Uniqueness of Shalika Models

Chufeng Nien

Abstract. Let \mathbb{F}_q be a finite field of q elements, \mathcal{F} a p-adic field, and D a quaternion division algebra over \mathcal{F} . This paper proves uniqueness of Shalika models for $\operatorname{GL}_{2n}(\mathbb{F}_q)$ and $\operatorname{GL}_{2n}(D)$, and re-obtains uniqueness of Shalika models for $\operatorname{GL}_{2n}(\mathcal{F})$ for any $n \in \mathbb{N}$.

1 Introduction

Let \mathbb{F}_q denote a finite field of q elements, and \mathcal{F} a p-adic field. Let F be one of the above fields, and $D = D_{\mathcal{F}}$ a quaternion division algebra over \mathcal{F} . Denote by Mat_n the space of n-by-n matrices over F. Throughout, ψ_0 denotes a nontrivial, complex, additive character of F.

Given *D*, a quaternion division algebra over \mathcal{F} , there exists a basis $\{1, i, j, k\}$ for *D* with multiplication table given by

	1	i	j	k
1	1	i	j	k
i	i	α	k	αj
j	j	-k	β	$-\beta i$
k	k	$-\alpha j$	βi	$-\alpha\beta$

for suitable $\alpha, \beta \in \mathfrak{F}^*$.

For $z = a + bi + cj + dk \in D$ with $a, b, c, d \in \mathcal{F}$, define the *conjugation* of z by $\overline{z} = a - bi - cj - dk$. Note that $\overline{z_1 \cdot z_2} = \overline{z_2} \cdot \overline{z_1}$, *i.e.*, it is an anti-involution on D. (An *anti-involution* τ of an algebra (or a group) G is an operator on G so that $(gh)^{\tau} = h^{\tau}g^{\tau}, g, h \in G$, and $\tau^2 = id$) The *reduced norm* N and *reduced trace* Tr on D are defined as usual by $Nz = z\overline{z}$ and $\operatorname{Tr} z = z + \overline{z}$. There is an embedding $\iota: D \hookrightarrow \operatorname{GL}(2, K)$ defined by

$$z = a + bi + cj + dk = (a + bi) + (c + di)j = z_1 + z_2j \mapsto \begin{pmatrix} z_1 & z_2\beta \\ \overline{z}_2 & \overline{z}_1 \end{pmatrix}$$

where $K = \mathcal{F}(\sqrt{\alpha})$. Then Tr $z = tr(\iota z), z \in D$, where tr is the trace map on matrices. Under this embedding, *D* is a closed subgroup of GL(2, *K*). This embedding can be naturally extended to ι : GL(*n*,*D*) \hookrightarrow GL(2*n*,*K*).

Received by the editors February 2, 2007.

The project was supported by NSC 95-2115-M-006-022, Taiwan.

AMS subject classification: 22E50.

Keywords: Shalika models, linear models, uniqueness, multiplicity free.

[©]Canadian Mathematical Society 2009.

C. Nien

Let *A* be either the field F (one of the \mathbb{F}_q , \mathcal{F}) or the quaternion division algebra *D*. In $\operatorname{GL}_{2n}(A)$, denote

$$d(g) = \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}, g \in \operatorname{GL}_n \quad ext{and} \quad u(X) = \begin{pmatrix} I_n & X \\ & I_n \end{pmatrix}, X \in \operatorname{Mat}_n.$$

Let $M_n = \{d(g) \mid g \in GL_n\}$, $U_n = \{u(X) \mid X \in Mat_n\}$; and $S_n = M_nU_n$. A Shalika character on S_n is given by

$$\psi_n(d(g)u(X)) = \begin{cases} \psi_0(\operatorname{tr} X) & \text{for } s \in S_n(F), \\ \psi_0(\operatorname{tr}(\iota X)) & \text{for } s \in S_n(D). \end{cases}$$

Abusing notation, we abbreviate $\psi_0(tr(\iota X))$ by $\psi_0(tr X)$ for $X \in Mat_n(D)$, since no confusion should occur. Moreover, we will always refer to smooth representations when we talk about representations of groups other than finite groups.

Let ρ be an irreducible representation of $GL_{2n}(A)$.

