
5 Anomalies, instantons and the strong CP problem

While perturbation theory is a powerful and useful tool in understanding field theories,
for our exploration of physics beyond the Standard Model an understanding of non-
perturbative physics will be crucial. There are many reasons for this.

1. One of the great mysteries of the Standard Model is non-perturbative in nature: the
smallness of the θ parameter.

2. Strongly interacting field theories will figure in many proposals to understand other
mysteries of the Standard Model.

3. The interesting dynamical properties of supersymmetric theories, both those directly
related to possible models of nature and those which provide insights into broad physics
issues, are non-perturbative in nature.

4. If string theory describes nature, non-perturbative effects are necessarily of critical
importance.

We have introduced lattice gauge theory, which is perhaps our only tool for doing
systematic calculations in strongly coupled theories. But, as a tool, its value is quite limited.
Only a small number of calculations are tractable in practice, and the difficult numerical
challenges sometimes obscure the underlying physics. Fortunately, there is a surprising
amount that one can learn from symmetry considerations, from semiclassical arguments
and from our experimental knowledge of one strongly coupled theory, QCD. In each of
these, an important role is played by the phenomena known as anomalies and, related to
these, a set of semiclassical field configurations known as instantons.

Usually, the term “anomaly” is used to refer to the quantum mechanical violation of a
symmetry which is valid classically. Instantons are finite-action solutions of the Euclidean
equations of motion, typically associated with tunneling phenomena. Anomalies are crucial
to understanding the decay of the π0 in QCD. Anomalies and instantons account for
the absence of a ninth light pseudoscalar meson in the hadron spectrum. Within the
weak-interaction theory, anomalies and instantons lead to violations of baryon and lepton
number; these effects are unimaginably tiny at the current time but were important in the
early universe. The absence of anomalies in gauge currents is important to the consistency
of theoretical structures, including both field theories and string theories. The cancelation
of anomalies within the Standard Model itself is quite non-trivial. Similar constraints on
possible extensions of the Standard Model will be very important. The θ parameter of
QCD was mentioned in the previous chapter. The θ term seems innocuous, but, owing to
anomalies and instantons, its potential effects are real. Because the θ term violates CP,
they are also dramatic. The problem of the smallness of the θ parameter – the strong CP
problem – forcibly suggests new phenomena beyond the Standard Model, and this will be
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77 5.1 The chiral anomaly

a recurring theme in this book. In the present chapter we explain how anomalies arise and
some of the roles which they play. The discussion is meant to provide the reader with a
good working knowledge of these subjects, but it is not encyclopedic. A guide to texts and
reviews on the subject appears at the end of the chapter.

5.1 The chiral anomaly

Before discussing real QCD, let us consider a non-Abelian gauge theory theory, with only
a single flavor of quark. Before making any field redefinitions, the Lagrangian takes the
form:

L = − 1
4g2 F2

μν + iq̄Dμσμq̄∗ + iqDμσμq∗ + mq̄q + m∗q̄∗q∗. (5.1)

The Lagrangian is written here in terms of two-component fermions (see Appendix A).
The fermion mass need not be real:

m = |m|eiθ . (5.2)

In this chapter it will sometimes be convenient to work with four-component fermions, and
it is valuable to make contact with this language in any case. In terms of these, the mass
contribution is

Lm = (Re m) q̄q + (Im m) q̄γ5q. (5.3)

In order to bring this mass contribution to the conventional form, with no γ5s, one could
try to redefine the fermions; switching back to the two-component notation we have

q → e−iθ/2q, q̄ → e−iθ/2q̄. (5.4)

However, in field theory transformations of this kind are potentially fraught with difficulties
because of the infinite number of degrees of freedom.

A simple calculation uncovers one of the simplest manifestations of an anomaly.
Suppose, first, that m is very large, m → M. In that case we need to integrate out the
quarks and obtain a low-energy effective theory. To do this, we study the path integral (see
Appendix C)

Z =
∫

[dAμ]
∫

[dq][dq̄]eiS. (5.5)

Suppose that M = eiθ |M|. In order to make M real, we can again make the transformations
q → qe−iθ/2, q̄ → q̄e−iθ/2 (in four-component language, this is q → e−iθ/2γ5 q)). The
result of integrating out the quark, i.e. of performing the path integral over q and q̄, can be
written in the form

Z =
∫

[dAμ]
∫

eiSeff . (5.6)

Here Seff is the effective action which describes the interactions of gluons at scales well
below M.
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78 Anomalies, instantons and the strong CP problem

j, imqqgsq

Fig. 5.1 The triangle diagram associated with the four-dimensional anomaly. At the right-hand vertex, one has insertions
of the axial current and the chiral density.

Because the field redefinition which eliminates θ amounts to just a change of variables
in the path integral, one might expect that there can be no θ -dependence in the effective
action. But this is not the case. To see this, suppose that θ is small and, instead of redefining
the field treat the θ term as a small perturbation by expanding the exponential. Now
consider a term in the effective action with two external gauge bosons. This is obtained
from the Feynman diagram in Fig. 5.1. The corresponding term in the action is given by
(see Eq. (2.17))

δLeff = −i
θ

2
M Tr(T aT b)

∫ d 4p
(2π)4

Tr
(
γ5

1
�p+ �k1 − M

�ε1
1

�p − M
�ε2

1
�p− �k2 − M

)
. (5.7)

Here, the kis are the momenta of the two gluons, while the εs are their polarizations and a
and b are their color indices. Introducing Feynman parameters and shifting the p integral
gives

δLeff = − iθg2M Tr(T aT b)

∫
dα1dα2

∫ d 4p
(2π)4

Tr
(
γ5( �p−α1 �k1+α2 �k2+�k1+M)

× �ε1( �p − α1 �k1 + α2 �k2 + M) �ε2( �p − α1�k1 + α2 �k2− �k2 + M)[
p2 − M2 + O

(
k2

i
)]3

)
. (5.8)

For small ki we can neglect the k-dependence of the denominator. The trace in the
numerator is easy to evaluate, since we can drop terms linear in p. This gives, after
performing the integrals over the αs,

δLeff = g2M2θ Tr(T aT b) εμνρσ kμ1 kν2ε
ρ
1 ε
σ
2

∫ d 4p
(2π)4

1
(p2 − M 2)3

. (5.9)

This corresponds to a term in the effective action, which, after performing the integral over
p and including a combinatoric factor two from the different ways to contract the gauge
bosons, is given by

δLeff = 1
32π2 θ Tr(FF̃). (5.10)
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79 5.1 The chiral anomaly

Now why does this happen? On the one hand, at the level of the path integral the
transformation would seem to amount to a simple change of variables, and it is hard to
see why this should have any effect. On the other hand, if one examines the diagram
of Fig. 5.1 then one sees that it contains terms which are linearly divergent and thus it
should be regulated. A simple way to regulate this diagram is to introduce a Pauli–Villars
regulator, which means that one subtracts off a corresponding amplitude with some very
large mass �. However, our expression above is independent of �. So the θ -dependence
from the regulator fields cancels that of Eq. (5.10). This sort of behavior is characteristic
of an anomaly.

Consider now the case where m � �QCD. In this case we should not integrate out the
quarks, but we still need to take into account the regulator diagrams. So, if we redefine
the fields so, that the quark mass is real (γ5-free, in the four-component description), the
low-energy theory contains light quarks and the θ term of Eq. (5.10).

We can describe this in a fashion which indicates why this is referred to as an anomaly.
For small m the classical theory has an approximate symmetry under which

q → eiαq, q̄ → eiα q̄ (5.11)

(in four-component language, q → eiαγ5 q). In particular we can define a current

jμ5 = q̄γ5γμq (5.12)

and, classically,

∂μjμ5 = mq̄γ5q. (5.13)

Under a transformation by an infinitesimal angle α one would expect that

δL = α∂μjμ5 = mαq̄γ5q. (5.14)

But the divergence of the current contains another, m-independent, term:

∂μjμ5 = mq̄γ5q + 1
32π2 FF̃. (5.15)

The first term follows from the equations of motion. To see why the second term is present,
we will study a three-point function involving the current and two gauge bosons Aμ and
will ignore the quark mass:

�AAj = T〈∂μj5μAρAσ 〉. (5.16)

This is essentially the calculation we encountered above. Again the diagram is linearly
divergent and requires regularization. Let us first consider the graph without the regulator
mass. The graph of Fig. 5.1 actually implies two graphs, because we must include the
interchange of the two external gluons. The combination is easily seen to vanish, by the
sorts of manipulations one usually uses to prove Ward identities:

g2

(2π)4

∫
d 4p Tr

(
�qγ5

1
�p+ �k1

�ε1
1
�p �ε2

1
�p− �k2

+ (1 ↔ 2)
)

. (5.17)
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80 Anomalies, instantons and the strong CP problem

Writing

�qγ5 = −γ5( �k1+ �p)− ( �p− �k2)γ5 (5.18)

and using the cyclic property of the trace, one can cancel a propagator in each term. This
leaves ∫

d 4 p Tr
(

−γ5 �ε1
1
�p �ε2

1
�p− �k2

− γ5
1

�p+ �k1
�ε1

1
�p �ε2 + (1 ↔ 2)

)
. (5.19)

Now making the shift p → p + k2 in the first term and p → p + k1 in the second, one finds
a pairwise cancelation.

