ENUMERATION OF A DUAL SET OF STIRLING PERMUTATIONS BY THEIR ALTERNATING RUNS

SHI-MEI MA ${ }^{\boxtimes}$ and HAI-NA WANG

(Received 5 December 2015; accepted 8 February 2016; first published online 1 April 2016)

Abstract

In this paper, we count a dual set of Stirling permutations by the number of alternating runs and study properties of the generating functions, including recurrence relations, grammatical interpretations and convolution formulas.

2010 Mathematics subject classification: primary 05A15; secondary 05A19.
Keywords and phrases: alternating runs, context-free grammars, Eulerian polynomials, Stirling permutations.

1. Introduction

Denote by $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ the Stirling number of the second kind, which is the number of ways to partition $[n]=\{1,2, \ldots, n\}$ into k blocks. Let D be the differential operator $d / d x$ and let $\vartheta=x D$. It is clear that $D x=x D+1$. A classical result in the theory of normal ordering is the following (see [15]):

$$
\vartheta^{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} D^{k} \quad \text { for } n \geq 1
$$

Let

$$
r(x)=\frac{\sqrt{1+x}}{\sqrt{1-x}}
$$

By induction, one can easily verify that

$$
\vartheta^{n}(r(x))=\frac{\sum_{k=1}^{2 n-1} T(n, k) x^{k}}{(1-x)^{n}(1+x)^{n-1} \sqrt{1-x^{2}}} \quad \text { for } n \geq 1
$$

where the $T(n, k), k \in[2 n-1]$, are positive integers. It is clear that the numbers $T(n, k)$ satisfy the initial conditions $T(1,1)=1$ and $T(1, k)=0$ for $k \neq 1$. Let

[^0]$T_{n}(x)=\sum_{k=1}^{2 n-1} T(n, k) x^{k}$. Using $\vartheta^{n+1}(r(x))=\vartheta\left(\vartheta^{n}(r(x))\right)$, we see that the polynomials $T_{n}(x)$ satisfy the recurrence relation
\[

$$
\begin{equation*}
T_{n+1}(x)=(2 n x+1) x T_{n}(x)+x\left(1-x^{2}\right) T_{n}^{\prime}(x) \tag{1.1}
\end{equation*}
$$

\]

for $n \geq 0$, with the initial values $T_{0}(x)=1$. In particular, $T_{n}(1)=-T_{n+1}(-1)=$ $(2 n-1)!$! for $n \geq 1$. The first few $T_{n}(x)$ are

$$
\begin{aligned}
& T_{1}(x)=x \\
& T_{2}(x)=x+x^{2}+x^{3} \\
& T_{3}(x)=x+3 x^{2}+7 x^{3}+3 x^{4}+x^{5} \\
& T_{4}(x)=x+7 x^{2}+29 x^{3}+31 x^{4}+29 x^{5}+7 x^{6}+x^{7}
\end{aligned}
$$

Equating the coefficients of x^{k} on both sides of (1.1), we see that the numbers $T(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
T(n+1, k)=k T(n, k)+T(n, k-1)+(2 n-k+2) T(n, k-2) . \tag{1.2}
\end{equation*}
$$

The motivating goal of this paper is to find a combinatorial interpretation of the numbers $T(n, k)$.

In [5], Carlitz introduced $C_{n}(x)$ defined by

$$
\sum_{n=0}^{\infty}\left\{\begin{array}{c}
n+k \\
k
\end{array}\right\} x^{n}=\frac{C_{n}(x)}{(1-x)^{2 k+1}}
$$

and asked for a combinatorial interpretation of $C_{n}(x)$. Riordan [16] noted that $C_{n}(x)$ is the enumerator of trapezoidal words with n elements by number of distinct elements, where trapezoidal words are such that the i th element takes the values $1,2, \ldots, 2 i-1$. Gessel and Stanley [7] gave another combinatorial interpretation of $C_{n}(x)$ in terms of descents of Stirling permutations. A Stirling permutation of order n is a permutation $\sigma=\sigma(1) \sigma(2) \cdots \sigma(2 n-1) \sigma(2 n)$ of the multiset $\{1,1,2,2, \ldots, n, n\}$ such that for each $i, 1 \leq i \leq n$, all entries between the two occurrences of i are larger than i. Denote by Q_{n} the set of Stirling permutations of order n. For $\sigma \in Q_{n}$, let $\sigma(0)=\sigma(2 n+1)=0$ and let