Definition 1.1 A linear functional $\Lambda_{\rho}: V_{\rho} \mapsto \mathbb{C}$ is called a *Shalika functional* of V_{ρ} if it satisfies $\Lambda_{\rho}(\rho(s)\nu) = \psi_n(s)\Lambda_{\rho}(\nu)$ for all $s \in S_n$ and $\nu \in V_{\rho}$. We say that V_{ρ} has a *Shalika model* if there exists a nontrivial Shalika functional Λ_{ρ} satisfying the above equation. This definition is equivalent to

dim Hom_{GL_{2n}}(
$$\rho$$
, Ind^{GL_{2n}}_{S_n} ψ_n) ≥ 1 ,

since $\operatorname{Hom}_{\operatorname{GL}_{2n}}(\rho, \operatorname{Ind}_{\operatorname{S}_n}^{\operatorname{GL}_{2n}}\psi_n) \cong \operatorname{Hom}_{\operatorname{S}_n}(\rho|_{\operatorname{S}_n}, \psi_n)$ by reciprocity.

Definition 1.2 Given a representation π of a group G, we say that π is *multiplicity free*, or possesses the *uniqueness* property, if dim Hom_{*G*}(ρ, π) ≤ 1 for any irreducible representation ρ of *G*.

Definition 1.3 Let $\pi = \operatorname{Ind}_{L_n}^{\operatorname{GL}_{2n}} 1$, where

$$\left\{ L_n = \begin{pmatrix} g_1 & \\ & g_2 \end{pmatrix}, g_i \in \operatorname{GL}_n \right\}$$

and 1 denotes the trivial representation of $GL_n \times GL_n$. We say that V_ρ has a *linear* model if there exists a nontrivial intertwining operator from V_ρ to π .

For general linear groups over non-archimedean local fields, uniqueness of Shalika models was proved by H. Jacquet and S. Rallis [JR] via the verification of the multiplicity freeness of linear models and the fact that existence of Shalika models of GL_{2n} implies existence of linear models. Classification of Shalika models is not yet completely established. Y. Sakellaridis [Sa] showed necessary and sufficient conditions for an irreducible unramified principal series admitting Shalika models. D. Jiang and D. Soudry [JiS2] showed a certain group of representations possessing Shalika models. D. Jiang and Y. J. Qin [JiQ] defined a generalized Shalika model for SO(4n) and

found the relationship between this model and the Shalika model of GL(2n). The study of Shalika models interacts intensively with other related subjects. Let π be an irreducible cuspidal automorphic representation of $GL_{2n}(\mathbb{A})$, where \mathbb{A} is the adele ring of a number field *F*. Then the following statements are equivalent:

- (i) π is the image of Langlands' functorial lifting from SO_{2*n*+1};
- (ii) π has a nonzero Shalika period;
- (iii) the exterior square L-function $L(s, \pi, \wedge^2)$ has a simple pole at s = 1.

The theory has been established over years through the work of many authors [JaS, CKPS, GRS, Ki, JiS1, Ji1].

Generalizations to the case of (quaternion) division algebras have been studied by various mathematicians. D. Prasad and A. Raghuram [PR] showed the uniqueness of Shalika models and established the self-duality of irreducible representations admitting Shalika models on $GL_2(D)$. Extensions to the above theory regarding the poles of the exterior square *L*-function and non-vanishing of Shalika periods in the case of $GL_2(D)$ were given by H. Jacquet and K. Martin [JM]. Moreover, they stated a conjecture (the Jacquet–Martin conjecture) relating the existences of Shalika models for representations of $GL_{2n}(D)$ and $GL_{4n}(\mathcal{F})$, which is now a theorem by W. T. Gan and S. Takeda [GT] in the case of $GL_2(D)$ and $GL_4(\mathcal{F})$. In this paper we will prove uniqueness of Shalika models for GL_{2n} , $n \in \mathbb{N}$ in the setting of *p*-adic fields, finite fields, and *p*-adic quaternion division algebras. We expect that the uniqueness of Shalika models for $GL_{2n}(D)$ (or even $GL_{2n}(\mathbb{F}_q)$) could prove useful in the future. Here we present the main theorems.

Theorem 4.1 For any $n \in \mathbb{N}$, let $G = \operatorname{GL}_{2n}(\mathbb{F}_q)$, where \mathbb{F}_q is a finite field. Then

dim Hom_{*G*}(
$$\rho$$
, Ind^{*G*}_{S_n} ψ_n) ≤ 1

for any irreducible representation of G.

Theorem 4.3 *Let* $G = GL_{2n}$ *over either a p-adic field* \mathcal{F} *or a quaternion division algebra* D *over* \mathcal{F} *. Then*

dim Hom_{*G*}(
$$\rho$$
, Ind^{*G*}_{S_n(A)} ψ_n) ≤ 1 ,

for any irreducible representation of G.

