Uniqueness of Shalika Models

Chufeng Nien

Abstract. Let \mathbb{F}_{q} be a finite field of q elements, \mathcal{F} a p-adic field, and D a quaternion division algebra over \mathcal{F}. This paper proves uniqueness of Shalika models for $G L_{2 n}\left(\mathbb{F}_{q}\right)$ and $\mathrm{GL}_{2 n}(D)$, and re-obtains uniqueness of Shalika models for $\mathrm{GL}_{2 n}(\mathcal{F})$ for any $n \in \mathbb{N}$.

1 Introduction

Let \mathbb{F}_{q} denote a finite field of q elements, and \mathcal{F} a p-adic field. Let F be one of the above fields, and $D=D_{\mathcal{F}}$ a quaternion division algebra over \mathcal{F}. Denote by Mat_{n} the space of n-by- n matrices over F. Throughout, ψ_{0} denotes a nontrivial, complex, additive character of F.

Given D, a quaternion division algebra over \mathcal{F}, there exists a basis $\{1, i, j, k\}$ for D with multiplication table given by

	1	i	j	k
1	1	i	j	k
i	i	α	k	αj
j	j	$-k$	β	$-\beta i$
k	k	$-\alpha j$	βi	$-\alpha \beta$

for suitable $\alpha, \beta \in \mathcal{F}^{*}$.
For $z=a+b i+c j+d k \in D$ with $a, b, c, d \in \mathcal{F}$, define the conjugation of z by $\bar{z}=a-b i-c j-d k$. Note that $\overline{z_{1} \cdot z_{2}}=\bar{z}_{2} \cdot \bar{z}_{1}$, i.e., it is an anti-involution on D. (An anti-involution τ of an algebra (or a group) G is an operator on G so that $(g h)^{\tau}=h^{\tau} g^{\tau}, g, h \in G$, and $\tau^{2}=\mathrm{id}$) The reduced norm N and reduced trace Tr on D are defined as usual by $N z=z \bar{z}$ and $\operatorname{Tr} z=z+\bar{z}$. There is an embedding $\iota: D \hookrightarrow \mathrm{GL}(2, K)$ defined by

$$
z=a+b i+c j+d k=(a+b i)+(c+d i) j=z_{1}+z_{2} j \mapsto\left(\begin{array}{cc}
z_{1} & z_{2} \beta \\
\bar{z}_{2} & \bar{z}_{1}
\end{array}\right)
$$

where $K=\mathcal{F}(\sqrt{\alpha})$. Then $\operatorname{Tr} z=\operatorname{tr}(\iota z), z \in D$, where tr is the trace map on matrices. Under this embedding, D is a closed subgroup of GL $(2, K)$. This embedding can be naturally extended to $\iota: \mathrm{GL}(n, D) \hookrightarrow \mathrm{GL}(2 n, K)$.

[^0]Let A be either the field F (one of the $\mathbb{F}_{q}, \mathcal{F}$) or the quaternion division algebra D. In $\mathrm{GL}_{2 n}(A)$, denote

$$
d(g)=\left(\begin{array}{ll}
g & 0 \\
0 & g
\end{array}\right), g \in \mathrm{GL}_{n} \quad \text { and } \quad u(X)=\left(\begin{array}{cc}
I_{n} & X \\
& I_{n}
\end{array}\right), X \in \mathrm{Mat}_{n}
$$

Let $\mathrm{M}_{n}=\left\{d(g) \mid g \in \mathrm{GL}_{n}\right\}, \mathrm{U}_{n}=\left\{u(X) \mid X \in \mathrm{Mat}_{n}\right\} ;$ and $\mathrm{S}_{n}=\mathrm{M}_{n} \mathrm{U}_{n}$. A Shalika character on S_{n} is given by

$$
\psi_{n}(d(g) u(X))= \begin{cases}\psi_{0}(\operatorname{tr} X) & \text { for } s \in \mathrm{~S}_{n}(\mathrm{~F}) \\ \psi_{0}(\operatorname{tr}(\iota X)) & \text { for } s \in \mathrm{~S}_{n}(D)\end{cases}
$$

Abusing notation, we abbreviate $\psi_{0}(\operatorname{tr}(\iota X))$ by $\psi_{0}(\operatorname{tr} X)$ for $X \in \operatorname{Mat}_{n}(D)$, since no confusion should occur. Moreover, we will always refer to smooth representations when we talk about representations of groups other than finite groups.

Let ρ be an irreducible representation of $\mathrm{GL}_{2 n}(A)$.
Definition 1.1 A linear functional $\Lambda_{\rho}: V_{\rho} \mapsto \mathbb{C}$ is called a Shalika functional of V_{ρ} if it satisfies $\Lambda_{\rho}(\rho(s) v)=\psi_{n}(s) \Lambda_{\rho}(v)$ for all $s \in \mathrm{~S}_{n}$ and $v \in V_{\rho}$. We say that V_{ρ} has a Shalika model if there exists a nontrivial Shalika functional Λ_{ρ} satisfying the above equation. This definition is equivalent to

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2 n}}\left(\rho, \operatorname{Ind}_{\mathrm{S}_{n}}^{\mathrm{GL}_{2 n}} \psi_{n}\right) \geq 1
$$

since $\operatorname{Hom}_{\mathrm{GL}_{2 n}}\left(\rho, \operatorname{Ind}_{\mathrm{S}_{n}}^{\mathrm{GL}_{2 n}} \psi_{n}\right) \cong \operatorname{Hom}_{\mathrm{S}_{n}}\left(\left.\rho\right|_{\mathrm{S}_{n}}, \psi_{n}\right)$ by reciprocity.
Definition 1.2 Given a representation π of a group G, we say that π is multiplicity free, or possesses the uniqueness property, if $\operatorname{dim} \operatorname{Hom}_{G}(\rho, \pi) \leq 1$ for any irreducible representation ρ of G.

Definition 1.3 Let $\pi=\operatorname{Ind}_{L_{n}}^{\mathrm{GL}_{2 n}} 1$, where

$$
\left\{L_{n}=\left(\begin{array}{ll}
g_{1} & \\
& g_{2}
\end{array}\right), g_{i} \in \mathrm{GL}_{n}\right\}
$$

and 1 denotes the trivial representation of $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$. We say that V_{ρ} has a linear model if there exists a nontrivial intertwining operator from V_{ρ} to π.

For general linear groups over non-archimedean local fields, uniqueness of Shalika models was proved by H. Jacquet and S. Rallis [JR] via the verification of the multiplicity freeness of linear models and the fact that existence of Shalika models of $\mathrm{GL}_{2 n}$ implies existence of linear models. Classification of Shalika models is not yet completely established. Y. Sakellaridis [Sa] showed necessary and sufficient conditions for an irreducible unramified principal series admitting Shalika models. D. Jiang and D. Soudry [JiS2] showed a certain group of representations possessing Shalika models. D. Jiang and Y. J. Qin [JiQ] defined a generalized Shalika model for $\mathrm{SO}(4 n)$ and
found the relationship between this model and the Shalika model of GL(2n). The study of Shalika models interacts intensively with other related subjects. Let π be an irreducible cuspidal automorphic representation of $G L_{2 n}(\mathbb{A})$, where \mathbb{A} is the adele ring of a number field F. Then the following statements are equivalent:
(i) π is the image of Langlands' functorial lifting from $\mathrm{SO}_{2 n+1}$;
(ii) π has a nonzero Shalika period;
(iii) the exterior square L-function $L\left(s, \pi, \wedge^{2}\right)$ has a simple pole at $s=1$.

The theory has been established over years through the work of many authors [JaS, CKPS, GRS, Ki, JiS1, Ji1].

Generalizations to the case of (quaternion) division algebras have been studied by various mathematicians. D. Prasad and A. Raghuram [PR] showed the uniqueness of Shalika models and established the self-duality of irreducible representations admitting Shalika models on $\mathrm{GL}_{2}(D)$. Extensions to the above theory regarding the poles of the exterior square L-function and non-vanishing of Shalika periods in the case of $\mathrm{GL}_{2}(D)$ were given by H. Jacquet and K. Martin [JM]. Moreover, they stated a conjecture (the Jacquet-Martin conjecture) relating the existences of Shalika models for representations of $\mathrm{GL}_{2 n}(D)$ and $\mathrm{GL}_{4 n}(\mathcal{F})$, which is now a theorem by W. T. Gan and S. Takeda [GT] in the case of $\mathrm{GL}_{2}(D)$ and $\mathrm{GL}_{4}(\mathcal{F})$. In this paper we will prove uniqueness of Shalika models for $\mathrm{GL}_{2 n}, n \in \mathbb{N}$ in the setting of p-adic fields, finite fields, and p-adic quaternion division algebras. We expect that the uniqueness of Shalika models for $\mathrm{GL}_{2 n}(D)$ (or even $\mathrm{GL}_{2 n}\left(\mathrm{~F}_{q}\right)$) could prove useful in the future. Here we present the main theorems.