These manipulations, however, are not reliable. In particular, in a highly divergent
expression the shifts do not necessarily leave the result unchanged. With a Pauli–Villars
regulator the integrals are convergent and the shifts are reliable, but the regulator diagram
is non-vanishing and gives the anomaly equation above. One can see this by a direct
computation or relate it to our previous calculation, including the masses for the quark
and noting that �qγ5, in the diagrams with massive quarks, can be replaced by Mγ5.

This anomaly can be derived in a number of other ways. One can define, for example,
the current by point splitting, i.e. separating the two fields in the current by an amount ε
and inserting a Wilson line to ensure gauge invariance.

jμ5 = q̄(x + ε) exp

(
i
∫ x+ε

x
dxμAμ

)
q(x). (5.20)

Because the operators in quantum field theory are singular at short distances, the Wilson
line makes a finite contribution. Expanding the exponential carefully, one recovers the
same expression for the current. We will do this shortly in two dimensions, leaving the four-
dimensional case for the end-of-chapter exercises. A beautiful derivation, closely related to
that performed above, is due to Fujikawa. Here one considers the anomaly as arising from
a lack of invariance of the path integral measure. One carefully evaluates the Jacobian
associated with the change of variables q → q(1 + iγ5α) and shows that it yields the
same result. We will do a calculation along these lines in a two-dimensional model shortly,
leaving the four-dimensional case for the exercises.

5.1.1 Applications of the anomaly in four dimensions

The anomaly has a number of important consequences for real physics.

• π0 decay The divergence of the axial isospin current(
j35
)μ = ūγ5γ

μū − d̄γ5γ
μd (5.21)

has an anomaly due to electromagnetism. This gives rise to a coupling of the π0 to two
photons, and the correct prediction of the lifetime was one of the early triumphs of the
color theory of quarks. The computation of the π0 decay rate appears in the exercises.

• Anomalies in gauge currents signal an inconsistency in a theory They mean that
gauge invariance, which is crucial to the whole structure of gauge theories (e.g. to the
fact that they are simultaneously unitary and Lorentz invariant) is lost. The absence of
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81 5.2 A two-dimensional detour

gauge anomalies is one of the striking ingredients of the Standard Model, and it is also
crucial in extensions such as string theory.

• The anomaly considered here, as we have indicated above, accounts for the absence of
a ninth axial Goldstone boson in the QCD spectrum.

5.1.2 Return to QCD

What we have just learned is that if in our simple model above we require that the quark
masses are real then we must allow for the possible appearance, in the Lagrangian of
the Standard Model, of the θ term in Eq. (5.10). In weak interactions this term does not
have physical consequences. At the level of the renormalizable terms, we have seen that
the theory respects separate B and L symmetries; B, for example, is anomalous. So, if
we simply redefine the quark fields by a B transformation, we can remove θ from the
Lagrangian.

For the θ angles of QCD and QED we have no such symmetry. In the case of QED we
do not really have a non-perturbative definition of the theory, and the effects of θ are hard
to assess, but one might expect that, when embedded in any consistent structure (such as a
grand unified theory (GUT) or string theory) they will be very small, possibly zero. As we
saw, FF̃ gives a total divergence. The right-hand side of Eq. (4.24) is not gauge invariant,
however, so one might imagine that it could be important. But, as long as A falls off at
least as fast as 1/r (i.e. F falls off faster than 1/r2), the surface term behaves as 1/r4 and
so vanishes.

In the case of non-Abelian gauge theories, the situation is more subtle. It is again true
that FF̃ can be written as a total divergence:

FF̃ = ∂μKμ, Kμ = εμνρσ

(
Aa
νF

a
ρσ − 2

3
f abcAa

νA
b
ρAc
σ

)
. (5.22)

However, the statement that F falls off faster than 1/r2 does not permit an equally strong
statement about A. We will see shortly that there are finite-action classical solutions for
which F ∼ 1/r4 but A → 1/r, so that the surface term cannot be neglected. These solutions
are instantons. This is the reason that θ can have real physical effects.

5.2 A two-dimensional detour

There are many questions in four dimensions which we cannot answer except by using
numerical lattice calculation. These include the problem of dimensional transmutation and
the effects of the anomaly on the hadron spectrum. There is a class of models in two
dimensions which are asymptotically free and in which one can study these questions in
a controlled approximation. Two dimensions often form a poor analog for four but, for
some of the issues we are facing here, the parallels are extremely close. In these two-
dimensional examples the physics is more manageable, but still rich. In four dimensions,
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82 Anomalies, instantons and the strong CP problem

the calculations are qualitatively similar; they are only more difficult because the Dirac
algebra and the various integrals are more involved.

5.2.1 The anomaly in two dimensions

First we investigate the anomaly in the quantum electrodynamics of a massless fermion in
two dimensions; this will be an important ingredient in the full analysis. The point-splitting
method is particularly convenient here. Just as in four dimensions, we write

jμ5 = ψ̄(x + ε) exp

(
i
∫ x+ε

x
Aρdxρ

)
γ μγ 5ψ(x). (5.23)

Naively, one can set ε = 0 and then the divergence vanishes by the equations of motion.
In quantum field theory, however, products of operators become singular as the operators
come close together. For very small ε we can pick up the leading singularity in the product
of ψ(x + ε)ψ(x) by using the operator product expansion (OPE). The OPE states that the
product of two operators at short distances can be written as a series of local operators of
progressively higher dimension, with coefficients that are less and less singular. For our
case this means that

ψ̄(x + ε)γ μγ 5ψ(x) =
∑ cn

ε1−nOn(x), (5.24)

where On is an operator of dimension n. The leading term comes from the unit operator.
To evaluate its coefficient we can take the vacuum expectation value of both sides of this
equation. On the left-hand side, this is just the propagator.

It is not hard to work out the fermion propagator in coordinate space in two dimensions.
For simplicity we work with space-like separations, so that we can Wick-rotate to
Euclidean space. Start with the scalar propagator

〈φ(x)φ(0)〉 =
∫ d 2p
(2π)2

1
k2 e−ip·x

= 1
2π

ln(|x|μ), (5.25)

where μ is an infrared cutoff. (When we come to string theory this propagator, with its
infrared sensitivity, will play a crucial role.) Correspondingly, the fermion propagator is

〈ψ̄(x + ε)ψ(x)〉 =�∂〈φ(x)φ(0)〉 = 1
2π

�ε
ε2 . (5.26)

Expanding the factor in the exponential to order ε gives

∂μjμ5 = classical term + i
2π
∂μερAρ Tr

( �ε
ε2 γ

μγ 5
)

. (5.27)

Evaluating the trace gives εμνεν ; averaging ε over angles (〈εμεν〉 = 1
2ημνε

2) yields

∂μjμ5 = 1
2π
εμνFμν . (5.28)
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83 5.2 A two-dimensional detour

This is parallel to the situation in four dimensions. The divergence of the current is itself
a total derivative:

∂μ jμ5 = 1
2π
εμν∂

μAν . (5.29)

So, it is possible to define a new current which is conserved:

Jμ = jμ5 − 1
2π
εμν Aν . (5.30)

However, just as in the four-dimensional case, this current is not gauge invariant. There
is a familiar field configuration for which A does not fall off at infinity: the field of a
point charge. If one has charges ±θ at infinity, they give rise to a constant electric field,
F0i = ±eθ . So θ has a very simple interpretation in this theory.

It is easy to see that the physics is periodic in θ . For θ > q it is energetically favorable
to produce a pair of charges from the vacuum which shield the charge at ∞.