2 Common Strategy

Given a finite group *G*, it is known that a representation V_{π} of *G* is multiplicity free if and only if the endomorphism algebra $\text{Hom}_G(V_{\pi}, V_{\pi})$ is abelian. Moreover, when $V_{\pi} = \text{Ind}_H^G \rho$ is an induced representation, $\text{Hom}_G(V_{\pi}, V_{\pi})$ is explicitly characterized by Mackey's Theorem.

Theorem 2.1 (Mackey) Let G be a finite group, H_i its subgroups and π_i representations of H_i , i = 1, 2. Denote by

$$\mathfrak{S} = \{ \triangle \colon G \mapsto \operatorname{Hom}_{\mathbb{C}}(\pi_1, \pi_2) \mid \triangle(h_2gh_1) = \pi_2(h_2) \circ \triangle(g) \circ \pi_1(h_1), h_i \in H_i \}.$$

As a vector space, $\operatorname{Hom}_{G}(\operatorname{Ind}_{H_{1}}^{G} \pi_{1}, \operatorname{Ind}_{H_{2}}^{G} \pi_{2})$ is isomorphic to \mathfrak{S} . Given any $\Delta \in \mathfrak{S}$, the corresponding intertwining operator $T_{\Delta} \in \operatorname{Hom}_{G}(\operatorname{Ind}_{H_{1}}^{G} \pi_{1}, \operatorname{Ind}_{H_{2}}^{G} \pi_{2})$ is given by $T_{\Delta}(f_{1}) = \Delta * f_{1}$ for $f_{1} \in \operatorname{Ind}_{H_{1}}^{G} \pi_{1}$, where the convolution is given by

$$\bigtriangleup * f_1(x) = \frac{1}{|G|} \sum_{g \in G} \bigtriangleup(xg^{-1}) f_1(g).$$

In particular, when $H_1 = H_2, \pi_1 = \pi_2$, the algebra $\operatorname{Aut}_G(\operatorname{Ind}_{H_1}^G \pi_1)$ is isomorphic to (\mathfrak{S}, \cdot) , where the multiplication \cdot is given by

$$riangle_1 \cdot riangle_2(g) = \sum_{x \in G} riangle_1(gx^{-1}) \circ riangle_2(x), riangle_i \in \mathfrak{S}.$$

In order to show that the endomorphism algebra is abelian, identifying an antiinvolution to interchange the order of factors is a common strategy. The analogue of this method in the *p*-adic case is the Gelfand–Kazhdan criterion, which was first investigated in [GK] and further developed in [BZ, Gr].

Let $C_c^{\infty}(X)$ denote the space of smooth, compactly supported functions on an *l*-adic space *X* (in the sense of [BZ]). Let $\mathfrak{D}(X)$ denote the space of linear functionals on $C_c^{\infty}(X)$. Given a *p*-adic group *G*, define actions L_g and R_g on *G*, $C_c^{\infty}(G)$, and $\mathfrak{D}(G)$ as the following:

$$L_{g} \cdot x = gx, \quad R_{g} \cdot x = xg^{-1};$$

($L_{g} \cdot f$)(x) = $f(g^{-1}x), \quad (R_{g} \cdot f)(x) = f(xg);$
($L_{g} \cdot T$)(f) = $T(L_{g^{-1}} \cdot f), \quad (R_{g} \cdot T)(f) = T(R_{g^{-1}} \cdot f),$

where $g, x \in G, f \in C^{\infty}_{c}(G)$, and $T \in \mathfrak{D}(G)$.

Theorem 2.2 (Gelfand–Kazhdan Criterion[Ga1,Ga2]) Let ψ and ψ^{τ} be characters of a closed unimodular subgroup H of G. Suppose that there is an anti-involution τ of G such that τ stabilizes H, $\psi(h^{\tau}) = \psi^{\tau}(h)$, and τ acts trivially on all distributions T, so that

$$T(L_h\eta) = \psi(h) \cdot T(\eta), \qquad T(R_h\eta) = \psi^{\tau}(h)^{-1} \cdot T(\eta) \text{ for } \eta \in C^{\infty}_c(G).$$

Then dim Hom_{*G*}(π ; Ind^{*G*}_{*H*} ψ) · dim Hom_{*H*}($Res^G_H \tilde{\pi}; \psi^{\tau}$) \leq 1, where π is any irreducible representation of *G* and $\tilde{\pi}$ its contragradient.