Theorem 4.1 For any $n \in \mathbb{N}$, let $G=\mathrm{GL}_{2 n}\left(\mathbb{F}_{q}\right)$, where \mathbb{F}_{q} is a finite field. Then

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\rho, \operatorname{Ind}_{\mathrm{S}_{n}}^{G} \psi_{n}\right) \leq 1
$$

for any irreducible representation of G.
Theorem 4.3 Let $G=\mathrm{GL}_{2 n}$ over either a p-adic field \mathcal{F} or a quaternion division algebra D over \mathcal{F}. Then

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\rho, \operatorname{Ind}_{S_{n}(A)}^{G} \psi_{n}\right) \leq 1
$$

for any irreducible representation of G.

2 Common Strategy

Given a finite group G, it is known that a representation V_{π} of G is multiplicity free if and only if the endomorphism algebra $\operatorname{Hom}_{G}\left(V_{\pi}, V_{\pi}\right)$ is abelian. Moreover, when $V_{\pi}=\operatorname{Ind}_{H}^{G} \rho$ is an induced representation, $\operatorname{Hom}_{G}\left(V_{\pi}, V_{\pi}\right)$ is explicitly characterized by Mackey's Theorem.

Theorem 2.1 (Mackey) Let G be a finite group, H_{i} its subgroups and π_{i} representations of $H_{i}, i=1,2$. Denote by

$$
\mathfrak{S}=\left\{\triangle: G \mapsto \operatorname{Hom}_{\mathbb{C}}\left(\pi_{1}, \pi_{2}\right) \mid \triangle\left(h_{2} g h_{1}\right)=\pi_{2}\left(h_{2}\right) \circ \triangle(g) \circ \pi_{1}\left(h_{1}\right), h_{i} \in H_{i}\right\} .
$$

As a vector space, $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H_{1}}^{G} \pi_{1}, \operatorname{Ind}_{H_{2}}^{G} \pi_{2}\right)$ is isomorphic to \mathfrak{G}. Given any $\triangle \in \mathbb{\subseteq}$, the corresponding intertwining operator $T_{\triangle} \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H_{1}}^{G} \pi_{1}, \operatorname{Ind}_{H_{2}}^{G} \pi_{2}\right)$ is given by $T_{\Delta}\left(f_{1}\right)=\triangle * f_{1}$ for $f_{1} \in \operatorname{Ind}_{H_{1}}^{G} \pi_{1}$, where the convolution is given by

$$
\triangle * f_{1}(x)=\frac{1}{|G|} \sum_{g \in G} \triangle\left(x g^{-1}\right) f_{1}(g)
$$

In particular, when $H_{1}=H_{2}, \pi_{1}=\pi_{2}$, the algebra $\operatorname{Aut}_{G}\left(\operatorname{Ind}_{H_{1}}^{G} \pi_{1}\right)$ is isomorphic to (\mathbb{S}, \cdot), where the multiplication \cdot is given by

$$
\triangle_{1} \cdot \triangle_{2}(g)=\sum_{x \in G} \triangle_{1}\left(g x^{-1}\right) \circ \triangle_{2}(x), \triangle_{i} \in \mathbb{S} .
$$

In order to show that the endomorphism algebra is abelian, identifying an antiinvolution to interchange the order of factors is a common strategy. The analogue of this method in the p-adic case is the Gelfand-Kazhdan criterion, which was first investigated in [GK] and further developed in [BZ, Gr].

Let $C_{c}^{\infty}(X)$ denote the space of smooth, compactly supported functions on an l-adic space X (in the sense of [BZ]). Let $\mathfrak{D}(X)$ denote the space of linear functionals on $C_{c}^{\infty}(X)$. Given a p-adic group G, define actions L_{g} and R_{g} on $G, C_{c}^{\infty}(G)$, and $\mathfrak{D}(G)$ as the following:

$$
\begin{gathered}
L_{g} \cdot x=g x, \quad R_{g} \cdot x=x g^{-1} \\
\left(L_{g} \cdot f\right)(x)=f\left(g^{-1} x\right), \quad\left(R_{g} \cdot f\right)(x)=f(x g) \\
\left(L_{g} \cdot T\right)(f)=T\left(L_{g-1} \cdot f\right), \quad\left(R_{g} \cdot T\right)(f)=T\left(R_{g^{-1}} \cdot f\right)
\end{gathered}
$$

where $g, x \in G, f \in C_{c}^{\infty}(G)$, and $T \in \mathfrak{D}(G)$.
Theorem 2.2 (Gelfand-Kazhdan Criterion[Ga1, Ga2]) Let ψ and ψ^{τ} be characters of a closed unimodular subgroup H of G. Suppose that there is an anti-involution τ of G such that τ stabilizes $H, \psi\left(h^{\tau}\right)=\psi^{\tau}(h)$, and τ acts trivially on all distributions T, so that

$$
T\left(L_{h} \eta\right)=\psi(h) \cdot T(\eta), \quad T\left(R_{h} \eta\right)=\psi^{\tau}(h)^{-1} \cdot T(\eta) \text { for } \eta \in C_{c}^{\infty}(G)
$$

Then $\operatorname{dim} \operatorname{Hom}_{G}\left(\pi ; \operatorname{Ind}_{H}^{G} \psi\right) \cdot \operatorname{dim} \operatorname{Hom}_{H}\left(\operatorname{Res}_{H}^{G} \tilde{\pi} ; \psi^{\tau}\right) \leq 1$, where π is any irreducible representation of G and $\tilde{\pi}$ its contragradient.

3 Key Proposition

For $k \in \mathbb{N}$, denote by

$$
w_{k}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

the matrix representative of the longest Weyl elements of GL_{k}, and set $w_{0}=\mathrm{id}$. Define anti-involutions on $\mathrm{GL}_{n}(\mathrm{~F})$ and $\mathrm{GL}_{n}(D)$ respectively by

$$
\begin{aligned}
& \tau_{n}: \mathrm{GL}_{2 n}(\mathrm{~F}) \mapsto \mathrm{GL}_{2 n}(\mathrm{~F}), g \mapsto w_{2 n} g^{t} w_{2 n}^{-1} \\
& \tau_{n}: \mathrm{GL}_{2 n}(D) \mapsto \mathrm{GL}_{2 n}(D), g \mapsto w_{2 n} \bar{g}^{t} w_{2 n}^{-1}
\end{aligned}
$$

When n is understood, we will abbreviate τ_{n} by τ. Note that τ_{n} stabilizes S_{n} and ψ_{n}. Throughout, B_{n} will denote the Borel subgroup of GL_{n} and W_{n} the Weyl group of GL_{n}. Let $d_{1}(\alpha)=\binom{\alpha}{I_{n}}$ and $d_{2}(\beta)=\binom{I_{n}}{\beta}$ for $\alpha, \beta \in \mathrm{GL}_{n}$.