$$
\begin{aligned}
\operatorname{des}(\sigma) & =\#\{i \mid \sigma(i)>\sigma(i+1)\}, \\
\operatorname{asc}(\sigma) & =\#\{i \mid \sigma(i-1)<\sigma(i)\}, \\
\operatorname{plat}(\sigma) & =\#\{i \mid \sigma(i)=\sigma(i+1)\}
\end{aligned}
$$

denote the number of descents, ascents and plateaux of σ, respectively. Gessel and Stanley [7] proved that

$$
C_{n}(x)=\sum_{\sigma \in Q_{n}} x^{\operatorname{des} \sigma}
$$

Bóna [3, Theorem 1] introduced the plateau statistic on Q_{n}, and proved that descents, ascents and plateaux are equidistributed over Q_{n}. The reader is referred to [8, 9, 13, 14] for recent progress on the study of Stirling permutations.

In the next section, we show that $T_{n}(x)$ is the enumerator of a dual set of Stirling permutations of order n by the number of alternating runs.

2. Combinatorial interpretation of $T(n, k)$

Let $\sigma=\sigma(1) \sigma(2) \cdots \sigma(2 n) \in Q_{n}$. Let Φ be an injection which maps each first occurrence of entry j in σ to $2 j$ and the second j to $2 j-1$, where $j \in[n]$. For example, $\Phi(221331)=432651$. The dual set $\Phi\left(Q_{n}\right)$ of Q_{n} is defined by

$$
\Phi\left(Q_{n}\right)=\left\{\pi \mid \sigma \in Q_{n}, \Phi(\sigma)=\pi\right\} .
$$

Clearly, $\Phi\left(Q_{n}\right)$ is a subset of $\mathcal{S}_{2 n}$. For $\pi \in \Phi\left(Q_{n}\right)$, the entry $2 j$ is to the left of $2 j-1$, and the entries in π between $2 j$ and $2 j-1$ are all larger than $2 j$, where $1 \leq j \leq n$. Let $a b$ be an ascent in σ, that is, $a<b$. Using Φ, we see that $a b$ maps into $(2 a-1)(2 b-1),(2 a-1)(2 b),(2 a)(2 b-1)$ or $(2 a)(2 b)$ and vice versa. Note that $\operatorname{asc}(\sigma)=\operatorname{asc}(\Phi(\sigma))=\operatorname{asc}(\pi)$. Therefore,

$$
C_{n}(x)=\sum_{\pi \in \Phi\left(Q_{n}\right)} x^{\operatorname{asc}(\pi)}
$$

Let \mathbb{S}_{n} denote the symmetric group of all permutations of $[n]$. We say that $\pi \in \mathbb{S}_{n}$ changes direction at position i if either $\pi(i-1)<\pi(i)>\pi(i+1)$ or $\pi(i-1)>\pi(i)<$ $\pi(i+1)$, where $i \in\{2,3, \ldots, n-1\}$. We say that π has k alternating runs if there are $k-1$ indices i such that π changes direction at these positions. Denote by altrun (π) the number of alternating runs in π. It should be noted that $\pi \in \Phi\left(Q_{n}\right)$ always ends with a descending run. We now present the following result.

Theorem 2.1. We have $T(n, k)=\#\left\{\pi \in \Phi\left(Q_{n}\right) \mid \operatorname{altrun}(\pi)=k\right\}$.
Proof. There are three ways in which a permutation $\pi \in \Phi\left(Q_{n+1}\right)$ with altrun $(\pi)=k$ can be obtained from a permutation $\sigma \in \Phi\left(Q_{n}\right)$ by inserting the pair $(2 n+2)(2 n+1)$ into consecutive positions.
(a) If altrun $(\sigma)=k$, then we can insert the pair $(2 n+2)(2 n+1)$ right before the beginning of each descending run, and right after the end of each ascending run. This accounts for $k T(n, k)$ possibilities.
(b) If altrun $(\sigma)=k-1$, then we distinguish two cases: when σ starts in an ascending run, we insert the pair $(2 n+2)(2 n+1)$ to the front of σ; when σ starts in a descending run, we insert the pair $(2 n+2)(2 n+1)$ right after the first entry of σ. This gives $T(n, k-1)$ possibilities.
(c) If altrun $(\sigma)=k-2$, then we can insert the pair $(2 n+2)(2 n+1)$ into the remaining $(2 n+1)-(k-2)-1=2 n-k+2$ positions. This gives $(2 n-$ $k+2) T(n, k-2)$ possibilities.
Therefore, the numbers $T(n, k)$ satisfy the recurrence relation (1.2), and this completes the proof.