3 Key Proposition

For $k \in \mathbb{N}$, denote by

$$w_k = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{pmatrix},$$

the matrix representative of the longest Weyl elements of GL_k , and set $w_0 = id$. Define anti-involutions on $GL_n(F)$ and $GL_n(D)$ respectively by

$$\tau_n \colon \operatorname{GL}_{2n}(\mathbf{F}) \mapsto \operatorname{GL}_{2n}(\mathbf{F}), g \mapsto w_{2n}g^t w_{2n}^{-1},$$

$$\tau_n \colon \operatorname{GL}_{2n}(D) \mapsto \operatorname{GL}_{2n}(D), g \mapsto w_{2n}\bar{g}^t w_{2n}^{-1}$$

When *n* is understood, we will abbreviate τ_n by τ . Note that τ_n stabilizes S_n and ψ_n . Throughout, B_n will denote the *Borel subgroup* of GL_n and W_n the *Weyl group* of GL_n . Let $d_1(\alpha) = \binom{\alpha}{I_n}$ and $d_2(\beta) = \binom{I_n}{\beta}$ for $\alpha, \beta \in GL_n$.

Lemma 3.1 The representatives of $S_n \setminus GL_{2n} / S_n$ can be expressed by

$$\left\{ d_1(\alpha)\sigma_k d_2(\beta) \mid k = 0, \dots, n, \alpha, \beta \in \mathrm{GL}_n \right\}, \text{ where } \sigma_k = \begin{pmatrix} w_k \\ I_{2n-2k} \\ w_k \end{pmatrix}.$$

Proof Let $P_n, n \in \mathbb{N}$ denote the parabolic subgroup of GL_{2n} corresponding to the partition $\{n, n\}$, and W_{P_n} its Weyl group. Then

$$P_n \setminus GL_{2n} / P_n \cong W_{P_n} \setminus W_{2n} / W_{P_n} \leftrightarrow \mathfrak{L}_n,$$

where

$$\mathfrak{L}_n = \left\{ (a_{i,j}) \in \mathrm{Mat}_2(\mathbb{Z}) \mid 0 \le a_{i,j} \le n, \sum_{k=1}^2 a_{k,j} = \sum_{k=1}^2 a_{i,k} = n, 1 \le i, j \le 2 \right\}.$$

The last bijection refers to [GaRe]. Notice that the cardinality of \mathfrak{L}_n is n+1. Moreover, we can choose representatives of $W_{P_n} \setminus W_{2n}/W_{P_n}$ to be τ -invariant, given by $\sigma_0 = id, \sigma_k = (1, 2n)(2, 2n - 1) \cdots (k, 2n + 1 - k), k = 1, \dots, n$. That is,

$$\sigma_k = \begin{pmatrix} & w_k \\ & I_{2n-2k} & \\ & w_k & \end{pmatrix},$$

where

$$w_k = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{pmatrix}$$

is the permutation matrix representative for the longest Weyl element of GL_k .

Let \mathbb{H} denote $S_n(A)$. Put $\hat{\mathbb{H}} = \mathbb{H} \times \mathbb{H}$. Let $(h_1, h_2) \in \hat{\mathbb{H}}$ act on $g \in G$ and $\eta \in C_c^{\infty}(G)$ by

$$(h_1, h_2) \cdot g = h_1 g h_2^{-1}$$
 and $(h_1, h_2) \cdot \eta(g) = \psi_n (h_1^{-1} h_2) \eta(h_1^{-1} g h_2).$

We also denote $\hat{M}_n = M_n \times M_n \subset \hat{\mathbb{H}}$ and $\hat{U}_n = U_n \times U_n \subset \hat{\mathbb{H}}$.

Define a character $\hat{\psi}_n$ of $\hat{\mathbb{H}}$ by $\hat{\psi}_n(\hat{h}) = \psi_n(h_1h_2^{-1})$ for $\hat{h} = (h_1, h_2) \in \hat{\mathbb{H}}$. Denote by $\hat{\mathbb{H}}_g$ the *stabilizer* of g in $\hat{\mathbb{H}}$.

Definition 3.2 Define an equivalence relation \sim on $g, g' \in GL_{2n}$, where $g \sim g'$ means that $\hat{h} \cdot g = g'$ for some $\hat{h} \in \hat{\mathbb{H}}$. We also write $g \sim_{\hat{h}} g'$ to indicate the connecting map \hat{h} satisfying $\hat{h} \cdot g = g'$.