Lemma 3.1 The representatives of $\mathrm{S}_{n} \backslash \mathrm{GL}_{2 n} / \mathrm{S}_{n}$ can be expressed by

$$
\left\{d_{1}(\alpha) \sigma_{k} d_{2}(\beta) \mid k=0, \ldots, n, \alpha, \beta \in \mathrm{GL}_{n}\right\}, \text { where } \sigma_{k}=\left(\begin{array}{lll}
& & w_{k} \\
& I_{2 n-2 k} & \\
w_{k} &
\end{array}\right)
$$

Proof Let $\mathrm{P}_{n}, n \in \mathbb{N}$ denote the parabolic subgroup of $\mathrm{GL}_{2 n}$ corresponding to the partition $\{n, n\}$, and $\mathrm{W}_{\mathrm{P}_{n}}$ its Weyl group. Then

$$
\mathrm{P}_{n} \backslash \mathrm{GL}_{2 n} / \mathrm{P}_{n} \cong \mathrm{~W}_{\mathrm{P}_{n}} \backslash \mathrm{~W}_{2 n} / \mathrm{W}_{\mathrm{P}_{n}} \leftrightarrow \mathfrak{R}_{n}
$$

where

$$
\mathfrak{Z}_{n}=\left\{\left(a_{i, j}\right) \in \operatorname{Mat}_{2}(\mathbb{Z}) \mid 0 \leq a_{i, j} \leq n, \sum_{k=1}^{2} a_{k, j}=\sum_{k=1}^{2} a_{i, k}=n, 1 \leq i, j \leq 2\right\}
$$

The last bijection refers to [GaRe]. Notice that the cardinality of \mathcal{Q}_{n} is $n+1$. Moreover, we can choose representatives of $\mathrm{W}_{\mathrm{P}_{n}} \backslash \mathrm{~W}_{2 n} / \mathrm{W}_{\mathrm{P}_{n}}$ to be τ-invariant, given by $\sigma_{0}=$ $i d, \sigma_{k}=(1,2 n)(2,2 n-1) \cdots(k, 2 n+1-k), k=1, \ldots, n$. That is,

$$
\sigma_{k}=\left(\begin{array}{ccc}
& & w_{k} \\
& I_{2 n-2 k} & \\
w_{k} & &
\end{array}\right)
$$

where

$$
w_{k}=\left(\begin{array}{lll}
& & 1 \\
1 & . &
\end{array}\right)
$$

is the permutation matrix representative for the longest Weyl element of GL_{k}.
Let \mathbb{H} denote $S_{n}(A)$. Put $\hat{H} \mathbb{H}=\mathbb{H} \times \mathbb{H}$. Let $\left(h_{1}, h_{2}\right) \in \hat{H} I$ act on $g \in G$ and $\eta \in C_{c}^{\infty}(G)$ by

$$
\left(h_{1}, h_{2}\right) \cdot g=h_{1} g h_{2}^{-1} \quad \text { and } \quad\left(h_{1}, h_{2}\right) \cdot \eta(g)=\psi_{n}\left(h_{1}^{-1} h_{2}\right) \eta\left(h_{1}^{-1} g h_{2}\right)
$$

We also denote $\hat{\mathrm{M}}_{n}=\mathrm{M}_{n} \times \mathrm{M}_{n} \subset \hat{\mathrm{H}}$ and $\hat{\mathrm{U}}_{n}=\mathrm{U}_{n} \times \mathrm{U}_{n} \subset \hat{\mathbb{H}}$.
Define a character $\hat{\psi}_{n}$ of $\mathbb{H} I$ by $\hat{\psi}_{n}(\hat{h})=\psi_{n}\left(h_{1} h_{2}^{-1}\right)$ for $\hat{h}=\left(h_{1}, h_{2}\right) \in \hat{H}$. Denote by \hat{H}_{g} the stabilizer of g in $\hat{H} I$.

Definition 3.2 Define an equivalence relation \sim on $g, g^{\prime} \in \mathrm{GL}_{2 n}$, where $g \sim g^{\prime}$ means that $\hat{h} \cdot g=g^{\prime}$ for some $\hat{h} \in \hat{\mathbb{H}}$. We also write $g \sim_{\hat{h}} g^{\prime}$ to indicate the connecting map \hat{h} satisfying $\hat{h} \cdot g=g^{\prime}$.

Definition 3.3 We call a double coset $\mathrm{S}_{n} \gamma \mathrm{~S}_{n}, g \in \mathrm{GL}_{2 n}$ admissible if $\hat{\psi}_{n}$ is trivial on \hat{H}_{γ}. In this case, the element γ is also called admissible.

Definition 3.4 We call a double coset $\mathrm{S}_{n} \gamma \mathrm{~S}_{n} \hat{\psi}$ - τ-invariant if there exist $\hat{h} \in \hat{\mathbb{H}}$ such that $\hat{h} \cdot \gamma=\gamma^{\tau}$ and $\hat{\psi}_{n}(\hat{h})=1$. In this case, the element γ is also called $\hat{\psi}-\tau$-invariant.

Note that when $\gamma \sim \beta, \gamma$ is admissible (respectively $\hat{\psi}$ - τ-invariant) if and only if β is admissible (respectively $\hat{\psi}$ - τ-invariant).

The rest of this section is devoted to the proof of the following proposition.
Proposition 3.5 Every admissible double coset $\mathrm{S}_{n} g \mathrm{~S}_{n}$ is $\hat{\psi}$ - τ-invariant.
First we need some auxiliary Lemmas.
Lemma 3.6 For $k \in\{0, \ldots, n\}$, let

$$
\gamma_{k}=\gamma_{k}(\alpha, \beta)=d_{1}(\alpha) \sigma_{k} d_{2}(\beta) \in \mathrm{S}_{n} \backslash \mathrm{GL}_{2 n} / \mathrm{S}_{n}, \alpha, \beta \in \mathrm{GL}_{n}
$$

where

$$
\alpha=\left(\begin{array}{cc}
* & \alpha_{k} \\
* & *
\end{array}\right), \beta=\left(\begin{array}{cc}
* & \beta_{k} \\
* & *
\end{array}\right) \text {, and } \alpha_{k}, \beta_{k} \in \mathrm{Mat}_{n-k} .
$$

If $\alpha_{k} \neq \beta_{k}$, then γ_{k} is non-admissible.
Proof For $\alpha_{k} \neq \beta_{k}$, let $u_{k}=u_{k}(X)=\left(\begin{array}{cc}I_{n} & X \\ I_{n}\end{array}\right)$, where $X=\left(\begin{array}{cc}0 & 0 \\ \tilde{X} & 0\end{array}\right), \tilde{X} \in$ Mat $_{n-k}$. Then $\sigma_{k}^{-1} u_{k} \sigma_{k}=u_{k}$. Let

$$
n_{1}=d_{1}(\alpha) u_{k} d_{1}(\alpha)^{-1} \in \mathrm{U}_{n} \quad \text { and } \quad n_{2}=\gamma_{k}^{-1} n_{1} \gamma_{k}=d_{2}(\beta)^{-1} u_{k} d_{2}(\beta) \in \mathrm{U}_{n}
$$

Note that $\psi_{n}\left(n_{1}\right)=\psi_{0}(\operatorname{tr}(\alpha X))$ and $\psi_{n}\left(n_{2}\right)=\psi_{0}(\operatorname{tr}(X \beta))=\psi_{0}(\operatorname{tr}(\beta X))$. Then

$$
\alpha X=\left(\begin{array}{cc}
\alpha_{k} \tilde{X} & 0 \\
* & 0
\end{array}\right), \quad \text { and } \quad \operatorname{tr}(\alpha X)=\operatorname{tr}\left(\alpha_{k} \tilde{X}\right)
$$

Similarly, $\operatorname{tr}(\beta X)=\operatorname{tr}\left(\beta_{k} \tilde{X}\right)$. If $\alpha_{k} \neq \beta_{k}$, there exists $\tilde{X} \in$ Mat $_{n-k}$ such that

$$
\psi_{0}\left(\operatorname{tr}\left(\alpha_{k} \tilde{X}\right)\right) \neq \psi_{0}\left(\operatorname{tr}\left(\beta_{k} \tilde{X}\right)\right)
$$

and hence $\gamma_{k}=\gamma_{k}(\alpha, \beta)$ is not admissible.
Lemma 3.7 If $\alpha_{k}=\beta_{k}=0_{k}$,

$$
\gamma_{k}(\alpha, \beta)=\left(\begin{array}{cccc}
& 0_{n-k} & * & * \\
& * & * & * \\
& & * & 0_{n-k} \\
w_{k} & & &
\end{array}\right)
$$

In this case, $k \geq n-k$ and

$$
\gamma_{k} \sim\left(\begin{array}{cccc}
& 0 & 0 & \eta_{k} \\
& I_{n-k} & 0 & 0 \\
& & I_{n-k} & 0 \\
\lambda_{k} & & &
\end{array}\right)
$$

for some $\lambda_{k}, \eta_{k} \in$ Mat $_{k}$. Moreover, for γ_{k} to be admissible, it is necessary that the upper-right-hand square $n-k$-blocks of η and λ^{-1} are negatives of each other.