A polynomial $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is symmetric if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$, while it is unimodal if there exists an index m such that

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{m-1} \leq a_{m} \geq a_{m+1} \geq \cdots \geq a_{n}
$$

Theorem 2.2. The polynomial $T_{n}(x)$ is symmetric and unimodal.

Proof. It is immediate from (3.1) that $T_{n}(x)$ is a symmetric polynomial. We show the unimodality by induction on n. Note that $T_{1}(x)=x, T_{2}(x)=x+x^{2}+x^{3}$ and $T_{3}(x)=x+3 x^{2}+7 x^{3}+3 x^{4}+x^{5}$ are all unimodal. Thus, it suffices to consider the case $n \geq 3$. Assume that $T_{n}(x)$ is symmetric and unimodal. For $1 \leq k \leq n+1$, it follows from (1.2) that

$$
\begin{aligned}
& T(n+1, k)-T(n+1, k-1) \\
& =(k-1)(T(n, k)-T(n, k-1))+(T(n, k-1)-T(n, k-2)) \\
& \quad+(2 n-k+2)(T(n, k-2)-T(n, k-3))+(T(n, k)-T(n, k-3)) \geq 0,
\end{aligned}
$$

where the inequalities follow from the induction hypothesis. This completes the proof.

3. Grammatical interpretations

The grammatical method was introduced by Chen [6] in the study of exponential structures in combinatorics. For an alphabet A, let $\mathbb{Q}[[A]]$ be the rational commutative ring of formal power series in monomials formed from letters in A. A context-free grammar over A is a function $G: A \rightarrow \mathbb{Q}[[A]]$ that replaces a letter in A by a formal function over A. The formal derivative D is a linear operator defined with respect to a context-free grammar G. More precisely, the derivative $D=D_{G}: \mathbb{Q}[[A]] \rightarrow \mathbb{Q}[[A]]$ is defined as follows: for $x \in A$, we have $D(x)=G(x)$; for a monomial u in $\mathbb{Q}[[A]]$, $D(u)$ is defined so that D is a derivation and, for a general element $q \in \mathbb{Q}[[A]], D(q)$ is defined by linearity. In the rest of this section, we first recall some definitions of permutation statistics and then present grammatical interpretations and convolution formulas related to $T_{n}(x)$.

Let $\pi=\pi(1) \pi(2) \cdots \pi(n) \in \mathbb{S}_{n}$. An interior peak in π is an index $i \in\{2,3, \ldots, n-1\}$ such that $\pi(i-1)<\pi(i)>\pi(i+1)$. A left peak in π is an index $i \in[n-1]$ such that $\pi(i-1)<\pi(i)>\pi(i+1)$, where we take $\pi(0)=0$. Let ipk (π) (respectively lpk $(\pi))$ be the number of interior peaks (respectively left peaks) in π. Define

$$
M_{n}(x)=\sum_{\pi \in \Phi\left(Q_{n}\right)} x^{\mathrm{ipk}(\pi)}, \quad N_{n}(x)=\sum_{\pi \in \Phi\left(Q_{n}\right)} x^{\operatorname{lpk}(\pi)} .
$$

It follows from [13, Theorem 4] that $M_{n}(x)=x^{n} N_{n}(1 / x)$. Moreover, from [13, Theorem 5],

$$
(1+x) T_{n}(x)=x M_{n}\left(x^{2}\right)+N_{n}\left(x^{2}\right) .
$$

We now recall some properties of $N_{n}(x)$. Let $N_{n}(x)=\sum_{k=1}^{n} N(n, k) x^{k}$. Apart from counting permutations in the set $\Phi\left(Q_{n}\right)$ with k left peaks, the number $N(n, k)$ also has the following combinatorial interpretations.
$\left(\mathrm{m}_{1}\right)$ Let $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}$ and let $I_{n, k}=\left\{e \in \mathbb{Z}^{n} \mid 0 \leq e_{i} \leq(i-1) k\right\}$, the set of n-dimensional k-inversion sequences (see [17]). The number of ascents of e is defined by

$$
\operatorname{asc}(e)=\#\left\{i: 1 \leq i \leq n-1 \left\lvert\, \frac{e_{i}}{(i-1) k+1}<\frac{e_{i+1}}{i k+1}\right.\right\} .
$$