5.2.2 Path integral computation of the anomaly

One can also do this calculation using the path integral, following Fujikawa. The
redefinition of the fields which eliminates the phase in the fermion mass matrix is, from
this point of view, just a change of variables. The question is: what is the Jacobian? The
Euclidean path integral is defined by expanding the fields:

ψ(x) =
∑

anψn(x), (5.31)

where

�Dψn(x) = λnψn(x) (5.32)

and the measure is ∫
� danda∗

n. (5.33)

Here, for normalized functions ψn,

an =
∫

d2xψ∗
n (x)ψ(x). (5.34)

So, under an infinitesimal γ5 transformation, we have

δψ = iθγ5ψ , (5.35)

δan = iθ
∫

d2xψn(x)γ5ψm(x)am. (5.36)

The required Jacobian is then

det
(
δnn′ + iθ

∫
d2x ψ̄n′γ5ψn

)
. (5.37)
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84 Anomalies, instantons and the strong CP problem

To evaluate this determinant we write det(M) = eTr log M. To linear order in θ , we need to
evaluate

Tr (iθγ5). (5.38)

This trace must be regularized. A simple procedure is to replace the determinant by

Tr
(

iθγ5e−λ2
n/M2

)
. (5.39)

At the end of the calculation we take M → ∞. We can replace λ2
n by

�D �D = D2 + 1
2
σμνFμν . (5.40)

Expanding in powers of Fμν , it is only necessary to work to first order (in the analogous
calculation in four dimensions, it is necessary to work to second order). In other words,
we expand the exponent to first order in Fμν and make the replacement D2 → p2. The
required trace is given by

iθ
∫ d 2p

p 2 Tr(γ5σμν)
Fμν

M
e−p2/M2

. (5.41)

The trace in this expression now just refers to a trace over the Dirac indices. The
momentum integral is elementary, and we obtain∫

� danda∗
n →

∫
� danda∗

n exp

(
i
θ

2π

∫
d2 x εμνFμν

)
. (5.42)

Interpreting the divergence of the current as the variation of the effective Lagrangian, we
see that we have recovered the anomaly equation (5.15). The anomaly in four and other
dimensions can also be calculated in this way. The exercises at the end of the chapter
provide more details of these computations.

5.2.3 The CPN model: an asymptotically free theory

The model we have considered so far is not quite like QCD in at least two ways. First, there
are no instantons; second, the coupling e is dimensionful. We can obtain a theory closer to
QCD by considering a class of theories with dimensionless couplings, the non-linear sigma
models. These are models whose fields are the coordinates of some smooth manifold. They
can be, for example, the coordinates of an n-dimensional sphere. An interesting case is the
CPN model; here the CP stands for “complex projective” space. This space is described
by a set of coordinates zi, i = 1, . . . , N + 1, where zi is identified with αzi and α is any
complex constant. Alternatively, we can define the space through the constraint∑

i
|zi|2 = 1, (5.43)

where the point zi is equivalent to eiαzi. In the field theory, the zis become two-dimensional
fields zi(x). To implement the first constraint, we can add to the action a Lagrange multiplier
field λ(x). For the second, we observe that the identification of points in the “target space”
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85 5.2 A two-dimensional detour

CPN must hold at every point in ordinary space–time, so this is a U(1) gauge symmetry.
Introducing a gauge field Aμ and the corresponding covariant derivative, we want to study
the Lagrangian

L = 1
g2

[
|Dμzi|2 − λ(x)(|zi|2 − 1)

]
. (5.44)

Note that there is no kinetic term for Aμ, so we can simply eliminate it from the action
using its equations of motion. This yields

L = 1
g2

(
|∂μzj|2 + |z∗

j ∂μzj|2
)

. (5.45)

It is easier, however, to proceed keeping Aμ in the action. In this case the action is quadratic
in z, and we can integrate out the z fields:

Z =
∫

[dA][dλ][dzj] exp(−S) =
∫

[dA][dλ] exp

(
−
∫

d2x�eff[A, λ]
)

=
∫

[dA][dλ] exp

(
−N Tr log(−D2 − λ)− 1

g2

∫
d2x λ

)
. (5.46)

5.2.4 The large-N limit

By itself, the result in Eq. (5.46) is still rather complicated. The fields Aμ and λ have non-
linear and non-local interactions. Things become much simpler if one takes the large-N
limit, N → ∞ with g2N fixed. In this case the interactions of λ and Aμ are suppressed
by powers of N. For large N the path integral is dominated by a single field configuration,
which solves

δ�eff

δλ
= 0, (5.47)

or, setting the gauge field to zero,

N
∫ d 2k
(2π)2

1
k2 + λ = 1

g2 . (5.48)

The integral on the left-hand side is ultraviolet divergent. We will simply cut it off at scale
M. This gives

λ = m2 = M exp

(
− 2π

g2N

)
. (5.49)

Here, a theory which is classically scale invariant exhibits a mass gap. This is the
phenomenon of dimensional transmutation. These masses are related in a renormalization-
group-invariant fashion to the cutoff. So the theory is quite analogous to QCD. We can
read off the leading term in the beta function from the familiar formula

m = M exp

(
−

∫ dg
β(g)

)
. (5.50)
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86 Anomalies, instantons and the strong CP problem

So, with

β(g) = − 1
2π

g3b0, (5.51)

we have b0 = 1.
Most important for our purposes is the question of θ -dependence. Just as in (1 + 1)-

dimensional electrodynamics we can introduce a θ term,

Sθ = θ

2π

∫
d2x εμνFμν . (5.52)

Here Fμν can be expressed in terms of the fundamental fields zj. As usual, this is the integral
of a total divergence. But, precisely as in the case of (1 + 1)-dimensional electrodynamics
discussed above, this term is physically important. In a perturbation theory approach to the
model, this is not entirely obvious; however, using our reorganization of the theory at large
N, it is. The lowest-order action for Aμ is trivial, but at one loop (order 1/N) a kinetic term
for A is generated through the vacuum polarization loop:

Lkin = N
2πm2 F 2

μν . (5.53)

At this order, then, the effective theory consists of the gauge field with coupling e2 =
2πm2/N and some coupling to a set of charged massive fields z. As we have already argued,
θ corresponds to a non-zero background electric field due to charges at infinity, and the
theory clearly has a non-trivial θ -dependence.

To this model one can add massless fermions. In this case one has an anomalous U(1)
symmetry, as in QCD. There is then no θ -dependence; by redefining the fermions according
to ψ → eiaθψ one can eliminate θ . In this model the absence of a θ -dependence can be
understood more physically: θ represents a charge at ∞, and it is possible to shield any such
charge with massless fermions. But there is a non-trivial breaking of the U(1) symmetry.
At low energies, one has now a theory with a fermion coupled to a dynamical U(1) gauge
field. The breaking of the associated U(1) symmetry in such a theory is a well-studied
phenomenon, which we will not pursue here.

5.2.5 The role of instantons

There is another way to think about the breaking of the U(1) symmetry and the
θ -dependence in this theory. If one considers the Euclidean functional integral, it is natural
to look for stationary points of the integration, i.e. for classical solutions of the Euclidean
equations of motion. Since they are potentially important it is necessary that these solutions
have a finite action, which means that they must be localized in Euclidean space and time.
For this reason, such solutions were dubbed “instantons” by ’t Hooft. Instantons are not
difficult to find in the CPN model; we will describe them below. These solutions carry
non-zero values of the topological charge,

1
2π

∫
d 2x εμνFμν = n, (5.54)
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and have an action 2πn. If we write zi = zi cl + δzi then the functional integral, in the
presence of a θ term, has the form

Zinst = e
−2πn

g2 einθ
∫

[dδzj] exp

(
−δzi

δ2S
δziδzj

δzj + · · ·
)

. (5.55)

It is easy to construct the instanton solution in the case of CP1. Rather than write the
theory in terms of a gauge field, as we have done above, it is convenient to parameterize
it in terms of a single complex field Z. One can, for example, define Z as z1/z2 and let Z̄
denote its complex conjugate. Then, with a bit of algebra, one can show that the action for
Z which follows from Eq. (5.45) takes the following form (it is easiest to work backwards,
starting with the equation below and deriving Eq. (5.45)):

L = ∂μZ∂μZ̄
(1 + Z̄Z)2

. (5.56)

The function

gZZ̄ = 1
(1 + Z̄Z)2

(5.57)

has an interesting significance. There is a well-known mapping of the unit sphere x2
1 +x2

2 +
x2

3 = 1 onto the complex plane:

z = x1 + ix2

1 − x3
. (5.58)

The inverse is

x1 = z + z̄
1 + |z|2 , x2 = z − z̄

i(1 + |z|2) , x3 = |z|2 − 1
|z|2 + 1

. (5.59)

The line element on the sphere is mapped in a non-trivial way onto the plane:

ds2 = dx2
1 + dx2

2 + dx3
3 = gzz̄dzdz̄ = 1

(1 + z̄z)z
dzdz̄. (5.60)

So, the model describes a field that is constrained to move on a sphere; g is the metric of
the sphere. In general, such a model is called a non-linear sigma model. This is an example
of a Kahler geometry, a type of geometry which will figure significantly in our discussion
of string compactification.