Proof Let $e=2 k-n$. Then for suitable

$$
s_{1}=d\left(\left(\begin{array}{cc}
v_{n-k} & \\
& v_{k}^{\prime}
\end{array}\right)\right), s_{2}=d\left(\left(\begin{array}{ll}
r_{k} & \\
& r_{n-k}^{\prime}
\end{array}\right)\right) \in \mathrm{M}_{n}
$$

$u, u^{\prime} \in \mathrm{U}_{n}, v_{k}^{\prime}, r_{k} \in \mathrm{Mat}_{k}$, and $v_{n-k}, r_{n-k}^{\prime} \in \mathrm{Mat}_{n-k}$, we can reduce γ_{k} to

$$
\gamma_{k} \sim_{\left(s_{1}, s_{2}\right)}\left(\begin{array}{cccc}
& 0 & * & * \\
& I_{n-k} & * & * \\
& & I_{n-k} & 0
\end{array}\right) \sim_{\left(u, u^{\prime}\right)}\left(\begin{array}{cccc}
& 0 & 0 & \eta_{k} \\
& I_{n-k} & 0 & 0 \\
& & I_{n-k} & 0 \\
\lambda_{k} & & &
\end{array}\right)=\gamma_{k}^{\prime},
$$

for some $\lambda_{k}, \eta_{k} \in \operatorname{Mat}_{k}$. Denote by η^{2} (respectively D^{2}) the upper-right-hand square $n-k$-block of η_{k} (respectively λ_{k}^{-1}).

Let

$$
s=d\left(\left(\begin{array}{ccc}
I_{n-k} & & \\
& I_{e} & \\
A & & I_{n-k}
\end{array}\right)\right) \in \mathrm{S}_{n}, A \in \operatorname{Mat}_{n-k}
$$

Then

$$
\gamma_{k}^{\prime} s \gamma_{k}^{\prime-1}=\left(\begin{array}{cccccc}
I_{n-k} & & & & & \\
& I_{e} & & \eta_{k}\left(\frac{0}{A}\right) & & \\
& & I_{n-k} & & (A \mid 0) \lambda^{-1} \\
\hline & & & I_{n-k} & & \\
& & & & I_{e} & \\
& & & & & I_{n-k}
\end{array}\right) .
$$

For $\gamma_{k}^{\prime}\left(\right.$ hence $\left.\gamma_{k}\right)$ to be admissible, it is necessary that

$$
\psi_{n}\left(\gamma_{k}^{\prime} s \gamma_{k}^{\prime-1}\right)=\psi_{0}\left(\operatorname{tr} A\left(\eta^{2}+D^{2}\right)\right)=1
$$

for all $A \in \mathrm{Mat}_{n-k}$, i.e., $D^{2}=-\eta^{2}$.
Lemma 3.8 Let

$$
\gamma_{k}^{\prime}=\left(\begin{array}{cccc}
& 0 & 0 & \eta_{k} \\
& I_{n-k} & 0 & 0 \\
& & I_{n-k} & 0 \\
\lambda_{k} & & &
\end{array}\right)
$$

where $\lambda_{k}, \eta_{k} \in$ Mat $_{k}$ and the upper-right-hand square $n-k$-blocks of η and λ^{-1} are negatives of each other with rank n^{\prime}. Then

$$
\gamma_{k}^{\prime} \sim\left(\begin{array}{cccc}
& 0 & 0 & \tilde{\eta}_{k} \\
& I_{n-k} & 0 & 0 \\
\tilde{\lambda}_{k} & & I_{n-k} & 0
\end{array}\right)
$$

where

$$
\tilde{\eta}_{k}=\left(\begin{array}{cccc}
0 & 0 & 0 & -I_{n^{\prime}} \\
0 & I_{n^{\prime \prime}} & 0 & 0 \\
0 & 0 & I_{n^{\prime \prime}} & 0 \\
I_{2 k-n-n^{\prime \prime}} & 0 & 0 & 0
\end{array}\right), \tilde{\lambda}_{k}^{-1}=\left(\begin{array}{ccc}
0 & 0 & I_{n^{\prime}} \\
B_{n-k, 2 k-n}^{1} & 0 & 0 \\
B_{2 k-n}^{3} & B_{2 k-n, n^{\prime \prime}}^{4} & 0
\end{array}\right),
$$

and $n^{\prime \prime}=n-k-n^{\prime}$.
Proof Suppose that $\eta^{2}=-D^{2}$ in γ_{k}^{\prime} (with notations as in the proof of the previous lemma) and the rank of η^{2} equals n^{\prime}. Choose $g, h \in$ Mat $_{n-k}$ such that $g \eta^{2} h^{-1}=$ $\left(\begin{array}{cc}0 & -I_{n^{\prime}} \\ 0 & 0\end{array}\right)$, and let $m=d\left(g, I_{e}, h\right)$. Then γ_{k}^{\prime}

where

$$
\tilde{\eta}_{k}=\left(\begin{array}{cccc}
0 & 0 & 0 & -I_{n^{\prime}} \\
0 & I_{n^{\prime \prime}} & 0 & 0 \\
0 & 0 & I_{n^{\prime \prime}} & 0 \\
I_{2 k-n-n^{\prime \prime}} & 0 & 0 & 0
\end{array}\right)
$$

and $n^{\prime \prime}=n-k-n^{\prime}$. For suitable $\hat{u} \in \hat{\mathrm{U}}_{n}$, further reduction shows that

$$
\gamma_{k}^{\prime} \sim_{\hat{u}}\left(\begin{array}{ccc}
& 0 & 0 \\
& I_{n-k} & 0 \\
& & I_{n-k} \\
\tilde{\lambda}_{k} & &
\end{array}\right)=\tilde{\gamma}_{k} .
$$

Next we consider

$$
\tilde{\gamma}_{k}^{-1}=\left(\begin{array}{cccc}
& 0 & 0 & \tilde{\lambda}_{k}^{-1} \\
& I_{n-k} & 0 & 0 \\
\tilde{\eta}_{k}^{-1} & & I_{n-k} & 0
\end{array}\right)
$$

By similar reduction and the fact that $\eta^{2}=-D^{2}$, we may assume that

$$
\tilde{\lambda}_{k}^{-1}=\left(\begin{array}{ccc}
0 & 0 & I_{n^{\prime}} \\
B_{n-k, 2 k-n}^{1} & 0 & 0 \\
B_{2 k-n, 2 k-n}^{3} & B_{2 k-n, n^{\prime \prime}}^{4} & 0
\end{array}\right)
$$

Lemma 3.9 Lete $=2 k-n \geq 0, \theta_{k}=\left(\begin{array}{cccc} & 0 & 0 & R_{k} \\ & I_{n-k} & 0 & 0 \\ & & I_{n-k} & 0\end{array}\right)$ with

$$
R_{k}=\left(\begin{array}{c|cc}
0 & 0 & I_{n^{\prime}} \\
B_{n-k, 2 k-n}^{1} & 0 & 0 \\
\hline B_{2 k-n, 2 k-n}^{3} & B_{2 k-n, n^{\prime \prime}}^{4} & 0
\end{array}\right)=\left(\begin{array}{c|c}
\eta_{n-k, e}^{1} & \eta_{n-k, n-k}^{2} \\
\hline \eta_{e, e}^{3} & \eta_{e, n-k}^{4}
\end{array}\right)
$$

and

$$
Q_{k}=\left(\begin{array}{cc|cc}
0 & 0 & 0 & I_{2 k-n-n^{\prime \prime}} \\
0 & I_{n^{\prime \prime}} & 0 & 0 \\
\hline 0 & 0 & I_{n^{\prime \prime}} & 0 \\
-I_{n^{\prime}} & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{c|c}
\lambda_{e, n-k}^{1} & \lambda_{e, e}^{2} \\
\hline \lambda_{n-k, n-k}^{3} & \lambda_{n-k, e}^{4}
\end{array}\right) .
$$

If θ_{k} is admissible, then

$$
\theta_{k} \sim\left(\begin{array}{cccc}
& & \\
& & & \left(\begin{array}{cccc}
0 & 0 & 0 & I_{n^{\prime}} \\
T^{2} & 0 & 0 & 0 \\
& E & 0 & 0 \\
& & & T^{2} \\
& & \\
& I_{n-k} & &
\end{array}\right), ~ \\
Q_{k} & & & \\
& & & \\
Q_{n-k} & & &
\end{array}\right)
$$

for some $T^{2} \in \mathrm{Mat}_{n^{\prime \prime}}, E \in \mathrm{GL}_{2 k-n-2 n^{\prime \prime}}$. In this case, θ_{k} is $\hat{\psi}-\tau$-invariant.