Savage and Viswanathan [18] found $N(n, k)=\#\left\{e \in I_{n, 2}: \operatorname{asc}(e)=n-k\right\}$.
$\left(\mathrm{m}_{2}\right)$ We say that an index $i \in[2 n-1]$ is an ascent plateau of $\pi \in Q_{n}$ if $\pi(i-1)<$ $\pi(i)=\pi(i+1)$. The number $N(n, k)$ counts Stirling permutations in Q_{n} with k ascent plateaux (see [13, Theorem 3]).
$\left(\mathrm{m}_{3}\right)$ The number $N(n, k)$ counts perfect matching on [2n] with the restriction that there are only k matching pairs with even maximal elements (see [14]).

The polynomials $N_{n}(x)$ satisfy the recurrence relation

$$
N_{n+1}(x)=(2 n+1) x N_{n}(x)+2 x(1-x) N_{n}^{\prime}(x)
$$

with initial value $N_{0}(x)=1$. The first few of the $N_{n}(x)$ are

$$
\begin{array}{cl}
N_{1}(x)=x, & N_{2}(x)=2 x+x^{2} \\
N_{3}(x)=4 x+10 x^{2}+x^{3}, & N_{4}(x)=8 x+60 x^{2}+36 x^{3}+x^{4}
\end{array}
$$

The exponential generating function for $N_{n}(x)$ is given by (see [10, Section 5])

$$
\begin{equation*}
N(x, z)=\sum_{n \geq 0} N_{n}(x) \frac{z^{n}}{n!}=\sqrt{\frac{1-x}{1-x e^{2 z(1-x)}}} . \tag{3.1}
\end{equation*}
$$

Let

$$
R_{n}(x)=\sum_{\pi \in \mathfrak{E}_{n}} x^{\operatorname{altrun}(\pi)}=\sum_{k=1}^{n-1} R(n, k) x^{k} .
$$

The study of alternating runs of permutations was initiated by André [2] and he proved that the numbers $R(n, k)$ satisfy the recurrence relation

$$
R(n, k)=k R(n-1, k)+2 R(n-1, k-1)+(n-k) R(n-1, k-2)
$$

for $n, k \geq 1$, where $R(1,0)=1$ and $R(1, k)=0$ for $k \geq 1$. There is a large literature devoted to the numbers $R(n, k)$ (see [19, A059427]). The reader is referred to [4, 11] for recent results on this subject.

Recall that a descent of a permutation $\pi \in \mathbb{S}_{n}$ is a position i such that $\pi(i)>\pi(i+1)$. Denote by des (π) the number of descents of π. Then the equations

$$
A_{n}(x)=\sum_{\pi \in \mathbb{E}_{n}} x^{\operatorname{des}(\pi)+1}=\sum_{k=1}^{n}\binom{n}{k} x^{k}
$$

define the Eulerian polynomial $A_{n}(x)$ and the Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$. Denote by B_{n} the hyperoctahedral group which is the group of signed permutations of the set $\pm[n]$ such that $\pi(-i)=-\pi(i)$ for all i, where $\pm[n]=\{ \pm 1, \pm 2, \ldots, \pm n\}$. For each $\pi \in B_{n}$, we define

$$
\begin{aligned}
& \operatorname{des}_{A}(\pi):=\#\{i \in\{1,2, \ldots, n-1\} \mid \pi(i)>\pi(i+1)\}, \\
& \operatorname{des}_{B}(\pi):=\#\{i \in\{0,1,2, \ldots, n-1\} \mid \pi(i)>\pi(i+1)\},
\end{aligned}
$$

where $\pi(0)=0$. Following [1], the flag descent number of π is defined by

$$
\operatorname{fdes}(\pi):= \begin{cases}2 \operatorname{des}_{A}(\pi)+1 & \text { if } \pi(1)<0 \\ 2 \operatorname{des}_{A}(\pi) & \text { otherwise }\end{cases}
$$

