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A NOTE ON GROUP RINGS OF CERTAIN 
TORSION-FREE GROUPS 

BY 

R. G. BURNS AND V. W. D. HALE 

ABSTRACT. AS a step towards characterizing 7D-groups (i.e., 
groups G such that, for every ring R without zero-divisors, the 
group ring RG has no zero-divisors), Rudin and Schneider defined 
^-groups, a possibly wider class than that of right-orderable groups, 
and proved that if every non-trivial finitely generated subgroup of 
a group G has a non-trivial H-group as an epimorphic image, then 
G is an /D-group. We prove that such groups are even ^-groups and 
obtain the analogous result for right-orderable groups. 

Rudin and Schneider [8] define a group to be an ID-group if, for every ring R 
without zero-divisors, the group ring RG has no zero-divisors. They find a large 
class of groups (called O-groups) which are ZD-groups. A group G is said to be an 
Q,-group if for every ordered pair of nonempty finite subsets A,BofG, there is at 
least one pair (a,b)eAxB such that abj^a-Jb-^ for any other pair (al9 b^eAx B. 
This definition generalizes that of orderable groups and LaGrange and Rhemtulla 
[7] have observed that even right-orderable groups are Q-groups: a group G is 
defined to be a right-orderable group (briefly i?0-group) if there exists a full order 
< on the carrier of G such that, whenever a<b then ag<bg for all g e G. If we 
add the requirement that ga<gb for all g£G, we obtain the definition of an 
orderable group (O-group). It is well known (see [3]) that nilpotent torsion-free 
groups are O-groups; also that if a group is locally an O-group then it is an 
O-group, and that Cartesian and free products of O-groups are again O-groups. It is 
easy to see that the latter remarks hold true for O-groups and for i?0-groups. 
(For example a free product of iQ-groups is an extension of a free group (the 
Cartesian) by the direct product, and is therefore (by the remarks following) an 
Q-group. This argument is valid also for jRO-groups.) However, an extension of 
an O-group by an O-group need not be an O-group (see e.g. [2]) whereas the classes 
of ti-groups and RO-groups are closed under forming extensions ([8], [2], or 
Corollary 1 below). If O, RO, Q, ID, TF denote the classes of O-groups, RO-
groups, O-groups, ID-groups and torsion-free groups respectively, then it is not 
too difficult to show (see [7], [8]) that 

0 c £ 0 c Q ç ID ç TF. 

Here we shall be concerned with the following definition, applied to the classes RO 
and Q. Let X denote a class of groups closed under forming isomorphic images. 
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We define a group to be locally indicable by groups in X (or briefly locally X-
indicable) if every finitely generated nontrivial subgroup can be mapped homo-
morphically onto a nontrivial group in X. This terminology is derived essentially 
from that of Higman [4] who proves that all locally Z-indicable groups are in ID, 
where here Z denotes the class of infinite cyclic groups. Rudin and Schneider [8, 
Theorem 6.3] use Higman's method to prove the conceivably stronger result that a 
locally O-indicable group is an /D-group. However, Higman's argument can be 
made to yield the following possibly stronger theorem. 

THEOREM 1. If a group is locally Q.-indicable then it is in Q.. 

COROLLARY 1. (Rudin and Schneider [8].) If a group G has a normal subgroup N 
such that N and G/N are Q-groups, then G is an Q,-group. 

Proof. Let H be a finitely generated nontrivial subgroup of G. If H<, N then H 
is in Q. If H $ TV then HN[N is a nontrivial Q-group. Thus G is locally Q-indicable, 
and therefore in Q by Theorem 1. 

We shall prove by a similar method the following theorem. 

THEOREM 2. If a group is locally RO-indicable then it is an RO-group. 

The following corollary is immediate. 

COROLLARY 2. A locally Z-indicable group is right-order able. 

Before proving these theorems we make two remarks. The first remark gives some 
indication of the size of the class of locally X-indicable groups as compared with X. 
A subnormal system Zf of subgroups of a group G (see Kurosh [6, p. 171]) is a 
set of subgroups which contains G and the identity subgroup, which is fully ordered 
by inclusion and closed under intersections and unions of subsets, and which has 
the further property that whenever H9 Ke £f are such that K<H and no subgroup 
in £P lies properly between K and H, then K is normal in H. The factor groups 
H\K are called factors of £f. The proof of the following is not difficult and we 
omit it. 

THEOREM 3. Let Xbe a class of groups closed under taking isomorphic images and 
subgroups. If G is a group possessing a subnormal system all of whose factors lie in 
X, then G is locally X-indicable. 

In particular if X = Q , this together with Theorem 1 gives a generalization of 
Corollary 1. 
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We do not know if the converse is true. However it seems likely that at least 
Higman's class of locally Z-indicable groups coincides with the class of groups 
possessing a subnormal system with torsion-free abelian factors. Note that the 
latter class properly contains the class O [3, p. 51] and by Theorems 2, 3, is 
contained in RO. (We do not know if the latter containment is proper (see [2]).) 
It would be interesting to know if the class of «STV-groups (Kurosh [6, p. 182]) 
coincides with the class of locally A-indicable groups, where A is the class of all 
abelian groups. An affirmative answer would generalize the result that if a group 
is locally an *SW-group then it is an SiV-group (Cf. [6, p. 183]). 