Proof Let

$$
C=\left(\begin{array}{cc}
C_{e, n-k}^{1} & C_{e, e}^{2} \\
C^{3}{ }_{n-k, n-k} & C_{n-k, e}^{4}
\end{array}\right)=R_{k}^{-1} \text { and } D=\left(\begin{array}{cc}
D_{n-k, e}^{1} & D_{n-k, n-k}^{2} \\
D_{e, e}^{3} & D_{e, n-k}^{4}
\end{array}\right)=Q_{k}^{-1}
$$

and let $s_{1}=\left(\begin{array}{cc}g & Y \\ & g\end{array}\right) \in \mathrm{S}_{n}$, with $g=\left(\begin{array}{ccc}I_{n-k} & & \\ g^{1} & I_{e} & \\ & g^{3} & I_{n-k}\end{array}\right)$,

$$
g^{1}=\left(\begin{array}{cc}
0 & r_{n^{\prime \prime}, n^{\prime \prime}} \tag{3.1}\\
0 & 0
\end{array}\right), \quad g^{3}=\binom{*_{n^{\prime \prime}, 2 k-n}}{0}
$$

$$
Y=\left(\begin{array}{lll}
Y^{1} & & \\
Y^{2} & & \\
& Y^{3} & Y^{4}
\end{array}\right) \text { with } \lambda^{3} Y^{1}+\lambda^{4} Y^{2}=Y^{3} C^{1}+Y^{4} C^{3}=: p
$$

where the subscripts denote the sizes of matrices. Then $s_{2}=\theta s_{1} \theta^{-1}=$

$$
\left(\begin{array}{cc|c}
R_{k}\left(\begin{array}{cc}
I_{e} & \\
g^{3} & I_{n-k}
\end{array}\right) R_{k}^{-1} & & R_{k}\left(\frac{g^{1}}{0}\right) \\
\left(\begin{array}{lll}
Y^{3} & Y^{4}
\end{array}\right) R_{k}^{-1} & I_{n-k} & \\
\hline & & \left(\begin{array}{cc}
0 & g^{3}
\end{array}\right) Q_{k}^{-1} \\
\hline & & Q_{k}\binom{Y^{1}}{Y^{2}}
\end{array} Q_{k}\left(\begin{array}{cc}
I_{n-k} & \\
g^{1} & I_{e}
\end{array}\right) Q_{k}^{-1} .\right) .
$$

Therefore $s_{2} \in S_{n}$ if and only if

$$
Q_{k}\binom{Y^{1}}{Y^{2}}=\binom{\eta^{4} g^{3} C^{1}}{p}, \quad\left(Y^{3}, \quad Y^{4}\right) R_{k}^{-1}=\left(p, \quad \lambda^{4} g^{1} D^{1}\right) .
$$

Equivalently,

$$
\binom{Y^{1}}{Y^{2}}=Q_{k}^{-1}\binom{\eta^{4} g^{3} C^{1}}{p}, \quad\left(Y^{3}, \quad Y^{4}\right)=\left(\begin{array}{ll}
p, & \left.\lambda^{4} g^{1} D^{1}\right) \eta_{k} .
\end{array}\right.
$$

Also,

$$
\begin{aligned}
\psi_{n}\left(s_{1}\right) & =\psi_{0}\left(\operatorname{tr}\left(Y^{1}+Y^{4}\right)\right)=\psi_{0}\left(\operatorname{tr}\left(D^{1} \eta^{4} g^{3} C^{1}+D^{2} p+p \eta^{2}+\lambda^{4} g^{1} D^{1} \eta^{4}\right)\right), \\
& =\psi_{0}\left(\operatorname{tr}\left(p\left(D^{2}+\eta^{2}\right)+D^{1} \eta^{4} g^{3} C^{1}+\lambda^{4} g^{1} D^{1} \eta^{4}\right)\right) \\
& =\psi_{0}\left(\operatorname{tr}\left(D^{1} \eta^{4} g^{3} C^{1}+\lambda^{4} g^{1} D^{1} \eta^{4}\right)\right), \\
\psi_{n}\left(s_{2}\right) & =\psi_{0}\left(\operatorname{tr}\left(\eta^{1} g^{1}+g^{3} D^{4}\right)\right)=\psi_{0}\left(\operatorname{tr}\left(\eta^{1} g^{1}+g^{3} D^{4}\right)\right)=\psi_{0}\left(\operatorname{tr}\left(\eta^{1} g^{1}+g^{3} D^{4}\right)\right) .
\end{aligned}
$$

For θ_{k} to be admissible, it is necessary that $D^{1} \eta^{4} \lambda^{4} g^{1}=\eta^{1} g^{1}$ and $g^{3} C^{1} D^{1} \eta^{4}=g^{3} D^{4}$ for all g^{1}, g^{3} as in equation (3.1).

Now we assume that θ_{k} satisfies

$$
\begin{equation*}
D^{1} \eta^{4} \lambda^{4} g^{1}=\eta^{1} g^{1} \quad \text { and } \quad g^{3} C^{1} D^{1} \eta^{4}=g^{3} D^{4} \tag{3.2}
\end{equation*}
$$

for all g^{1}, g^{3} as in equation (3.1). Write

$$
\eta^{4}=\left(\begin{array}{cc}
T^{1} & 0 \\
T^{2} & 0
\end{array}\right), \quad \eta^{1}=\left(\begin{array}{cc}
0 & 0 \\
T^{3} & T^{4}
\end{array}\right), \quad \text { and } \quad C^{1}=\left(\begin{array}{cc}
0 & V^{1} \\
0 & V^{2},
\end{array}\right)
$$

where $T^{2}, T^{3}, V^{1} \in$ Mat $_{n^{\prime \prime}}$. Then

$$
\begin{gathered}
D^{1} \eta^{4} \lambda^{4} g^{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n^{\prime \prime}}
\end{array}\right)\left(\begin{array}{cc}
T^{1} & 0 \\
T^{2} & 0
\end{array}\right)\left(\begin{array}{cc}
I_{n^{\prime \prime}} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & r_{n^{\prime \prime}, n^{\prime \prime}} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & T^{2} r_{n^{\prime \prime}, n^{\prime \prime}}
\end{array}\right) ; \\
\eta^{1} g^{1}=\left(\begin{array}{cc}
0 & 0 \\
T^{3} & T^{4}
\end{array}\right)\left(\begin{array}{cc}
0 & r_{n^{\prime \prime}, n^{\prime \prime}} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & T^{3} r_{n^{\prime \prime}, n^{\prime \prime}}
\end{array}\right) ; \\
g^{3} C^{1} D^{1} \eta^{4}=\binom{*_{n^{\prime \prime}, 2 k-n}}{0}\left(\begin{array}{cc}
0 & V^{1} \\
0 & V^{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{n^{\prime \prime}}
\end{array}\right)\left(\begin{array}{cc}
T^{1} & 0 \\
T^{2} & 0
\end{array}\right) \\
=\binom{*_{n^{\prime \prime}, 2 k-n}}{0}\left(\begin{array}{cc}
V^{1} T^{2} & 0 \\
V^{2} T^{2} & 0
\end{array}\right) ; \\
g^{3} D^{4}=\binom{*_{n^{\prime \prime}}, 2 k-n}{0}\left(\begin{array}{cc}
I_{n^{\prime \prime}} & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Condition (3.2) implies that $T^{2}=T^{3}, V^{1} T^{2}=I_{n^{\prime \prime}}, V^{2}=0$. That is,

$$
\theta_{k}=\left(\begin{array}{cccc}
& 0 & 0 & \tilde{\eta}_{k} \\
& I_{n-k} & 0 & 0 \\
& & I_{n-k} & 0 \\
Q_{k} & & &
\end{array}\right), \text { with } \tilde{R}_{k}=\left(\begin{array}{cccc}
0 & 0 & 0 & I_{n^{\prime}} \\
T^{2} & T^{4} & 0 & 0 \\
* & * & T^{1} & 0 \\
* & * & T^{2} & 0
\end{array}\right)
$$