Let

$$
\begin{aligned}
& B_{n}(x)=\sum_{\pi \in B_{n}} x^{\operatorname{des}_{B}(\pi)}=\sum_{k=0}^{n} B(n, k) x^{k}, \\
& S_{n}(x)=\sum_{\pi \in B_{n}} x^{\mathrm{fdes}(\pi)}=\sum_{k=1}^{2 n} S(n, k) x^{k-1} .
\end{aligned}
$$

The polynomial $B_{n}(x)$ is called an Eulerian polynomial of type B, while $B(n, k)$ is called an Eulerian number of type B (see [19, A060187]). It follows from [1, Theorem 4.3] that the numbers $S(n, k)$ satisfy the recurrence relation

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1)+(2 n-k+1) S(n-1, k-2)
$$

for $n, k \geq 1$, where $S(1,1)=S(1,2)=1$ and $S(1, k)=0$ for $k \geq 3$. The polynomial $S_{n}(x)$ is closely related to the Eulerian polynomial $A_{n}(x)$:

$$
S_{n}(x)=\frac{1}{x}(1+x)^{n} A_{n}(x) \quad \text { for } n \geq 1,
$$

which was established by Adin et al. [1].
Consider the context-free grammar

$$
A=\{x, y, z\}, \quad G=\{x \rightarrow p(x, y, z), y \rightarrow q(x, y, z), z \rightarrow r(x, y, z)\},
$$

where $p(x, y, z), q(x, y, z)$ and $r(x, y, z)$ are polynomials in x, y and z. The diamond product of z with the grammar G is defined by

$$
G \diamond z=\{x \rightarrow p(x, y, z) z, y \rightarrow q(x, y, z) z, z \rightarrow r(x, y, z) z\}
$$

We now recall two results on context-free grammars.
Proposition 3.1 [11, Theorem 6]. If

$$
\begin{equation*}
G=\left\{x \rightarrow x y, y \rightarrow y z, z \rightarrow y^{2}\right\} \tag{3.2}
\end{equation*}
$$

then

$$
D^{n}\left(x^{2}\right)=x^{2} \sum_{k=0}^{n} R(n+1, k) y^{k} z^{n-k} .
$$

Setting $x=z=1$, we have $\left.D^{n}\left(x^{2}\right)\right|_{x=z=1}=R_{n+1}(y)$.

Proposition 3.2 [12, Theorem 10]. Consider the context-free grammar

$$
\begin{equation*}
G^{\prime}=\left\{x \rightarrow x y z, y \rightarrow y z^{2}, z \rightarrow y^{2} z\right\} \tag{3.3}
\end{equation*}
$$

which is the diamond product of z with the grammar G defined by (3.2). For $n \geq 1$,

$$
\begin{aligned}
D^{n}(x y) & =x \sum_{k=1}^{2 n} S(n, k) y^{2 n-k+1} z^{k} \\
D^{n}(y z) & =\sum_{k=0}^{n} B(n, k) y^{2 n-2 k+1} z^{2 k+1} \\
D^{n}(y) & =\sum_{k=1}^{n} N(n, k) y^{2 n-2 k+1} z^{2 k} \\
D^{n}(z) & =\sum_{k=1}^{n} N(n, n-k+1) y^{2 n-2 k+2} z^{2 k-1} \\
D^{n}\left(y^{2}\right) & =2^{n} \sum_{k=1}^{n}\binom{n}{k} y^{2 n-2 k+2} z^{2 k}
\end{aligned}
$$

We can now deduce the following result.
Theorem 3.3. Let G^{\prime} be the context-free grammar given by (3.3). Then, for $n \geq 1$,

$$
\begin{aligned}
D^{n}(x) & =x \sum_{k=1}^{2 n-1} T(n, k) y^{k} z^{2 n-k} \\
D^{n}\left(x^{2}\right) & =2 x^{2}(y+z)^{n-1} \sum_{k=1}^{n}\binom{n}{k} y^{k} z^{n-k+1}
\end{aligned}
$$

