1) possibilities.

(c) If altrun (σ) = k − 2, then we can insert the pair (2n + 2)(2n + 1) into the
remaining (2n + 1) − (k − 2) − 1 = 2n − k + 2 positions. This gives (2n −
k + 2)T (n, k − 2) possibilities.

Therefore, the numbers T (n, k) satisfy the recurrence relation (1.2), and this completes
the proof. �

A polynomial f (x) =
∑n

k=0 ak xk is symmetric if ak = an−k for all 0 ≤ k ≤ n, while it
is unimodal if there exists an index m such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an.

Theorem 2.2. The polynomial Tn(x) is symmetric and unimodal.
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Proof. It is immediate from (3.1) that Tn(x) is a symmetric polynomial. We show
the unimodality by induction on n. Note that T1(x) = x, T2(x) = x + x2 + x3 and
T3(x) = x + 3x2 + 7x3 + 3x4 + x5 are all unimodal. Thus, it suffices to consider the
case n ≥ 3. Assume that Tn(x) is symmetric and unimodal. For 1 ≤ k ≤ n + 1, it follows
from (1.2) that

T (n + 1, k) − T (n + 1, k − 1)
= (k − 1)(T (n, k) − T (n, k − 1)) + (T (n, k − 1) − T (n, k − 2))

+ (2n − k + 2)(T (n, k − 2) − T (n, k − 3)) + (T (n, k) − T (n, k − 3)) ≥ 0,
where the inequalities follow from the induction hypothesis. This completes the
proof. �

3. Grammatical interpretations
The grammatical method was introduced by Chen [6] in the study of exponential

structures in combinatorics. For an alphabet A, let Q[[A]] be the rational commutative
ring of formal power series in monomials formed from letters in A. A context-free
grammar over A is a function G : A→ Q[[A]] that replaces a letter in A by a formal
function over A. The formal derivative D is a linear operator defined with respect to
a context-free grammar G. More precisely, the derivative D = DG: Q[[A]]→ Q[[A]]
is defined as follows: for x ∈ A, we have D(x) = G(x); for a monomial u in Q[[A]],
D(u) is defined so that D is a derivation and, for a general element q ∈ Q[[A]], D(q)
is defined by linearity. In the rest of this section, we first recall some definitions of
permutation statistics and then present grammatical interpretations and convolution
formulas related to Tn(x).

Let π = π(1)π(2) · · · π(n) ∈ Sn. An interior peak in π is an index i ∈ {2, 3, . . . , n − 1}
such that π(i − 1) < π(i) > π(i + 1). A left peak in π is an index i ∈ [n − 1] such that
π(i − 1) < π(i) > π(i + 1), where we take π(0) = 0. Let ipk (π) (respectively lpk (π)) be
the number of interior peaks (respectively left peaks) in π. Define

Mn(x) =
∑

π∈Φ(Qn)

xipk (π), Nn(x) =
∑

π∈Φ(Qn)

xlpk (π).

It follows from [13, Theorem 4] that Mn(x) = xnNn(1/x). Moreover, from [13,
Theorem 5],

(1 + x)Tn(x) = xMn(x2) + Nn(x2).
We now recall some properties of Nn(x). Let Nn(x) =

∑n
k=1 N(n, k)xk. Apart from

counting permutations in the set Φ(Qn) with k left peaks, the number N(n, k) also has
the following combinatorial interpretations.

(m1) Let e = (e1, e2, . . . , en) ∈ Zn and let In,k = {e ∈ Zn | 0 ≤ ei ≤ (i − 1)k}, the set of
n-dimensional k-inversion sequences (see [17]). The number of ascents of e is
defined by

asc (e) = #
{
i : 1 ≤ i ≤ n − 1

∣∣∣∣∣ ei

(i − 1)k + 1
<

ei+1

ik + 1

}
.

Savage and Viswanathan [18] found N(n, k) = #{e ∈ In,2 : asc (e) = n − k}.
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(m2) We say that an index i ∈ [2n − 1] is an ascent plateau of π ∈ Qn if π(i − 1) <
π(i) = π(i + 1). The number N(n, k) counts Stirling permutations in Qn with k
ascent plateaux (see [13, Theorem 3]).

(m3) The number N(n, k) counts perfect matching on [2n] with the restriction that
there are only k matching pairs with even maximal elements (see [14]).

The polynomials Nn(x) satisfy the recurrence relation

Nn+1(x) = (2n + 1)xNn(x) + 2x(1 − x)N′n(x)

with initial value N0(x) = 1. The first few of the Nn(x) are

N1(x) = x, N2(x) = 2x + x2,

N3(x) = 4x + 10x2 + x3, N4(x) = 8x + 60x2 + 36x3 + x4.