It is straightforward to write down the equations of motion:

∂2ZgZZ̄ + ∂μZ
(
∂μZ̄

∂g
∂Z̄

+ ∂μφ ∂g
∂Z

)
= 0, (5.61)

or

∂z∂z̄Z − 2∂zZ∂z̄Z̄
1 + Z̄Z

= 0. (5.62)

Now using space–time coordinates z = x1 + ix2, z̄ = x1 − ix2, we see that if Z is anti-
analytic then the equations of motion are satisfied! So a simple solution, which, as you can
check, has finite action, is

Z(z̄) = ρ z̄. (5.63)
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88 Anomalies, instantons and the strong CP problem

In addition to evaluating the action you can evaluate the topological charge,
1

2π

∫
d 2x εμνFμν = 1, (5.64)

for this solution. More generally, the topological charge measures the number of times that
Z maps the complex plane into the complex plane; Z = zn has charge n.

We can generalize these solutions. The solution of Eq. (5.63) breaks several symmetries
of the action: translation invariance, two-dimensional rotational invariance and the scale
invariance of the classical equations. So we should be able to generate new solutions by
translating, rotating and dilating the solution. You can check that

Z(z) = az + b
cz + d

(5.65)

is a solution with action 2π . The parameters a, . . . , d are called collective coordinates. They
correspond to the symmetries of translations, dilations and rotations and special conformal
transformations (forming the group SL(2, C)). In other words, any given finite-action
solution breaks the symmetries. In the path integral the symmetry of Green’s functions
is recovered when one integrates over the collective coordinates. For translations this is
particularly simple. Integrating over x0, the instanton position,

〈Z(x)Z(y)〉 ≈
∫

d 2x0 φcl(x − x0)φcl(y − x0)e−S0 . (5.66)

(The precise measure is obtained by the Faddeev–Popov method.) Similarly, integration
over the parameter ρ yields a factor∫

dρ ρ−1 exp

(
− 2π

g2(ρ)

)
. (5.67)

Here the first factor follows on dimensional grounds. The second follows from
renormalization-group considerations. It can be found by explicit evaluation of the
functional determinant. Note that, because of asymptotic freedom, this means that typical
Green’s functions will be divergent in the infrared.

There are many other features of this instanton that one can consider. For example, one
can add massless fermions to the model; the resulting theory has a chiral U(1) symmetry,
which is anomalous. The instanton gives rise to non-zero Green’s functions, which violate
the U(1) symmetry. We will leave investigation of fermions in this model to the exercises
and turn to the theory of interest, which exhibits phenomena parallel to this simple theory.

5.3 Real QCD

The model of the previous section mimics many features of real QCD. Indeed, we will see
that much of our discussion can be carried over, almost word for word, to the observed
strong interactions. This analogy is helpful, given that in QCD we have no approximation
which gives us control over the theory comparable with that which we found in the large-N
limit of the CPN model. As in that theory, we have the following.
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89 5.3 Real QCD

• There is a θ parameter, which appears as an integral over the divergence of a non-gauge
invariant current.

• There are instantons, which indicate that physical quantities should be θ -dependent.
However, instanton effects cannot be considered in a controlled approximation, and there
is no clear sense in which θ -dependence can be understood as arising from instantons.

• In QCD there is also a large-N expansion but, while it produces significant simplification,
one cannot solve the theory even in the leading large-N approximation. Instead, an
understanding of the underlying symmetries, and experimental information about chiral
symmetry breaking, provides critical information about the behavior of the strongly
coupled theory and allows computations of the physical effects of θ .

5.3.1 The theory and its symmetries

In order to understand the effects of θ it is sufficient to focus on the light quark sector of
QCD. For simplicity in writing down some of the formulas, we will consider a simplified
theory with two light quarks; it is not difficult to generalize the resulting analysis to the
case of three. It is believed that the masses of the u and d quarks are of order 5 MeV
and 10 MeV, respectively, much smaller than the scale of QCD. So we first consider an
idealization of the theory in which these masses are set to zero. In this limit, the theory has
a symmetry SU(2)L × SU(2)R. Calling

q =
(

u
d

)
, q̄ =

(
ū
d̄

)
, (5.68)

the two SU(2) symmetries act separately on q and q̄ (thought of as left-handed fermions),

qT → qTUL, q̄ → URq̄. (5.69)

This symmetry is spontaneously broken. The order parameter for the symmetry breaking
is believed to be an expectation value for the quark bilinear product:

M = q̄q. (5.70)

Under the original symmetry,

M → URMUL. (5.71)

The expectation value (condensate) of M is

〈M〉 = c�3
QCD

(
1 0
0 1

)
. (5.72)

This breaks some of the original symmetry but preserves the symmetry UL = UR. This
symmetry is just the SU(2) isospin symmetry. The Goldstone bosons associated with the
three broken symmetry generators must transform in a representation of the unbroken
symmetry: these are the pions, which an form isospin vector. One can think of the
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90 Anomalies, instantons and the strong CP problem

Goldstone bosons as being associated with a slow variation of the expectation value in
space, so we can introduce

M = q̄q = M0 exp

[
i
πa(x)τa

fπ

](
1 0
0 1

)
(5.73)

The quark mass term in the Lagrangian is then (for simplicity taking mu = md = mq)

mqM. (5.74)

Replacing M by the expression (5.73) gives a potential for the pion fields. Expanding M
in powers of π/fπ , the minimum of the potential occurs for πa = 0. Expanding to second
order, one has

m2
π f 2
π = mqM0. (5.75)

We have been a bit cavalier about the symmetries. The theory also has two U(1)
symmetries:

q → eiαq, q̄ → eiα q̄, (5.76)
q → eiαq, q̄ → e−iα q̄. (5.77)

The first of these is baryon number symmetry and it is not chiral (and is not broken by the
condensate). The second is the axial U(1)5 symmetry; it is broken by the condensate. So,
in addition to the pions there should be another approximate Goldstone boson. But there is
no good candidate among the known hadrons. The η has the right quantum numbers but, as
we will see below, it is too heavy to be interpreted in this way. The absence of this fourth
(or, in the case of three light quarks, ninth) Goldstone boson is called the U(1) problem.

The U(1)5 symmetry suffers from an anomaly, however, and we might hope that this
has something to do with the absence of a corresponding Goldstone boson. The anomaly
is given by

∂μ jμ5 = 1
16π2 FF̃. (5.78)

Again, we can write the right-hand side as a total divergence

FF̃ = ∂μKμ, (5.79)

where

Kμ = εμνρσ

(
Aa
νF

a
ρσ − 2

3
f abcAa

νA
b
ρAc
σ

)
. (5.80)

This accounts for the fact that in perturbation theory the axial U(1) symmetry is conserved.
Non-perturbatively, as we will now show, there are important configurations in the
functional integral for which the right-hand side does not vanish rapidly at infinity.
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91 5.3 Real QCD

5.3.2 Instantons in QCD

In the Euclidean functional integral

Z =
∫

[dA][dq][dq̄]e−S (5.81)

it is natural to look for stationary points of the effective action, i.e. finite-action classical
solutions of the theory in imaginary time. The Yang–Mills equations are complicated non-
linear equations, but it turns out that, much as in the CPN model, the instanton solutions
can be found rather easily. The following tricks simplify the construction and turn out to
yield the general solution. First, note that the Yang–Mills action satisfies an inequality, the
Bogomol’nyi bound:∫

(F ± F̃)2 =
∫
(F2 + F̃2 ± 2FF̃) =

∫
(2F2 ± 2FF̃) ≥ 0. (5.82)

So, the action is bounded by | ∫ FF̃|, the bound being saturated when

F = ±F̃, (5.83)

i.e. if the gauge field is (anti-)self-dual.1 This equation is a first-order equation, and it is
easy to solve if one first restricts to an SU(2) subgroup of the full gauge group. One makes
the ansatz that the solution should be invariant under a combination of ordinary rotations
and global SU(2) gauge transformations. Take

g(x) = x4 + i�x · �τ
r

(5.84)

and

Aμ = f(r2)g∂μg−1. (5.85)

Then, substituting in to the Yang–Mills equations yields

f = −ir2

r2 + ρ2 , (5.86)

where ρ is an arbitrary quantity with dimensions of length. The choice of origin here is
also arbitrary; this can be remedied by simply replacing x by x − x0 everywhere in these
expressions, where x0 represents the location of the instanton.