Note that $V^{1} T^{2}=I_{n^{\prime \prime}}$, implying $\operatorname{det} T^{2} \neq 0$, and hence

$$
\theta_{k} \sim\left(\begin{array}{ccccc}
& & & \\
& & & \left(\begin{array}{cccc}
0 & 0 & 0 & I_{n^{\prime}} \\
T^{2} & 0 & 0 & 0 \\
& E & 0 & 0 \\
& & & T^{2} \\
& & 0
\end{array}\right) \\
& I_{n-k} & & & \\
Q_{k} & & & I_{n-k} & \\
& & & &
\end{array}\right)
$$

for some $E \in \mathrm{GL}_{2 k-n-2 n^{\prime \prime}}$.
In the case of fields, there exists some $g \in \mathrm{GL}_{2 k-n-2 n^{\prime \prime}}$ such that $g E g^{-1}=E^{t}$, where E^{t} denotes the transpose of E. In the case of quaternion division algebras, there exists some $g \in \mathrm{GL}_{2 k-n-2 n^{\prime \prime}}$ such that $g E g^{-1}=\bar{E}^{t}$ [Ra, Lemma 3.1]. In either case, there exists $g \in \mathrm{GL}_{2 k-n-2 n^{\prime \prime}}$ such that $g E g^{-1}=E^{\tau}$. Let

$$
\zeta=\operatorname{diag}\left(I_{n^{\prime}+n^{\prime \prime}}, g, I_{n-k+2 n^{\prime \prime}}, I_{n^{\prime}+n^{\prime \prime}}, g, I_{n-k+2 n^{\prime \prime}}\right)
$$

Then $\zeta \theta_{k} \zeta^{-1}=\theta_{k}^{\tau}$ and θ_{k} is $\hat{\psi}$ - τ-invariant.
Proposition 3.10 Every admissible double coset $\mathrm{S}_{n} g \mathrm{~S}_{n}$ is $\hat{\psi}-\tau$-invariant.
Proof The proof is by induction on the index n of $\mathrm{GL}_{2 n}$. By Bruhat decomposition, $\mathrm{GL}_{2}=\mathrm{B}_{2} \mathrm{~W}_{2} \mathrm{~B}_{2}=\mathrm{S}_{2} D \mathrm{~W}_{2} D \mathrm{~S}_{2}$, where $D=\left\{\left({ }^{a}{ }_{1}\right) \mid a \in A^{*}\right\}$. Representatives of $\mathrm{S}_{2} \backslash \mathrm{GL}_{2} / \mathrm{S}_{2}$ can be expressed by $\xi_{1}(a)=\left({ }^{a}{ }_{1}\right)$ or $\xi_{2}(a)=\left(1^{a}\right), a \in A^{*}$. Since
$\xi_{1}(a)\left(\begin{array}{cc}1 & x \\ 1\end{array}\right) \xi_{1}(a)^{-1}=\binom{1 a x}{1}, x \in A$, and ψ_{0} is nontrivial, there exists $x \in A$ such that $\psi_{0}(a x) \neq \psi_{0}(x)$ for $a \neq 1$. Hence $\xi_{1}(a)$ is not admissible for $a \neq 1$. For $a=1$, $\xi_{1}(a)=\mathrm{id}$ is $\hat{\psi}-\tau$-invariant. In the case of $A=\mathrm{F}, \xi_{2}(a), a \in \mathrm{~F}^{*}$ is τ-invariant. In the case of $A=D$, there exists $b \in D^{*}$ such that $b a b^{-1}=\bar{a}$ for $a \in D^{*}$. (Either refer to [Ra, Lemma 3.1] or check by direct computation.) Therefore, there exists $\binom{b}{c_{1}} \in \mathrm{Mat}_{2}$ such that $\left(\begin{array}{cc}b & \\ 1\end{array}\right) \xi_{2}(a)\binom{b}{c_{1}}^{-1}=\xi_{2}(a)^{\tau}$ and $\xi_{2}(a)$ is $\hat{\psi}-\tau$-invariant. The conclusion is then true for $n=1$. Now we assume that it is also true for $1, \ldots, n-1$.

Lemma 3.6 deals with the case of $\alpha_{k} \neq \beta_{k}$, and others do the same for $\alpha_{k}=\beta_{k}=$ 0_{k}, therefore it suffices to show that $\gamma_{k}=d_{1}(\alpha) \sigma_{k} d_{2}(\beta)$, with $\alpha_{k}=\beta_{k} \neq 0_{k}$, is either non-admissible or $\hat{\psi}$ - τ-invariant.

Since $\operatorname{rank}\left(\alpha_{K}\right) \neq 0$, there exist $g, h \in \mathrm{GL}_{n-k}$ such that

$$
\begin{aligned}
& \gamma_{k}=\left(\begin{array}{ccc}
* & \alpha_{k} & \\
* & * & \\
& & I_{n}
\end{array}\right) \sigma_{k}\left(\begin{array}{lll}
I_{n} & & \\
& * & \alpha_{k} \\
& * & *
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{k} & & * \\
* & & \\
& & *
\end{array}\right) \\
& \sim d\left(\left(\begin{array}{ll}
g & \\
& I_{n+k}
\end{array}\right)\right) \gamma_{k} d\left(\left(\begin{array}{llllll}
I_{n+k} & \\
& & h
\end{array}\right)\right)=\left(\begin{array}{ccccc}
& 0 & 1 & * & * \\
& \delta_{k-1} & 0 & * & * \\
& * & * & * & * \\
& & & * & 0 \\
& & & \\
& & & * & \delta_{k-1} \\
\\
& & & & \\
& & & & \\
& & & &
\end{array}\right),
\end{aligned}
$$

for some $\delta_{k-1} \in \operatorname{Mat}_{n-k-1}$. With suitable choices of $\hat{m} \in \hat{\mathrm{M}}_{n}, \hat{u} \in \hat{\mathrm{U}}_{n}$,

$$
\gamma_{k} \sim_{\hat{m}}\left(\begin{array}{cccccc}
* & 0 & 1 & * & * & * \\
& \delta_{k-1}^{\prime} & 0 & * & * & * \\
& * & 0 & * & * & * \\
& & & 0 & 0 & 1 \\
& & & * & \delta_{k-1}^{\prime} & 0 \\
w_{k} & & & & & *
\end{array}\right) \sim_{\hat{u}}\left(\begin{array}{ccccc}
0 & 1 & & \\
& \delta_{k-1}^{\prime \prime} & 0 & * & * \\
& * & 0 & * & * \\
& & & 0 & 0 \\
& & & * & \delta_{k-1}^{\prime \prime} \\
& & \\
w_{k} & & & &
\end{array}\right)=\tilde{\gamma}_{k}
$$

Let

$$
N=\left(\begin{array}{cc}
N_{1} & N_{2} \\
N_{3} & N_{4}
\end{array}\right) \in \mathrm{GL}_{2 n-2}
$$

be embedded in $\mathrm{GL}_{2 n}$ as

$$
\left(\begin{array}{llll}
& 1 & & \\
N_{1} & & N_{2} & \\
& & & 1 \\
N_{3} & & N_{4} &
\end{array}\right), N_{i} \in \mathrm{Mat}_{n-1}
$$

By induction assumption, there exist $\hat{s}=\left(s_{1}, s_{2}\right)$ with

$$
s_{1}=\left(\begin{array}{cccc}
1 & & & \\
& q & & Y \\
& & 1 & \\
& & & q
\end{array}\right) \quad \text { and } \quad s_{2}=\left(\begin{array}{cccc}
p & & Z & \\
& 1 & & \\
& & p & \\
& & & 1
\end{array}\right)
$$

where $p, q \in \mathrm{GL}_{n-1}, Y, Z \in \operatorname{Mat}_{n-1}$ such that either $\hat{s} \in \hat{\mathbb{H}}_{\tilde{\gamma}_{k}}$ and $\hat{\psi}(s) \neq 1$ or $\hat{s} \cdot \tilde{\gamma}_{k}=\left(\tilde{\gamma}_{k}\right)^{\tau}$ and $\hat{\psi}(\hat{s})=1$. Note that the above embedding is consistent between $\left(\tau_{n-1}, \psi_{n-1}\right)$ and $\left(\tau_{n}, \psi_{n}\right)$. Hence the conclusion holds by induction.

4 Main Theorems

Theorem 4.1 For any $n \in \mathbb{N}$, let $G=\mathrm{GL}_{2 n}\left(\mathbb{F}_{q}\right)$, where \mathbb{F}_{q} is a finite field. Then

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(\rho, \operatorname{Ind}_{\mathrm{s}_{n}}^{G} \psi_{n}\right) \leq 1
$$

for any irreducible representation of G.
Proof Let $\pi=\operatorname{Ind}_{S_{n}}^{G} \psi_{n}$. Proposition 3.5 implies that an element

$$
\triangle: G \mapsto \operatorname{Hom}_{\mathbb{C}}\left(\operatorname{Ind}_{S_{n}}^{G} \psi_{n}, \operatorname{Ind}_{S_{n}}^{G} \psi_{n}\right)
$$

satisfying $\triangle\left(s^{\prime} g s\right)=\pi\left(s^{\prime}\right) \circ \triangle(g) \circ \pi(s)$ for $s, s^{\prime} \in \mathrm{S}_{n}$ is τ-invariant. By Theorem 2.1 $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{\mathrm{S}_{n}}^{G} \psi_{n}, \operatorname{Ind}_{\mathrm{S}_{n}}^{G} \psi_{n}\right)$ is abelian and the result follows.