Secondly, J. Poland has pointed out that the group G presented as 

(x, y | x~xy2x = y~2, y~xx2y = x~2) 
(which occurs in Karrass and Solitar [5]) is torsion-free metabelian and is not in 
RO. For suppose < is a right order on G. Since any of the four mappings x->x± 1 , 
j — ^ j i 1 determines an automorphism of G, we may assume that J C < 1 , J < 1 . Then 
xy < l, yx< 1, whence (xy)2< 1, (yx)2< 1. However (yx)2— (xy)~2, a contradiction. 
It is unknown whether or not G is an Q-group^1) 

Proof of Theorem 1. Suppose G is locally Q-indicable but is not an Q-group. 
Let A, B be two nonempty finite subsets of G such that for every pair (a,b)eAxB 
there is at least one distinct pair (ax, bx) eAxB such that ab=axbx. Suppose 
further that \A\-\-\B\ is minimal with respect to this property. We may assume also 
that 1 G A and 1 e B since replacement of A, B by gA, Bgx respectively, where g, gx 

are arbitrary elements of G, does not affect the above properties. Write Gx= 
sgp{^4, B}; clearly Gx is nontrivial. Let K be a normal subgroup of Gx such that 
GJKis a nontrivial O-group and let <p:Gx->GxlK, be the natural homomorphism. 
Then A<p, By are finite nonempty subsets of GJK and therefore contain elements 
Ka, Kb say, where ae A,b e B, such that KaKb=Ka1Kb1 (withKax e Aq>, Kbx e B<p) 
if and only if Ka=Kal9 Kb=Kbv Write Ax=Ka n A, Bx=Kb n B. Then to every 
pair (a, b) GA1XB1 there corresponds a distinct pair (au bx) eAxxBx such that 
ab=axbx. For, A, B have this property, and if either ax eA\Ax or bx eB\Bx 

then axbx $ KaKb, whence a fortiori axbXj£ab. Further, we cannot have both 
AX=A and BX=B; for if Ka 3 A and Kb ^ B then Ka=Kb=K (since 1 e A, B), 
contradicting the fact that GxjK is nontrivial. Thus l^l + l i^KI^I + li?! and we 
have reached a contradiction. 

Proof of Theorem 2. If xl9. . . , xn are elements of a group, we shall denote by 
S{xx,... , xn} the subsemigroup generated by these elements. By a result of Conrad 

(x) However ZG has no zero-divisors, where Z is the ring of integers. This follows from a 
result of Jacques Lewin, as yet unpublished, that if Gx is an amalgamated product of two soluble 
groups Hi and H2 where ZHX and ZH^ have no zero-divisors, then the same is true of ZGX. The 
group G is given in [5] as just such an amalgamated product. (Note added in proof.) 
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[2, Theorem 2.2] a group is right-orderable if and only if for every finite subset 
{xl9. . . , xn} which does not contain 1, there exist ei = ±l (/= ! , . . . , « ) such that 
1 f Sfa^,. . . , xw

n}. 
Suppose G is a locally i?0-indicable group which is not in RO. By Conrad's 

criterion there is a subset T={gl9. . . 9gk} c: G, of smallest order &, such that 
1 $ Tand for every choice of ei=±l ( z = l , . . . , fc), we have 1 e 5 { ^ S . . . , glk}. 
Let Gx be the subgroup of G generated by T, and let K be a normal subgroup of 
(?! such that Gi /^ is a nontrivial i^O-group. Thus we cannot have gt e K for all 
/ = ! , . . . , £ . On the other hand if Kg^K for all /, then for every choice of et = 
± 1 (/= 1 , . . . , k), since 1 e S{g?}, we should have K e 5{Â^^}, contradicting the 
fact that GjKeRO. Thus we may suppose, by relabelling the elements of T if 
necessary, that the elements of T outside K are precisely gl9 . . . , gr9 where 
0<r<A:. Since GJKeRO, there exist ^ = ± 1 (z = l, . . . , r) such that 

(1) K$S{Kg? |f = l , . . . , r } . 

For r < / </:, choose ^ such that 

(2) l$S{g?\i = r+l,...,k}. 

This is possible by the minimality of Tand since 0<r . However, by definition of 
T we have 1 e S{gî* | / = 1 , . . . , k}; say 

\ô) l — Si(l) 5i(s) 

where the nj(j=l,. . . , s) are positive integers and l<i{j)<k9 and where by (2) 
at least one of the i{j)<r. From (3) we infer that 

where at least one of the cosets Kgi{j) is distinct from K. This contradicts (1) and 
completes the proof. 

We conclude with a few related remarks. LaGrange and Rhemtulla [7] prove 
essentially that an i?(9-group G has the following property: If A, B are any two 
finite nonempty subsets of G with |y4| + |J?|>2, then there are two distinct pairs 
(al9 bj, (a29 b2)eAxB such that a^bx^ab for any other pair (a9 b) EAXB9 and 
the same is true for a2&2. They show that the group ring of a group with the latter 
property, over a ring with no zero-divisors, has all its units of the form ug where u 
is a unit of the ring and g is an element of the group. This generalizes Theorem 13 
of Higman [4]. Properties of this type have also been considered by Banaschewski 
[1]. 
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