From this solution, it is clear why
∫
∂μKμ does not vanish for the solution: while A is a

pure gauge at infinity, it falls only as 1/r. Indeed, since F = F̃, for this solution we have∫
F 2 =

∫
d 4x4F̃2 = 32π2. (5.87)

1 This is not an accident, nor was the analyticity condition in the CPN case. In both cases we can add fermions
so that the model becomes supersymmetric. Then one can show that if some supersymmetry generators Qα
annihilate a field configuration then the configuration is a solution. This is a first-order condition; in the Yang–
Mills case it implies self-duality and in the CPN case it requires analyticity.
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92 Anomalies, instantons and the strong CP problem

This result can also be understood topologically. Note that g defines a mapping from the
“sphere at infinity” into the gauge group. It is straightforward to show that

1
32π2

∫
d 4x FF̃ (5.88)

counts the number of times that g maps the sphere at infinity into the group (once for this
specific example; n times more generally). In the exercises and suggested reading, features
of the instanton are explored in more detail.

The expression in Eq. (5.85) is, by its nature, gauge-dependent and other presentations
of the solution are sometimes convenient. For example, if one formally transforms by g−1,
one obtains a solution which falls more rapidly to zero but which is singular at the origin.

The instanton was presented by ’t Hooft in a fashion which is often more useful for
actual computations. Defining the symbol η as follows,

ηaij = εaij, ηa4i = −ηai4 = −δai, η̄aμν = (−1)δaμ+δaν ηaμν , (5.89)

the instanton takes the simple form

Aa
μ = 2ηaμνxν

x2 + ρ2 (5.90)

while the field strength is given by

F a
μν = 4ηaμνρ

2

(x2 + ρ2)2
. (5.91)

That this configuration solves the equations of motion follows from

ηaμν = 1
2
εμναβηaαβ . (5.92)

The alert reader will note that the η symbols are connected to the embedding of SU(2) of
the gauge group into an SU(2) subgroup of O(4) = SU(2)×SU(2). This can be understood
by noting that

ηaμν = 1
2

Tr(σ aσμν), η̄ = Tr(σ aσ̄μν). (5.93)

In this form it is easy to check that F = F̃, so the equations are satisfied. Note the 1/r
falloff of Aμ, as opposed to the 1/r4 falloff of Fμν .

So, we have exhibited potentially important contributions to the path integral which
violate the U(1) symmetry. How does this symmetry violation show up? Let us consider
the path integral more carefully. Having found a classical solution, we want to integrate
over small fluctuations over it. Including the θ term these have the form

〈ūud̄d〉 = e−8π2/g2
eiθ

∫
[dδA][dq][dq̄] exp

(
− δ

2S
δA2 δA

2 − Sq,q̄

)
ūud̄d. (5.94)

Now S contains an explicit factor 1/g2. As a result the fluctuations are formally suppressed
by g2 relative to the leading contribution. The one-loop functional integral yields a product
of determinants for the fermions and a product of inverse square root determinants for the
bosons.

Consider the integral over the fermions. It is straightforward, if challenging, to evaluate
the determinants. However, if the quark masses are zero then the fermion functional
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integrals are also zero, because there is a zero mode for each of the fermions, i.e. for
both q and q̄ there is a normalizable solution of the equations

�Du = 0, �Dū = 0 (5.95)

and similarly for d and d̄. It is straightforward to construct the solutions

u = ρ

[ρ2 + (x − x0)2]3/2 ζ , (5.96)

where ζ is a constant spinor, and similarly for ū, etc.
Let’s understand this a bit more precisely. Euclidean path integrals are conceptually

simple. Consider some classical solution, �cl(x) (here � denotes collectively the various
bosonic fields; we will treat, for now, the fermions as vanishing in the classical solutions).
In the path integral, at small coupling we are interested in small fluctuations about the
classical solution,

� = �cl + δ�. (5.97)

Because the action is stationary at the classical solution,

S = Scl +
∫

d 4x δ�
∂2L
∂�2 δ�+ · · · . (5.98)

The second derivative here is a shorthand for a second-order differential operator, which we
will simply denote by S′′ and refer to as the quadratic fluctuation operator. We can expand
δ� in (normalizable) eigenfunctions of this operator �n with eigenvalues λn, � = cn�n.
The result of the functional integral is then

∏
λ

−1/2
n . This is the leading correction to

the classical limit. Higher-order corrections are suppressed by powers of g2. This is most
easily seen by working in the scaling where the action has a factor 1/g2. Then one can
derive the perturbation theory from the path integral in the usual way; the main difference
from the usual treatment with zero background fields is that the propagators are more
complicated. The propagators for various fields in the instanton background are in fact
known in closed form.

The form of the differential operator is familiar from our calculation of the beta function
in the background field method (using the background field gauge). For the gauge bosons,
in a suitable (background field) gauge it is

S′′ = D2 + JμνFμν . (5.99)

Here D is just the covariant derivative, the vector potential corresponds to the classical
solution (an instanton) and similarly for the field strength; Jμν is the generator of Lorentz
transformations in the vector representation. The eigenvalue problem was completely
solved by ’t Hooft.

Both the bosonic and fermionic quadratic fluctuation operators have zero eigenvalues.
For the bosons, these potentially give infinite contributions to the functional integral and
they must be treated separately. The difficulty is that among the variations of the fields
are symmetry transformations, which comprise changes in the location of the instanton
(translations), rotations of the instanton and scale transformations. Consider translations.
For every solution there corresponds an infinite set of other solutions obtained by shifting
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94 Anomalies, instantons and the strong CP problem

the origin (varying x0). Thus, instead of integrating over a coefficient c0, we integrate
over the collective coordinate x0 (one must also include a suitable Jacobian factor). The
effect of this is to restore translational invariance in the Green’s functions. We will see
this explicitly shortly. Similarly, the instanton breaks the rotational invariance of the
theory; correspondingly, we can find a three-parameter set of solutions and zero modes.
Integrating over these rotational collective coordinates restores rotational invariance. (The
instanton also breaks a global gauge symmetry, but a combination of rotations and gauge
transformations is preserved.)

Finally, the classical theory is scale invariant; this is the origin of the parameter ρ in the
solution. Again, one must treat ρ as a collective coordinate and integrate over ρ. There is
a power of ρ arising from the Jacobian, which can be determined on dimensional grounds.
For the Green’s function Eq. (5.90), for example, which has dimension six, we have (if all
the fields are evaluated at the same point),∫

dρ ρ−7. (5.100)

However, there is additional ρ-dependence because the quantum theory violates scale
symmetry. This can be understood by replacing g2 by g2(ρ) in the functional integral and
using

e−8π2g2(ρ) ≈ (ρM)b0 (5.101)

for small ρ. For three-flavor QCD, for example, b0 = 9 and the ρ integral diverges for
large ρ. This relation simply states that the integral is dominated by the infrared, where the
QCD coupling becomes strong.

Fermion functional integrals introduce a new feature. In four-component language, it
is necessary to treat q and q̄ as independent fields. This rule gives the functional integral
as a determinant rather than as, say, the square root of a determinant. (In two-component
language, this corresponds to treating q and q∗ as independent fields.) So, at the one-loop
order, we need to study

�Dqn = λnqn, �Dq̄n = λnq̄n. (5.102)

For non-zero λn there is a pairing of solutions with opposite eigenvalues of γ5. In four-
component notation one can see this from

�Dqn = λnqn → �Dγ5qn = −λnγ5qn. (5.103)

Zero eigenvalues, however, are special. There is no corresponding pairing. This has
implications for the fermion functional integral. Writing

q(x) =
∑

anqn(x), (5.104)

S =
∑

λna∗
nan (5.105)

we have ∫
[dq][dq̄]e−S =

∞∏
n=0

danda∗
n exp

⎛⎝−
∑
n �=0

λna∗
nan

⎞⎠. (5.106)
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95 5.3 Real QCD

Because the zero modes do not contribute to the action, many Green’s functions vanish.
For example, 〈1〉 = 0. In order to obtain a non-vanishing result, we need enough insertions
of q to “soak up” all the zero modes.