The exponential generating function for Nn(x) is given by (see [10, Section 5])

N(x, z) =
∑
n≥0

Nn(x)
zn

n!
=

√
1 − x

1 − xe2z(1−x) . (3.1)

Let

Rn(x) =
∑
π∈Sn

xaltrun (π) =

n−1∑
k=1

R(n, k)xk.

The study of alternating runs of permutations was initiated by André [2] and he proved
that the numbers R(n, k) satisfy the recurrence relation

R(n, k) = kR(n − 1, k) + 2R(n − 1, k − 1) + (n − k)R(n − 1, k − 2)

for n, k ≥ 1, where R(1, 0) = 1 and R(1, k) = 0 for k ≥ 1. There is a large literature
devoted to the numbers R(n, k) (see [19, A059427]). The reader is referred to [4, 11]
for recent results on this subject.

Recall that a descent of a permutation π ∈ Sn is a position i such that π(i) > π(i + 1).
Denote by des (π) the number of descents of π. Then the equations

An(x) =
∑
π∈Sn

xdes (π)+1 =

n∑
k=1

〈
n
k

〉
xk

define the Eulerian polynomial An(x) and the Eulerian number
〈

n
k

〉
. Denote by Bn

the hyperoctahedral group which is the group of signed permutations of the set ±[n]
such that π(−i) = −π(i) for all i, where ±[n] = {±1, ±2, . . . , ±n}. For each π ∈ Bn,
we define

des A(π) := #{i ∈ {1, 2, . . . , n − 1} | π(i) > π(i + 1)},
des B(π) := #{i ∈ {0, 1, 2, . . . , n − 1} | π(i) > π(i + 1)},
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where π(0) = 0. Following [1], the flag descent number of π is defined by

fdes (π) :=

2des A(π) + 1 if π(1) < 0,
2des A(π) otherwise.

Let

Bn(x) =
∑
π∈Bn

xdes B(π) =

n∑
k=0

B(n, k)xk,

Sn(x) =
∑
π∈Bn

xfdes (π) =

2n∑
k=1

S (n, k)xk−1.

The polynomial Bn(x) is called an Eulerian polynomial of type B, while B(n, k) is called
an Eulerian number of type B (see [19, A060187]). It follows from [1, Theorem 4.3]
that the numbers S (n, k) satisfy the recurrence relation

S (n, k) = kS (n − 1, k) + S (n − 1, k − 1) + (2n − k + 1)S (n − 1, k − 2)

for n, k ≥ 1, where S (1, 1) = S (1, 2) = 1 and S (1, k) = 0 for k ≥ 3. The polynomial
Sn(x) is closely related to the Eulerian polynomial An(x):

Sn(x) =
1
x

(1 + x)nAn(x) for n ≥ 1,

which was established by Adin et al. [1].
Consider the context-free grammar

A = {x, y, z}, G = {x→ p(x, y, z), y→ q(x, y, z), z→ r(x, y, z)},

where p(x, y, z), q(x, y, z) and r(x, y, z) are polynomials in x, y and z. The diamond
product of z with the grammar G is defined by

G � z = {x→ p(x, y, z)z, y→ q(x, y, z)z, z→ r(x, y, z)z}.

We now recall two results on context-free grammars.

Proposition 3.1 [11, Theorem 6]. If

G = {x→ xy, y→ yz, z→ y2}, (3.2)

then

Dn(x2) = x2
n∑

k=0

R(n + 1, k)ykzn−k.

Setting x = z = 1, we have Dn(x2)|x=z=1 = Rn+1(y).
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Proposition 3.2 [12, Theorem 10]. Consider the context-free grammar

G′ = {x→ xyz, y→ yz2, z→ y2z}, (3.3)

which is the diamond product of z with the grammar G defined by (3.2). For n ≥ 1,

Dn(xy) = x
2n∑

k=1

S (n, k)y2n−k+1zk,

Dn(yz) =

n∑
k=0

B(n, k)y2n−2k+1z2k+1,

Dn(y) =

n∑
k=1

N(n, k)y2n−2k+1z2k,

Dn(z) =

n∑
k=1

N(n, n − k + 1)y2n−2k+2z2k−1,

Dn(y2) = 2n
n∑

k=1

〈
n
k

〉
y2n−2k+2z2k.

We can now deduce the following result.