Setting $x=z=1$, we have $\left.D^{n}(x)\right|_{x=z=1}=T_{n}(y)$ and $\left.D^{n}\left(x^{2}\right)\right|_{x=z=1}=2(1+y)^{n-1} A_{n}(y)$.
Proof. Note that $D(x)=x y z$ and $D^{2}(x)=x y z^{3}+x y^{2} z^{2}+x y^{3} z$. For $n \geq 1$, we define $t(n, k)$ by

$$
D^{n}(x)=x \sum_{k \geq 1} t(n, k) y^{k} z^{2 n-k}
$$

Then

$$
\begin{aligned}
D^{n+1}(x)=D\left(D^{n}(x)\right)= & x \sum_{k \geq 1} t(n, k) y^{k+1} z^{2 n-k+1}+x \sum_{k \geq 1} k t(n, k) y^{k} z^{2 n-k+2} \\
& +x \sum_{k \geq 1}(2 n-k) t(n, k) y^{k+2} z^{2 n-k}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
t(n+1, k)=k t(n, k)+t(n, k-1)+(2 n-k+2) t(n, k-2) . \tag{3.4}
\end{equation*}
$$

By comparing (3.4) with (1.2), we see that the numbers $t(n, k)$ satisfy the same recurrence relation and initial conditions as $T(n, k)$, so they agree. The assertion for $D^{n}\left(x^{2}\right)$ can be proved in a similar way.

It follows from Leibniz's formula that

$$
D^{n}(u v)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(u) D^{n-k}(v)
$$

Hence,

$$
\begin{gathered}
D^{n}\left(x^{2}\right)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(x) D^{n-k}(x), \\
D^{n+1}(x)=D^{n}(x y z)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(x) D^{n-k}(y z)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(x y) D^{n-k}(z) .
\end{gathered}
$$

Therefore, we can use Proposition 3.2 and Theorem 3.3 to get several convolution identities.

Corollary 3.4. For $n \geq 1$,

$$
\begin{gather*}
2(1+x)^{n-1} A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} T_{k}(x) T_{n-k}(x), \tag{3.5}\\
T_{n+1}(x)=x \sum_{k=0}^{n}\binom{n}{k} T_{k}(x) B_{n-k}\left(x^{2}\right), \\
T_{n+1}(x)=x \sum_{k=0}^{n}\binom{n}{k} S_{k}(x) N_{n-k}\left(x^{2}\right),
\end{gather*}
$$

Let $T(x, z)=\sum_{n=0}^{\infty} T_{n}(x)\left(z^{n} / n!\right)$. Recall that the exponential generating function for $A_{n}(x)$ is given as follows (see [19, A008292]):

$$
\begin{equation*}
A(x, t)=\sum_{n \geq 0} A_{n}(x) \frac{t^{n}}{n!}=\frac{1-x}{1-x e^{t(1-x)}} \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6),

$$
\begin{equation*}
T(x, z)=\frac{e^{z(x-1)(x+1)}+x}{1+x} \sqrt{\frac{1-x^{2}}{e^{2 z(x-1)(x+1)}-x^{2}}} \tag{3.7}
\end{equation*}
$$

From (3.1),

$$
\sum_{n \geq 0} M_{n}\left(x^{2}\right) \frac{z^{n}}{n!}=\sum_{n \geq 0} x^{2 n} N_{n}\left(\frac{1}{x^{2}}\right) \frac{z^{n}}{n!}=\sqrt{\frac{1-x^{2}}{e^{2 z(x-1)(x+1)}-x^{2}}}
$$

Note that

$$
\frac{e^{z(x-1)(x+1)}+x}{1+x}=1+\sum_{n \geq 1}(x-1)^{n}(x+1)^{n-1} \frac{z^{n}}{n!} .
$$

Therefore, from (3.7),

$$
T_{n}(x)=M_{n}\left(x^{2}\right)+\sum_{k=0}^{n-1}\binom{n}{k} M_{k}\left(x^{2}\right)(x-1)^{n-k}(x+1)^{n-k-1} \quad \text { for } n \geq 1 .
$$