We have seen that, in the instanton background, there are normalizable fermion zero
modes, one for each left-handed field. This means that, in order for the path integral to be
non-vanishing, we need to include insertions of enough qs and q̄s to soak up all the zero
modes. In other words, in two-flavor QCD, non-vanishing Green’s functions have the form

〈ūud̄d〉 (5.107)

and violate the symmetry. Note that the symmetry violation is just as predicted from the
anomaly equation,

�Q5 = 2
16π2

∫
d 4xFF̃ = 4. (5.108)

This is a particular example of an important mathematical theorem known as the Atiyah–
Singer index theorem.

We can put all this together to evaluate a Green’s function which violates the classical
U(1) symmetry of the massless theory, 〈ū(x)u(x)d̄(x)d(x)〉. Taking the gauge group to be
SU(2) there is one zero mode for each of u, ū, d and d̄. The fields in this expectation value
can soak up all these zero modes. The effect of the integration over x0 is to give a result that
is independent of x, since the zero modes are functions only of x − x0. The integration over
the rotational zero modes gives a non-zero result only if the Lorentz indices are contracted
in a rotationally invariant manner (the same applies to the gauge indices). The integration
over the instanton scale size – the conformal collective coordinate – is more problematic,
exhibiting precisely the infrared divergence of Eq. (5.100).

So, we have provided some evidence that the U(1) problem is solved in QCD, but no
reliable calculation. What about the θ -dependence? Let us ask first about the θ -dependence
of the vacuum energy. In order to get a non-zero result, we need to allow that the quarks
are massive. Treating the mass as a perturbation, we obtain a result of the form

E(θ) = C�9
QCDmumd cos θ

∫
dρ ρ−3ρ9. (5.109)

So, as in the CPN model, we have evidence for θ -dependence but cannot do a reliable
calculation. That we cannot do a calculation should not be a surprise. There is no small
parameter in QCD to use as an expansion parameter. Fortunately, we can use other facts
which we know about the strong interactions to get a better handle on both the U(1)
problem and the θ -dependence question.

Before continuing, however, let us consider the weak interactions. Here there is a small
parameter and there are no infrared difficulties, so we might expect instanton effects to be
small. The analog of the U(1)5 symmetry in this case is baryon number. Baryon number
has an anomaly in the standard model, since all the quark doublets have the same sign of
the baryon number. ’t Hooft showed that one could actually use instantons, in this case, to
compute the violation of baryon number. Technically, there are no finite-action Euclidean
solutions in this theory; this follows, as we will see in a moment, from a simple scaling
argument. However, ’t Hooft realized that one can construct important configurations
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having non-zero topological charge by starting with the instantons of the pure gauge theory
and perturbing them. For the Higgs boson, one solves the equation

D2φ = V′(φ). (5.110)

For a light boson, one can neglect the right-hand side. Then this equation is solved by

φ(x) = iσ̄ μxμ
(

1
x2 + ρ2

)1/2
〈φ〉. (5.111)

Note that at large x, this has the form g(x)〈φ〉. As a result, the action of the configuration
is finite. One finds the following correction to the action:

δS = 1
g2 v2ρ2. (5.112)

Including this in the exponential damps the ρ integral at large ρ, and leads to a convergent
result.

Now including the fermions, there is a zero mode for each SU(2) doublet. So, one obtains
a non-zero expectation value for correlation functions of the form 〈QQQLLL〉, where the
color and SU(2) indices are contracted in a gauge-invariant way and the flavors for the Qs
and Ls are all different. The coefficient is

Abv = C e−2π/αw . (5.113)

From this, one can see that baryon number violation occurs in the Standard Model but at
an incredibly small rate. One can also calculate a term in the effective action, involving
three quarks and three leptons, with a similar coefficient by studying Green’s functions in
which all the fields are widely separated. We will encounter this sort of computation later,
when we discuss instantons in supersymmetric theories.

5.3.3 Physical interpretation of the instanton solution

We have derived dramatic physical effects from the instanton solution by direct calculation,
but we have not provided a physical picture of the phenomena that the instanton describes.
Already in quantum mechanics imaginary-time solutions of the classical equations of
motion are familiar in the Wentzel–Kramers–Brillouin (WKB) analysis of tunneling, and
the Yang–Mills instanton (and the CPN instanton) also describe tunneling phenomena. In
this subsection we will confine our attention to pure gauge theories. The generalization to
theories with fermions and/or scalars is straightforward and interesting.

To understand the instanton in terms of tunneling, it is helpful to work in a non-covariant
gauge, in which there is a Hamiltonian description. The gauge A0 = 0 is particularly useful.
In this gauge the canonical coordinates are the Ais and their conjugate momenta are the Eis
(with a minus sign). This is too many degrees of freedom if all are treated as independent.
The resolution lies in the need to enforce Gauss’s law, which is now to be viewed as an
operator constraint on states. For example, in a U(1) theory,

G(�x)|�〉 = ( �∇ · �E − ρ)|�〉 = 0. (5.114)
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The left-hand side is almost the generator of gauge transformations. On the gauge fields,
for example,[∫

d3xω(�x)G(�x), Ai(�y)
]
= −

∫
d3x ∂jω(�x)[E(�x)j, A(�y)i] = ∂iω(�y). (5.115)

In the second step we have integrated by parts and dropped a possible surface term.
This requires that ω → 0 fast enough at infinity. Such gauge transformations are called
“small”. We have learned that, in the A0 = 0 gauge, states must be invariant under time-
independent, small, gauge transformations.

In electrodynamics this is not particularly interesting. But the same manipulations hold
in non-Abelian theories, and in this case there are interesting large gauge transformations.
An example is

g(�x) = exp
(

iπ
�x · �σ√�x2 + a2

)
. (5.116)

We can also consider powers gn of g. We can think of g as mapping three-dimensional
space into the group SU(2). The number of times that the mapping wraps around the gauge
group is known as the winding number, and it can be written as

n = 1
24π2

∫
d3x εijk Tr(∂ig∂jg∂kg). (5.117)

However, gn is not unique; we can multiply by any small gauge transformation without
changing n. The zero-energy states consist of Ai = ig−n∂ign averaged over the small gauge
transformations in such a way as to make them invariant.

With just a little algebra one can show that n = ∫
d3xK0, where Kμ is the topological

current encountered in Eq. (5.80). So an instanton, in A0 = 0 gauge, corresponds to a
tunneling between states of different n. More precisely, there is a non-zero matrix element
of the Hamiltonian between states of different n,

〈n|H|n ± 1〉 = ε. (5.118)

This is analogous to the situation in crystals, and the energy eigenstates are similar to Bloch
waves,

|θ〉 =
∑

n
einθ |n〉, (5.119)

with energy ε cos θ . This θ is precisely the quantity which entered as a parameter in the
Lagrangian.

5.3.4 QCD and the U(1) problem

In real QCD we have seen that, on the one hand, instanton configurations violate the
axial U(1) symmetry. In general, there is no small parameter which governs the size
of this breaking, so there is no reason to expect a light (pseudo)Goldstone. Consistent
with this, explicit calculations are infrared divergent. Again, this is not a surprise; there
is no small parameter which would justify the use of a semiclassical approximation, but
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the instanton analysis we have described makes clear that there is no reason to expect
that there is a light Goldstone boson. Actually, while there is no obvious reason why
perturbative and semiclassical (instanton) techniques should give reliable results, there are
two approximation method techniques available. The first is for large N, where one now
allows the N of SU(N) to be large, with g2N fixed. In contrast with the case of CPN, this
does not give enough simplification to permit explicit computations, but it does allow one
to make qualitative statements about the theory. Witten has pointed out a way in which one
can relate the mass of the η (or η′ if one is thinking in terms of SU(3) × SU(3) current
algebra) to quantities in a theory without quarks. The anomaly is then an effect suppressed
by a power of N, in the large-N limit, because the loop diagram contains a factor g2 but not
a factor N. So, for large N it can be treated as a perturbation and the η is almost massless.
The quantity ∂μjμ5 acts as a creation operator for η (just as ∂μjμ 3

5 is a creation operator for
the π meson), so one can compute the mass if one knows the correlation function at zero
momentum,

〈
∂μ jμ5 (x)∂μ jμ5 (y)

〉 ∝ 1
N 2 〈F(x)F̃(x)F(y)F̃(y)〉. (5.120)

To leading order in the 1/N expansion, the FF̃ correlation function can be computed
in the theory without quarks. Witten argued that, while it vanishes order by order in
perturbation theory, there is no reason that this correlation function need vanish in the
full theory. Attempts have been made to compute this quantity both in lattice gauge theory
and using the anti-de Sitter–conformal-theory (AdS–CFT) correspondence discovered in
string theory and discussed later in this text. Both methods give promising results.