Theorem 3.3. Let G′ be the context-free grammar given by (3.3). Then, for n ≥ 1,

Dn(x) = x
2n−1∑
k=1

T (n, k)ykz2n−k,

Dn(x2) = 2x2(y + z)n−1
n∑

k=1

〈
n
k

〉
ykzn−k+1.

Setting x = z = 1, we have Dn(x)|x=z=1 = Tn(y) and Dn(x2)|x=z=1 = 2(1 + y)n−1An(y).

Proof. Note that D(x) = xyz and D2(x) = xyz3 + xy2z2 + xy3z. For n ≥ 1, we define
t(n, k) by

Dn(x) = x
∑
k≥1

t(n, k)ykz2n−k.

Then

Dn+1(x) = D(Dn(x)) = x
∑
k≥1

t(n, k)yk+1z2n−k+1 + x
∑
k≥1

kt(n, k)ykz2n−k+2

+ x
∑
k≥1

(2n − k)t(n, k)yk+2z2n−k.

Hence,
t(n + 1, k) = kt(n, k) + t(n, k − 1) + (2n − k + 2)t(n, k − 2). (3.4)

By comparing (3.4) with (1.2), we see that the numbers t(n, k) satisfy the same
recurrence relation and initial conditions as T (n, k), so they agree. The assertion for
Dn(x2) can be proved in a similar way. �
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It follows from Leibniz’s formula that

Dn(uv) =

n∑
k=0

(
n
k

)
Dk(u)Dn−k(v).

Hence,

Dn(x2) =

n∑
k=0

(
n
k

)
Dk(x)Dn−k(x),

Dn+1(x) = Dn(xyz) =

n∑
k=0

(
n
k

)
Dk(x)Dn−k(yz) =

n∑
k=0

(
n
k

)
Dk(xy)Dn−k(z).

Therefore, we can use Proposition 3.2 and Theorem 3.3 to get several convolution
identities.

Corollary 3.4. For n ≥ 1,

2(1 + x)n−1An(x) =
∑n

k=0

(
n
k

)
Tk(x)Tn−k(x), (3.5)

Tn+1(x) = x
∑n

k=0

(
n
k

)
Tk(x)Bn−k(x2),

Tn+1(x) = x
∑n

k=0

(
n
k

)
Sk(x)Nn−k(x2).

Let T (x, z) =
∑∞

n=0 Tn(x)(zn/n!). Recall that the exponential generating function for
An(x) is given as follows (see [19, A008292]):

A(x, t) =
∑
n≥0

An(x)
tn

n!
=

1 − x
1 − xet(1−x) . (3.6)

Combining (3.5) and (3.6),

T (x, z) =
ez(x−1)(x+1) + x

1 + x

√
1 − x2

e2z(x−1)(x+1) − x2 . (3.7)

From (3.1), ∑
n≥0

Mn(x2)
zn

n!
=

∑
n≥0

x2nNn

( 1
x2

) zn

n!
=

√
1 − x2

e2z(x−1)(x+1) − x2 .

Note that
ez(x−1)(x+1) + x

1 + x
= 1 +

∑
n≥1

(x − 1)n(x + 1)n−1 zn

n!
.

Therefore, from (3.7),

Tn(x) = Mn(x2) +

n−1∑
k=0

(
n
k

)
Mk(x2)(x − 1)n−k(x + 1)n−k−1 for n ≥ 1.
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4. Concluding remarks

Let f (x) and F(x) be two polynomials with real coefficients. We say that f (x)
separates F(x) if deg F = deg f + 2 and the sequences of real and imaginary parts
of the zeros of f (x) respectively separate those of F(x). In other words, if we set
f (x) = a

∏n−1
j=1(x + p j + q ji)(x + p j − q ji) and F(x) = b

∏n
j=1(x + sj + t ji)(x + sj − t ji),

where a, b are respectively leading coefficients of f (x), F(x), p1 ≥ p2 ≥ · · · ≥ pn−1,
q1 ≥ q2 ≥ · · · ≥ qn−1, s1 ≥ s2 ≥ · · · ≥ sn and t1 ≥ t2 ≥ · · · ≥ tn, then

s1 ≥ p1 ≥ s2 ≥ p2 ≥ · · · ≥ sn−1 ≥ pn−1 ≥ sn,

t1 ≥ q1 ≥ t2 ≥ q2 ≥ · · · ≥ tn−1 ≥ qn−1 ≥ tn.

Based on empirical evidence, we propose the following conjecture.

Conjecture 4.1. For n ≥ 2, all zeros of Tn(x)/x are imaginary and Tn(x)/x separates
Tn+1(x)/x.
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