4. Concluding remarks

Let $f(x)$ and $F(x)$ be two polynomials with real coefficients. We say that $f(x)$ separates $F(x)$ if $\operatorname{deg} F=\operatorname{deg} f+2$ and the sequences of real and imaginary parts of the zeros of $f(x)$ respectively separate those of $F(x)$. In other words, if we set $f(x)=a \prod_{j=1}^{n-1}\left(x+p_{j}+q_{j} \mathrm{i}\right)\left(x+p_{j}-q_{j} \mathrm{i}\right)$ and $F(x)=b \prod_{j=1}^{n}\left(x+s_{j}+t_{j} \mathrm{i}\right)\left(x+s_{j}-t_{j} \mathrm{i}\right)$, where a, b are respectively leading coefficients of $f(x), F(x), p_{1} \geq p_{2} \geq \cdots \geq p_{n-1}$, $q_{1} \geq q_{2} \geq \cdots \geq q_{n-1}, s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ and $t_{1} \geq t_{2} \geq \cdots \geq t_{n}$, then

$$
\begin{gathered}
s_{1} \geq p_{1} \geq s_{2} \geq p_{2} \geq \cdots \geq s_{n-1} \geq p_{n-1} \geq s_{n} \\
t_{1} \geq q_{1} \geq t_{2} \geq q_{2} \geq \cdots \geq t_{n-1} \geq q_{n-1} \geq t_{n}
\end{gathered}
$$

Based on empirical evidence, we propose the following conjecture.
Conjecture 4.1. For $n \geq 2$, all zeros of $T_{n}(x) / x$ are imaginary and $T_{n}(x) / x$ separates $T_{n+1}(x) / x$.

References

[1] R. Adin, F. Brenti and Y. Roichman, 'Descent numbers and major indices for the hyperoctahedral group', Adv. Appl. Math. 27 (2001), 210-224.
[2] D. André, 'Étude sur les maxima, minima et séquences des permutations', Ann. Sci. Éc. Norm. Supér. 3(1) (1884), 121-135.
[3] M. Bóna, 'Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley', SIAM J. Discrete Math. 23 (2008-2009), 401-406.
[4] E. R. Canfield and H. Wilf, 'Counting permutations by their alternating runs', J. Combin. Theory Ser. A 115 (2008), 213-225.
[5] L. Carlitz, 'The coefficients in an asymptotic expansion', Proc. Amer. Math. Soc. 16 (1965), 248-252.
[6] W. Y. C. Chen, 'Context-free grammars, differential operators and formal power series', Theoret. Comput. Sci. 117 (1993), 113-129.
[7] I. Gessel and R. P. Stanley, 'Stirling polynomials', J. Combin. Theory Ser. A 24 (1978), 25-33.
[8] S. Janson, M. Kuba and A. Panholzer, 'Generalized Stirling permutations, families of increasing trees and urn models’, J. Combin. Theory Ser. A 118 (2011), 94-114.
[9] M. Kuba and A. Panholzer, 'Enumeration formulae for pattern restricted Stirling permutations', Discrete Math. 312 (2012), 3179-3194.
[10] S.-M. Ma, 'A family of two-variable derivative polynomials for tangent and secant', Electron. J. Combin. 20(1) (2013), \#P11.
[11] S.-M. Ma, 'Enumeration of permutations by number of alternating runs', Discrete Math. 313 (2013), 1816-1822.
[12] S.-M. Ma, 'Some combinatorial arrays generated by context-free grammars', European J. Combin. 34 (2013), 1081-1091.
[13] S.-M. Ma and T. Mansour, 'The $1 / k$-Eulerian polynomials and k-Stirling permutations', Discrete Math. 338 (2015), 1468-1472.
[14] S.-M. Ma and Y.-N. Yeh, 'Stirling permutations, cycle structure of permutations and perfect matchings', Electron. J. Combin. 22(4) (2015), \#P4.42.
[15] T. Mansour and M. Schork, Commutation Relations, Normal Ordering and Stirling Numbers, Discrete Mathematics and its Applications Series (Chapman and Hall, CRC Press, Taylor and Francis, Boca Raton, FL, 2015).
[16] J. Riordan, 'The blossoming of Schrø̈der's fourth problem', Acta Math. 137(1-2) (1976), 1-16.
[17] C. D. Savage and M. J. Schuster, 'Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences', J. Combin. Theory Ser. A 119 (2012), 850-870.
[18] C. D. Savage and G. Viswanathan, 'The $1 / k$-Eulerian polynomials', Electron. J. Combin. 19 (2012), \#P9.
[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2010), http://oeis.org.

SHI-MEI MA, Department of Mathematics, Northeastern University, Shenyang 110004, China
e-mail: shimeimapapers@163.com
HAI-NA WANG, Department of Mathematics, Northeastern University, Shenyang 110004, China
e-mail: hainawangpapers@163.com

[^0]: This paper is supported by NSFC (11401083).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