So, the U(1) problem should be viewed as solved, in the sense that in the absence of any
argument to the contrary, there is no reason to think that there should be an extra Goldstone
boson in QCD.

The second approximation scheme which gives some control of QCD is known as chiral
perturbation theory. The masses of the u, d and s quarks are small compared with the QCD
scale, and the mass terms for these quarks in the Lagrangian can be treated as perturbations.
This will figure in our discussion in the next section.

5.4 The strong CP problem

5.4.1 The θ -dependence of the vacuum energy

The assumption that the anomaly resolves the U(1) problem in QCD raises another issue.
Given that

∫
d4x FF̃ has physical effects, a θ term in the action has physical effects as well.

Since this term is CP odd, this means that there is the potential for strong CP-violating
effects. These effects should vanish in the limit of zero quark mass since, in this case, by a
field redefinition we can remove θ from the Lagrangian. In the presence of quark masses,
the θ -dependence of many quantities can be computed. Consider, for example, the vacuum
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energy. In QCD, the quark mass term in the Lagrangian has the form

Lm = muūu + mdd̄d + h.c. (5.121)

Were it not for the anomaly we could, by redefining the quark fields, take mu and md to be
real. Instead, we can define these fields in such a way that there is no θFF̃ term in the action
but a phase in mu and md. Clearly, we have some freedom in making this choice. In the
case where mu and md are equal, it is natural to choose these phases to be the same. We will
explain shortly how one proceeds when the masses are different (as they are in nature). So

Lm = (muūu + mdd̄d )eiθ + h.c. (5.122)

Now we want to treat this term as a perturbation. At first order, it makes a contribution
to the ground-state energy proportional to its expectation value. We have already argued
that the quark bilinear forms have non-zero vacuum expectation values, so

E(θ) = (mu + md) cos θ〈q̄q〉. (5.123)

While without a difficult non-perturbative calculation we cannot calculate the separate
quantities on the right-hand side of this expression, we can, using current algebra, relate
them to measured quantities. It is shown in Appendix B that

mπ2 fπ2 = Tr (Mq〈M〉) = (mu + md)〈q̄q〉. (5.124)

Replacing the quark mass terms in the Lagrangian by their expectation values, we can
immediately read off the energy of the vacuum as a function of θ :

E(θ) = m2
π f 2
π cos θ . (5.125)

This expression can readily be generalized to the case of three light quarks, by similar
methods. So, we see that there is real physics in θ even if we do not understand how to do
an instanton calculation. In the next section we will calculate a more interesting quantity:
the neutron electric dipole moment as a function of θ .

5.4.2 The neutron electric dipole moment

The most interesting physical quantities to study in connection with CP violation are
electric dipole moments, particularly that of the neutron, dn. If CP were badly violated
in strong interactions, one might expect dn ≈ e fm ≈ 10−14 cm (here e is the electron
charge). But the experimental limit on the dipole moment is striking,

dn < 10−25 e cm. (5.126)

Using current algebra the leading contribution to the neutron electric dipole moment due
to θ can be calculated, and one obtains a limit θ < 10−9. Here we outline the main steps in
the calculation; I urge you to work out the details following the reference in the suggested
reading. We will simplify the analysis by working in an exact SU(2)-symmetric limit, i.e.
by taking mu = md = m. We again treat the Lagrangian of Eq. (5.122) as a perturbation.
We can understand how this term depends on the π fields by making an axial SU(2)
transformation on the quark fields. In other words, a background π field can be thought
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π

N N

Fig. 5.2 Diagram in which CP-violating coupling of the pion contributes a newtron electric dipole moment dn.

of as a small chiral transformation on the vacuum. Then, for example, for the τ3 direction,
q → (1 + iπ3τ3)q (the π field parameterizes the transformation), so the action becomes

m
fπ
π3(q̄γ5q + θ q̄q). (5.127)

The second term gives rise to a CP-violating coupling, ḡπNNπ
aN̄τ aN, of the pions and

nucleons N. This is related to the matrix elements of q̄τ aq between nucleons. These, in
turn, can be estimated by noting that at zero moment they are the matrix elements of an
isospin charge operator between nucleons. The latter matrix elements can be estimated
using the Gell-Mann and Ne’eman SU(3) symmetry (a similar operator with coefficient ms
is responsible for the splitting between the members of the baryon octet). One obtains, in
this way,

ḡπNN ≈ −θ (m� − mN)mumd
2fπ (mu + md)ms

≈ 0.38. (5.128)

This coupling is difficult to measure directly, but it gives rise, in a calculable fashion, to
a neutron electric dipole moment. Consider the graph of Fig. 5.2. This graph generates a
neutron electric dipole moment, if we take one coupling to be the standard pion–nucleon
coupling and the other the coupling we have computed above. The resulting Feynman
graph is infrared divergent; we cut this off at mπ while cutting off the integral in the
ultraviolet at the QCD scale. The low-energy calculation is reliable in the limit that mπ
is small, so that ln(mπ/�QCD) is large compared to unity. The result is

dn = gπNNḡπNN
4π2mN

ln
MN
mπ

. (5.129)

The matrix element can be estimated using the SU(3) symmetry of Gell-Mann and
Ne’eman, as mentioned above, yielding dn = 5.2 × 10−16θ cm. The experimental bound
gives θ < 10−9–10−10. Understanding why CP violation is so small in strong interactions
is known as the strong CP problem.

5.5 Possible solutions of the strong CP problem

What should our attitude towards this problem be? We might argue that, on the one hand,
some Yukawa couplings are as small as 10−5, so why is 10−9 so bad? On the other
hand, we suspect that the smallness of the Yukawa couplings is related to approximate
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symmetries, and that these Yukawa couplings are telling us something. Perhaps there is
some explanation of the smallness of θ , and perhaps this is a clue to new physics. In
this section we review some of the solutions which have been proposed to understand the
smallness of θ .

5.5.1 Zero u quark mass

Suppose that the mass of the u quark were zero. In this case, by a field redefinition of the u
quark

u → e−iθu, (5.130)

one could make the θ term vanish as a consequence of the anomaly. This would be a simple
enough explanation, but there are two issues. First, why should we make this redefinition?
We might imagine that it is the result of a symmetry, but this symmetry cannot be a real
symmetry of the underlying theory since it is violated by QCD (through the anomaly). We
will see later in this book that discrete symmetries, with anomalies of the kind required
to understand a vanishing u quark mass, do in fact frequently arise in string theory. So,
perhaps this sort of explanation is plausible. We would not, then, expect that the u quark
mass should be exactly zero but, instead, examining our formula for the neutron electric
dipole moment, we would require that the ratio mu/md should be less than about 10−10.

As we described in Chapter 3, however, lattice gauge theory computations establish a
non-zero value of the u quark mass with large statistical significance. It is worth noting
why researchers in the past contemplated this possibility. Examining the mass spectrum of
the pseudoscalar mesons, using the methods of current algebra or chiral Lagrangians (we
will discuss these further in Chapter 8), one obtains mu/md ≈ 0.5. The question, however,
is which mass values should actually appear in this formula? In particular, in a theory in
which mu = 0 at some high scale, instantons will generate a non-zero mass for mu at lower
scales. The resulting expression is infrared divergent, but we take as the main lesson that
it is proportional to mdms. Because ms is not so different from the characteristic scales of
QCD, one might imagine that an effective mass of the needed size could be found. It is this
possibility which has been excluded by modern lattice computations.