Lemma 4.2 Let G denote $\mathrm{GL}_{2 n}(A)$, where A is a p-adic field \mathcal{F} or a quaternion division algebra D over \mathcal{F}. If T is a distribution on G satisfying

$$
T\left(L_{h_{1}} \circ R_{h_{2}}(\eta)\right)=\psi_{n}\left(h_{1} h_{2}^{-1}\right) T(\eta)
$$

for $h_{1}, h_{2} \in \mathrm{~S}_{n}(A), \eta \in C_{c}^{\infty}(G)$, then T is τ-invariant.
Proof We verify the assumptions of [BZ, Theorem 6.10]. ${ }^{1}$
The assumptions of Theorem 6.10 in [BZ] in this case are the following:
(i) The action of $\hat{H H}$ is constructible (same as constructive in the sense of [BZ]), which means that the set of $\{(g, \hat{h} \cdot g) \mid g \in G, \hat{h} \in \hat{H} H$ is a union of finitely many locally closed subsets of $G \times G$.
(ii) For each $\hat{h} \in \hat{H}$, there is $\hat{h}_{\tau} \in \hat{\mathbb{H}}$ such that $\hat{h} \cdot g^{\tau}=\left(\hat{h}_{\tau} \cdot g\right)^{\tau}$ for all $g \in G$.
(iii) $\tau^{2}=\mathrm{id}$.
(iv) If T is a nonzero $\hat{H} \hat{H}$-invariant distribution on an $\hat{H} \hat{H}$-orbit Y, then $Y^{\tau}=Y$ and $T^{\tau}=T$.
The conclusion is that any $\hat{H H}$-invariant distribution on G is also τ-invariant.
By [BZ, Theorem A §6.15], the action of $\hat{H} \hat{I}$ is constructible on $\mathrm{GL}_{2 n}(\mathcal{F})$. Also $\iota \hat{H}$ is constructible on $\mathrm{GL}_{4 n}(K), K=\mathcal{F}(\sqrt{\alpha})$, and its closed subgroup $\mathrm{GL}_{2 n}(D)$, where ι is the embedding defined earlier. Condition (i) is then verified. For condition (ii), take $\hat{h}_{\tau}=\left(h_{2}^{-\tau}, h_{1}^{-\tau}\right)$ for $\hat{h}=\left(h_{1}, h_{2}\right) \in \hat{H}$. Since \mathbb{H} is τ-invariant and $\left(\hat{h}_{\tau}\right)_{\tau}=\hat{h}$, τ induces an anti-involution on $\hat{H H}$ (still denoted by τ) $\tau: \hat{\mathbb{H}} \mapsto \hat{H} I$ by $\hat{h} \mapsto \hat{h}_{\tau}$. The action of $\hat{h} \in \mathbb{H} \|$ satisfies that $\hat{h} \cdot g^{\tau}=\left(\hat{h}_{\tau} \cdot g\right)^{\tau}$ for all $g \in G$. Condition (iii) is obvious. To verify condition (iv), let T be a nonzero $\hat{H} I$-invariant distribution on an $\hat{H} I$-orbit $Y=\mathbb{H g} \boldsymbol{H}$, i.e., $T(\hat{h} \cdot(\eta))=T(\eta)$ for all $\hat{h}=\left(h_{1}, h_{2}\right) \in \mathbb{H} I$ and $\eta \in C_{c}^{\infty}(Y)$. Then $Y \cong \hat{\mathbb{H}} / / \hat{\mathbb{H}} \|_{g}$. $\left(\hat{H}_{g}\right.$ the stabilizer of g in $\left.\hat{\mathbb{H}}.\right)$ Define a character $\hat{\psi}_{n}$ of $\hat{\mathbb{H}}$ by

$$
\hat{\psi}_{n}(\hat{h})=\psi_{n}\left(h_{1} h_{2}^{-1}\right) \text { for } \hat{h}=\left(h_{1}, h_{2}\right) \in \hat{\mathbb{H}},
$$

[^1]then $\hat{\psi}_{n}$ is τ-invariant and $C_{c}^{\infty}(Y) \cong \operatorname{ind}_{\mathbb{H}_{g}}^{\hat{\hat{H}}} 1$ (un-normalized compact induction). We have that
by Frobenius reciprocity, where $\delta_{\hat{H} I}, \delta_{\hat{H}_{g}}$ are the modular functions of $\hat{H} I$ and $\hat{H} \|_{g}$, respectively. Since $\left|\hat{\psi}_{n}\right| \equiv 1$ and $\delta_{\hat{H} H} \delta_{\hat{H}_{g}}^{-1}$ is positive, by Schur's lemma we have either
$$
\operatorname{dim} \operatorname{Hom}_{\hat{H}_{g}}\left(\delta_{\hat{H}} \delta_{\hat{\mathbb{H}}_{g}}^{-1}, \operatorname{Res}_{\mathbb{H}_{g}} \hat{\psi}_{n}\right)=0 \quad \text { or } \quad \delta_{\hat{H I}} \delta_{\hat{\mathbb{H}}_{g}}^{-1}=\operatorname{Res}_{\mathbb{H}_{g}} \hat{\psi}_{n} \equiv 1
$$

Therefore we conclude that $\operatorname{Hom}_{\hat{H}_{g}}\left(\delta_{\hat{\mathbb{H}}} \delta_{\hat{H}_{g}}^{-1}, \operatorname{Res}_{\hat{H}_{g}} \hat{\psi}_{n}\right)=0$ for those non-admissible g, i.e., there is no nontrivial $\hat{H} \|-$ invariant distribution T on such Y.
 otherwise $\hat{H H}$-invariant distribution on such Y is trivial. Note that $\hat{k} \cdot g=g^{\tau}$ for some $\hat{k} \in \mathbb{H}$ implies that the double coset $Y=\mathbb{H g} \| H$ is τ-invariant. It remains to show that $T^{\tau}=T$. In our case T is proportional (see [BZ, 6.12]) to

$$
T_{1}(\eta)=\int_{\hat{\mathbb{H}} / \hat{\mathbb{H}}_{g}} \eta(\hat{h} \cdot g) \hat{\psi}_{n}^{-1}(\hat{h}) d \hat{h}
$$

where $d \hat{h}$ is a left $\hat{H H}$-invariant measure on $\mid \hat{H} / / \hat{H} \|_{g}$. We have

$$
\begin{aligned}
T_{1}^{\tau}(\eta) & =T_{1}\left(\eta^{\tau}\right)=\int_{\hat{\mathbb{H}} / / \mathbb{H}_{g}} \eta\left((\hat{h} \cdot g)^{\tau}\right) \hat{\psi}_{n}^{-1}(\hat{h}) d \hat{h} \\
& =\int_{\hat{\mathbb{H}} / \mathbb{H}_{g}} \eta\left(\hat{h}_{\tau} \cdot g^{\tau}\right) \hat{\psi}_{n}^{-1}(\hat{h}) d \hat{h} \\
& =\int_{\hat{\mathbb{H}} / / \hat{H}_{g}} \eta\left(\hat{h}_{\tau} \cdot \hat{k} \cdot g\right) \hat{\psi}_{n}^{-1}(\hat{h}) d \hat{h}=\int_{\hat{\mathbb{H}} / \hat{\mathbb{H}}_{g}} \eta\left(\hat{h}^{\prime} \cdot g\right) \hat{\psi}_{n}^{-1}\left(\hat{h}^{\prime}\right) \hat{\psi}_{n}(\hat{k}) d \hat{h}^{\prime}
\end{aligned}
$$

The last equality is obtained by the change of variables $\hat{h}^{\prime}=\hat{h}_{\tau} \cdot \hat{k}$ along with our assumption that $\delta_{\hat{\hat{H}_{1}}} \delta_{\hat{\mathbb{H}}_{g}}^{-1} \equiv 1$ and the fact that $\hat{\psi}_{n}$ is τ-invariant. Since $\hat{\psi}_{n}(\hat{k})=1$, we have

$$
T_{1}^{\tau}(\eta)=\int_{\tilde{\mathbb{H}} / / \hat{\mathbb{H}}_{g}} \eta\left(\hat{h}^{\prime} \cdot g\right) \hat{\psi}_{n}^{-1}\left(\hat{h}^{\prime}\right) d \hat{h}^{\prime}=T_{1}(\eta)
$$