Definition 3.3 We call a double coset $S_n \gamma S_n$, $g \in GL_{2n}$ admissible if $\hat{\psi}_n$ is trivial on $\hat{\mathbb{H}}_{\gamma}$. In this case, the element γ is also called *admissible*.

Definition 3.4 We call a double coset $S_n \gamma S_n \hat{\psi} \cdot \tau$ -*invariant* if there exist $\hat{h} \in \hat{\mathbb{H}}$ such that $\hat{h} \cdot \gamma = \gamma^{\tau}$ and $\hat{\psi}_n(\hat{h}) = 1$. In this case, the element γ is also called $\hat{\psi} \cdot \tau$ -*invariant*.

Note that when $\gamma \sim \beta$, γ is admissible (respectively $\hat{\psi}$ - τ -invariant) if and only if β is admissible (respectively $\hat{\psi}$ - τ -invariant).

The rest of this section is devoted to the proof of the following proposition.

Proposition 3.5 Every admissible double coset S_ngS_n is $\hat{\psi}$ - τ -invariant.

First we need some auxiliary Lemmas.

Lemma 3.6 For $k \in \{0, ..., n\}$, let

$$\gamma_k = \gamma_k(\alpha, \beta) = d_1(\alpha)\sigma_k d_2(\beta) \in S_n \setminus \operatorname{GL}_{2n} / S_n, \alpha, \beta \in \operatorname{GL}_n$$

where

$$\alpha = \begin{pmatrix} * & \alpha_k \\ * & * \end{pmatrix}, \ \beta = \begin{pmatrix} * & \beta_k \\ * & * \end{pmatrix}, \ and \ \alpha_k, \beta_k \in \operatorname{Mat}_{n-k}.$$

If $\alpha_k \neq \beta_k$, then γ_k is non-admissible.

Proof For $\alpha_k \neq \beta_k$, let $u_k = u_k(X) = \begin{pmatrix} I_n & X \\ I_n \end{pmatrix}$, where $X = \begin{pmatrix} 0 & 0 \\ \bar{X} & 0 \end{pmatrix}$, $\tilde{X} \in Mat_{n-k}$. Then $\sigma_k^{-1}u_k\sigma_k = u_k$. Let

$$n_1 = d_1(\alpha)u_k d_1(\alpha)^{-1} \in U_n$$
 and $n_2 = \gamma_k^{-1}n_1\gamma_k = d_2(\beta)^{-1}u_k d_2(\beta) \in U_n$.

Note that $\psi_n(n_1) = \psi_0(\operatorname{tr}(\alpha X))$ and $\psi_n(n_2) = \psi_0(\operatorname{tr}(X\beta)) = \psi_0(\operatorname{tr}(\beta X))$. Then

$$\alpha X = \begin{pmatrix} \alpha_k \tilde{X} & 0 \\ * & 0 \end{pmatrix}$$
, and $\operatorname{tr}(\alpha X) = \operatorname{tr}(\alpha_k \tilde{X})$.

Similarly, $tr(\beta X) = tr(\beta_k \tilde{X})$. If $\alpha_k \neq \beta_k$, there exists $\tilde{X} \in Mat_{n-k}$ such that

$$\psi_0(\operatorname{tr}(\alpha_k \tilde{X})) \neq \psi_0(\operatorname{tr}(\beta_k \tilde{X}))$$

and hence $\gamma_k = \gamma_k(\alpha, \beta)$ is not admissible.

Lemma 3.7 If $\alpha_k = \beta_k = 0_k$,

$$\gamma_k(\alpha,\beta) = \begin{pmatrix} 0_{n-k} & * & * \\ & * & * & * \\ & & * & 0_{n-k} \\ w_k & & & \end{pmatrix}.$$

In this case, $k \ge n - k$ *and*

$$\gamma_k \sim \begin{pmatrix} 0 & 0 & \eta_k \\ I_{n-k} & 0 & 0 \\ & & I_{n-k} & 0 \\ \lambda_k & & & \end{pmatrix},$$

for some $\lambda_k, \eta_k \in Mat_k$. Moreover, for γ_k to be admissible, it is necessary that the upperright-hand square n - k-blocks of η and λ^{-1} are negatives of each other.