5.5.2 Spontaneous CP violation

Suppose that the underlying theory respects CP and that the observed CP violation is
spontaneous. Because θ is CP odd, the underlying theory has θ = 0. One might hope that
this feature would be preserved when the symmetry is spontaneously broken. Satisfying
this condition and simultaneously generating an order-one CP-violating angle in the CKM
matrix is a model-building challenge which we will not review here. Suffice it to say that
this can be achieved at tree level. However, existing realizations rely on model-building
cleverness and do not have a clear conceptual basis. So, one must ask how plausible is this
possibility, and does it survive quantum corrections.

There are a number of ways in which θ might be generated in the low-energy theory.
First, suppose that CP is broken by the expectation value of a complex field�. There might
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well be direct couplings such as

1
16π2 (Im�)F F̃. (5.131)

Note that�might also couple to fermions, giving them a large mass through its expectation
value. When these fermions are integrated out this would also generate an effective θ .
This is likely, simply because of the anomalous field redefinitions which may be required
to make the masses of these fields real. There do exist, however, models which, while
complicated, meet the requirements of small θ .

5.5.3 The axion

Perhaps the most compelling explanation of the smallness of θ involves a hypothetical
particle called the axion. We present here a slightly updated version of the original idea of
Peccei and Quinn.

Consider the vacuum energy as a function of θ (Eq. (5.123)). This energy has a minimum
at θ = 0, i.e. at the CP-conserving point. As Weinberg noted long ago, this is almost
automatic: points of higher symmetry are necessarily stationary points. As it stands this
observation is not particularly useful, since θ is a parameter, not a dynamical variable. But,
suppose that one has a field a with coupling to QCD:

Laxion = (∂μa)2 + a/fa + θ
32π2 FF̃, (5.132)

where fa is known as the axion decay constant. Suppose, in addition, that the rest of the
theory possesses a symmetry, called the Peccei–Quinn symmetry,

a → a + α (5.133)

for constant α. Then, by a shift in a one can eliminate θ . What we have previously called
the vacuum energy as a function of θ , E(θ), is now V(a/fa), the potential energy of the
axion. It has a minimum at θ = 0. The strong CP problem is solved.

One can estimate the axion mass by simply examining E(θ), (Eq. 5.125):

m2
a ≈ m2

π fπ2

f 2
a

. (5.134)

If fa ∼ TeV, this yields a mass of order keV. If fa ∼ 1016 GeV, this gives a mass of order
10−9 eV.

There are several questions one can raise about this proposal.

• Should the axion already have been observed? The couplings of the axion to matter
can be worked out in a given model in a straightforward way, using the methods of
current algebra (in particular non-linear Lagrangians). All the couplings of the axion
are suppressed by powers of fa. This is characteristic of a Goldstone boson. At zero
momentum a change in the field is like a symmetry transformation so, before including
the QCD effects which explicitly break the symmetry, axion couplings are suppressed
by powers of momentum over fa; QCD effects are suppressed by �QCD/fa. Thus if fa is
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large enough then the axion is difficult to see. The strongest limit turns out to come from
red giant stars. The production of axions is “semiweak”, i.e. it is suppressed only by one
power of fa rather than two powers of mW; as a result, axion emission is competitive
with neutrino emission until fa > 1010 GeV or so.

• As we will describe in more detail in Chapter 18, the axion could have been copiously
produced in the early universe. As a result there is an upper bound on the axion decay
constant, of about 1011 GeV. If this bound is saturated, the axion constitutes the dark
matter. We will discuss this bound in detail in Chapter 19.

• Can one search for the axion experimentally? Typically, the axion couples not only
to the FF̃ of QCD but also to the same object in QED. This means that in a strong
magnetic field an axion can convert to a photon. Precisely this effect is being searched
for by the ADMX experiment at the University of Washington. The basic idea is to
suppose that the dark matter in the halo of our galaxy consists principally of axions.
Using a (superconducting) resonant cavity with a high Q value in a large magnetic field,
one searches for the conversion of these axions into excitations of the cavity due to
the coupling of the axion to the electromagnetic field, FF̃ = �E · �B. The experiments
have already reached a level where they set interesting limits; the next generation of
experiments will cut a significant swath in the presently allowed parameter space.

• The coupling of the axion to FF̃ violates the shift symmetry; this is why the axion can
develop a potential. But this seems rather paradoxical: one is postulating a symmetry,
preserved to some high degree of approximation but which is not a symmetry: it is at
the least broken by tiny QCD effects. Is this reasonable? To understand the nature of the
problem, consider one of the ways in which an axion can arise. In some approximation
we can suppose that we have a global symmetry under which a scalar field φ transforms
as φ → eiαφ. Suppose, further, that φ has an expectation value. This could arise due to
a potential, V(φ) = −μ2|φ|2 + λ|φ|4. Associated with the symmetry breaking would be
a (pseudo)-Goldstone boson, a. We can parameterize φ as follows:

φ = faeia/fa , |〈φ〉| = fa. (5.135)

If this field couples to fermions, they gain mass from its expectation value. At one loop,
the same diagrams as those discussed in our anomaly analysis generate a coupling aFF̃,
from integrating out the fermions. This calculation is identical to the corresponding
calculation for pions discussed earlier. But we usually assume that global symmetries in
nature are accidents. For example, baryon number is conserved in the Standard Model
simply because there are no gauge-invariant renormalizable operators which violate the
symmetry. We believe it is violated by higher-dimensional terms. The global symmetry
we postulate here is presumably an accident of the same sort. But for the axion, the
symmetry must be extremely good. We can introduce an axion quality Qa,

Qa = 1
m2

a fa
∂V
∂a

, (5.136)

which must be less than 10−10. Suppose, for example, one has a symmetry breaking
operator φn+4/Mn

p. Such a term gives a linear contribution to the axion potential of
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order f n+3
a /Mn

p. If fa ∼ 1011, this swamps the would-be QCD contribution m 2
π f 2
π/fa

unless n > 12!

This last objection finds an answer in string theory. In this theory there are axions
with just the right properties, i.e. there are symmetries in the theory which are exact in
perturbation theory, but which are broken by exponentially small non-perturbative effects.
The most natural value for fa would appear to be of order MGUT or Mp. Whether this can
be made compatible with cosmology, or whether one can obtain a lower scale, is an open
question to which we will return.

Suggested reading

There are a number of excellent books and reviews on anomalies, as well as good
treatments in quantum field theory textbooks. The texts of Peskin and Schroeder (1995),
Pokorski (2000) and Weinberg (1995) have excellent treatments of different aspects of
anomalies. The string textbook of Green et al. (1987) provides a good introduction to
anomalies in higher dimensions. One of the best introductions to the physics of instantons
is provided in the article of Coleman (1985). The U(1) problem in two-dimensional
electrodynamics, and its role as a model for confinement, was discussed by Casher et al.
(1974). The serious reader should study ’t Hooft’s instanton paper from 1976, in which he
both uncovers much of the physical significance of the instanton solution and also performs
a detailed evaluation of the determinant. The propagators in the instanton background are
given in Brown et al. (1978). Instantons in CPN models were studied by Affleck (1980).
The dependence of dn on θ was calculated by Crewther et al. (1979) in a short and quite
readable paper.

Exercises

(1) Derive Eq. (5.15).
(2) Calculate the decay rate of the π0 to two photons. You will need the matrix

element 〈
π(q)

∣∣∂μjμ3
5

∣∣0〉 = fπqμeiq·x, (5.137)

where fπ = 93MeV. You will need also to compute the anomaly in the third component
of the axial isospin current.

(3) Fill in the details of the anomaly computation in two dimensions, being careful about
signs and factors of 2.

(4) Fill in the details of the Fujikawa computation of the anomaly, in the CPN model, again
being careful about factors of 2. Make sure that you understand why one is calculating
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a determinant and why the factors appear in the exponential. Verify that the action of
Eq. (5.56) is equal to

L = gφ,φ∗∂μφ∂μφ
∗, (5.138)

where g is the metric of the sphere in complex coordinates, i.e. it is the line element
dx2

1 +dx2
2 +dx2

3 expressed as gz,zdzdz+gz,z∗dzdz∗ +gz∗zdz∗dz+gdz∗dz∗dz∗dz∗. A model
with an action of this form is called a non-linear sigma model; the idea is that the fields
live on some “target” space, with metric g. Verify Eqs. (5.56) and (5.59).

(5) Check that Eqs. (5.85) and (5.86) solve (5.83).
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