Theorem 4.3 Let $G=\mathrm{GL}_{2 n}(A)$, where A is either a p-adic field \mathcal{F} or a quaternion division algebra D over \mathcal{F}. Then $\operatorname{dim} \operatorname{Hom}_{G}\left(\rho, \operatorname{Ind}_{S_{n}}^{G} \psi_{n}\right) \leq 1$ for any irreducible representation ρ of G.
Proof We have obtained $\operatorname{dim} \operatorname{Hom}_{G}\left(\pi ; \operatorname{Ind}_{\mathrm{S}_{n}}^{G} \psi_{n}\right) \cdot \operatorname{dim} \operatorname{Hom}_{\mathrm{S}_{n}}\left(\operatorname{Res}_{\mathrm{S}_{n}}^{G} \tilde{\pi} ; \psi_{n}\right) \leq 1$ for any irreducible representation π of G from the previous theorem and the GelfandKazhdan criterion. It suffices to show that if π has a nontrivial Shalika functional, then $\tilde{\pi}$ will also have one. Assume that Λ_{π} is a nontrivial Shalika functional for π,
i.e., $\Lambda_{\pi}(\pi(h) v)=\psi_{n}(h) \Lambda_{\pi}(v)$ for all $\in \mathrm{S}_{n}$ and $v \in V_{\pi}$. Define a representation π^{\prime} on the same vector space V_{π} by $\pi^{\prime}(g) v=\pi\left(\xi g^{-\tau} \xi^{-1}\right) v$, where $\xi=\operatorname{diag}\left(I_{n},-I_{n}\right)$. Then $\psi\left(\xi s^{-\tau} \xi^{-1}\right)=\psi(s)$ for $s \in S_{n}$, and Λ_{π} is also a Shalika functional for π^{\prime}.

In the case of \mathcal{F}, define another representation $\pi^{\prime \prime}$ on the same vector space V_{π} by $\pi^{\prime \prime}(g) v=\pi\left(g^{-t}\right) v$. Then $\pi^{\prime \prime} \cong \tilde{\pi}$ by [BZ, Theorem 7.3]. Since $\xi g^{-\tau} \xi^{-1}$ is conjugate to g^{-t}, we have $\pi^{\prime} \cong \tilde{\pi}$.

In the case of D, define another representation $\pi^{\prime \prime}$ on the same vector space V_{π} by $\pi^{\prime \prime}(g) v=\pi\left(\eta \bar{g}^{-t} \eta^{-1}\right) v$, where $\eta(i, j)=(-1)^{i} \delta_{i, 2 n-j+1}$. Then $\pi^{\prime \prime} \sim \tilde{\pi}$ by [Ra, Theorem 3.1]. Since $\xi g^{-\tau} \xi^{-1}$ is conjugate to $\eta \bar{g}^{-t} \eta^{-1}$, we have $\pi^{\prime} \sim \pi^{\prime \prime} \sim \tilde{\pi}$.

In either case,

$$
\begin{aligned}
\operatorname{dim} \operatorname{Hom}_{G}\left(\tilde{\pi} ; \operatorname{Ind}_{\mathrm{S}_{n}}^{G} \psi_{n}\right) & =\operatorname{dim} \operatorname{Hom}_{G}\left(\pi^{\prime} ; \operatorname{Ind}_{\mathrm{S}_{n}}^{G} \psi_{n}\right) \\
& =\operatorname{dim} \operatorname{Hom}_{\mathrm{S}_{n}}\left(\left.\pi^{\prime}\right|_{S_{n}} ; \psi_{n}\right) \\
& \geq 1
\end{aligned}
$$

which completes the proof.

References

[BZ] I. N. Bernšteĭin and A. V. Zelevinskiĭ, Representations of the group $\operatorname{GL}(n, \mathcal{F})$, where \mathcal{F} is a non-Archimedean local field. Russ. Math. Surveys 31(1976), no. 3, 1-68.
[CKPS] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 163-233.
[Ga1] P. Garrett, The Gelfand-Kazhdan criterion. http://www.math.umn.edu/' garrett/m/v/.
[Ga2] \longrightarrow Uniqueness of invariant distributions. http://www.math.umn.edu//garrett/m/v/.
[GaRe] A. M. Garsia and C. Reutenauer, A decomposition of Solomons descent algebra. Adv. Math. 77(1989), no. 2, 189-262.
[Ge] S. I. Gelfand, Representations of a general linear group over a finite field. In: Lie Groups and Their Representations. Halsted, New York, 1975, pp. 119-132,
[GK] S.I. Gelfand and D. Kazhdan, Representations of the group GL (n, K), where K is a local field. In: Lie Groups and Their Representations. Halsted, New York, 1975, pp. 95-118.
[GRS] D. Ginzburg, S. Rallis, and D. Soudry, Generic automorphic forms on $\mathrm{SO}(2 n+1)$: functorial lift to $\mathrm{GL}(2 n)$, endoscopy, and base change. Internat. Math. Res. Notices 2001, no. 14, 729-764.
[Gr] B. H. Gross, Some applications of Gelfand pairs to number theory. Bull. Amer. Math. Soc. 24(1991), no. 2, 277-301.
[GT] W. T. Gan and S. Takeda, On Shalika periods and a conjecture of Jacquet-Martin. To appear in Amer. J. Math.
[JaS] H. Jacquet and J. Shalika, Exterior square L-functions. In: Automorphic Forms, Shimura Varieties, and L-functions. Perspect. Math. 11, Academic Press, Boston, MA, 1990 pp. 143-226, 143-225.
[Ji1] D. Jiang, On the fundamental automorphic L-functions of $\mathrm{SO}(2 n+1)$. Int. Math. Res. Notices 2006. art. id. 64069.
[JiQ] D. Jiang and Y. Qin, Residues of Eisenstein series and generalized Shalika models for $\mathrm{SO}(4 n)$. J. Ramanujan Math. Soc. 22,(2007), no. 2, 101-133.
[JiS1] D. Jiang and D. Soudry, The local converse theorem for $\mathrm{SO}(2 n+1)$ and applications. Ann. of Math. 157(2003), no. 3, 743-806.
[JiS2]
\rightarrow, Generic representations and local Langlands reciprocity law for p-adic $\mathrm{SO}(2 n+1)$. In: Contributions to Automorphic Forms, Geometry, and Number Theory. Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 457-519.
[JR] H. Jacquet and S. Rallis, Uniqueness of linear periods, Compositio Math 102(1996), no. 1, 65-123.
[JM] H. Jacquet and K. Martin, Shalika periods on $\mathrm{GL}_{2}(D)$ and GL_{4}. Pacific J. Math. 233(2007), no. 2, 341-370.
[Ki] H. H. Kim, Applications of Langlands' functorial lift of odd orthogonal groups. Trans. Amer. Math. Soc. 354(2002), no. 7, 2775-2796 (electronic).
[PR] D. Prasad and A. Raghuram, Kirillov theory of $\mathrm{GL}_{2}(\mathcal{D})$ where \mathcal{D} is a division algebra over a non-Archimedean local field. Duke J. of Math, 104(2000), no. 1, 19-44.
[Ra] A. Raghuram, On representations of p-adic GL(2, D). Pacific J. Math. 206(2002), no. 2, 451-464.
[Sa] Y. Sakellaridis, A Casselman-Shalika formula for the Shalika model of GL(n). Canad. J. Math. 58(2006), no. 5, 1095-1120.
[So] D. Soudry, A uniqueness theorem for representations of GSO(6) and the strong multiplicity one theorem for generic representations of GSp(4),Israel Journal of Mathematics, Vol. 58, no. 3 (1987).

Department of Mathematics,, National Cheng Kung University, Tainan 701, Taiwan e-mail: nienpig@mail.ncku.edu.tw,

[^0]: Received by the editors February 2, 2007.
 The project was supported by NSC $95-2115-\mathrm{M}-006-022$, Taiwan.
 AMS subject classification: 22E50.
 Keywords: Shalika models, linear models, uniqueness, multiplicity free.
 (C)Canadian Mathematical Society 2009.

[^1]: ${ }^{1}$ This proof mimics [So, Theorem 2.3]. We keep it here for the sake of compleness.