Proof Let e = 2k - n. Then for suitable

$$s_1 = d\left(\begin{pmatrix} v_{n-k} & \\ & v'_k \end{pmatrix}\right), \ s_2 = d\left(\begin{pmatrix} r_k & \\ & r'_{n-k} \end{pmatrix}\right) \in \mathcal{M}_n,$$

 $u, u' \in U_n, v'_k, r_k \in Mat_k$, and $v_{n-k}, r'_{n-k} \in Mat_{n-k}$, we can reduce γ_k to

$$\gamma_k \sim_{(s_1, s_2)} \begin{pmatrix} 0 & * & * \\ I_{n-k} & * & * \\ & I_{n-k} & 0 \\ \lambda_k & & & \end{pmatrix} \sim_{(u, u')} \begin{pmatrix} 0 & 0 & \eta_k \\ I_{n-k} & 0 & 0 \\ & & I_{n-k} & 0 \\ \lambda_k & & & & \end{pmatrix} = \gamma'_k$$

for some $\lambda_k, \eta_k \in Mat_k$. Denote by η^2 (respectively D^2) the upper-right-hand square n - k-block of η_k (respectively λ_k^{-1}).

Let

$$s = d \left(\begin{pmatrix} I_{n-k} & & \\ & I_e & \\ A & & I_{n-k} \end{pmatrix} \right) \in S_n, A \in \operatorname{Mat}_{n-k}.$$

Then

$$\gamma_{k}^{\prime}s\gamma_{k}^{\prime -1} = \begin{pmatrix} I_{n-k} & \eta_{k} \left(\frac{0}{A}\right) & \\ & I_{e} & & (A|0)\lambda^{-1} \\ \hline & & I_{n-k} & & \\ & & I_{e} & \\ & & & I_{n-k} \end{pmatrix}.$$

For γ'_k (hence γ_k) to be admissible, it is necessary that

$$\psi_n(\gamma'_k s {\gamma'_k}^{-1}) = \psi_0(\operatorname{tr} A(\eta^2 + D^2)) = 1$$

for all $A \in Mat_{n-k}$, *i.e.*, $D^2 = -\eta^2$.

Lemma 3.8 Let

$$\gamma_k' = \begin{pmatrix} 0 & 0 & \eta_k \\ I_{n-k} & 0 & 0 \\ & I_{n-k} & 0 \\ \lambda_k & & & \end{pmatrix},$$

1331

where $\lambda_k, \eta_k \in Mat_k$ and the upper-right-hand square n - k-blocks of η and λ^{-1} are negatives of each other with rank n'. Then

$$\gamma'_k \sim \begin{pmatrix} 0 & 0 & \tilde{\eta}_k \\ I_{n-k} & 0 & 0 \\ & & I_{n-k} & 0 \\ \tilde{\lambda}_k & & & \end{pmatrix},$$

where

$$\tilde{\eta}_{k} = \begin{pmatrix} 0 & 0 & 0 & -I_{n'} \\ 0 & I_{n''} & 0 & 0 \\ 0 & 0 & I_{n''} & 0 \\ I_{2k-n-n''} & 0 & 0 & 0 \end{pmatrix}, \quad \tilde{\lambda}_{k}^{-1} = \begin{pmatrix} 0 & 0 & I_{n'} \\ B_{n-k,2k-n}^{1} & 0 & 0 \\ B_{2k-n}^{3} & B_{2k-n,n''}^{4} & 0 \end{pmatrix},$$

and n'' = n - k - n'.

Proof Suppose that $\eta^2 = -D^2$ in γ'_k (with notations as in the proof of the previous lemma) and the rank of η^2 equals n'. Choose $g, h \in \text{Mat}_{n-k}$ such that $g\eta^2 h^{-1} = \begin{pmatrix} 0 & -I_n \\ 0 & 0 \end{pmatrix}$, and let $m = d(g, I_e, h)$. Then γ'_k

where

$$\tilde{\eta}_k = \begin{pmatrix} 0 & 0 & 0 & -I_{n'} \\ 0 & I_{n''} & 0 & 0 \\ 0 & 0 & I_{n''} & 0 \\ I_{2k-n-n''} & 0 & 0 & 0 \end{pmatrix},$$

and n'' = n - k - n'. For suitable $\hat{u} \in \hat{U}_n$, further reduction shows that

$$\gamma_k' \sim_{\hat{u}} \begin{pmatrix} 0 & 0 & \tilde{\eta}_k \\ I_{n-k} & 0 & 0 \\ & I_{n-k} & 0 \\ \tilde{\lambda}_k & & \end{pmatrix} = \tilde{\gamma}_k.$$

Next we consider

$$\tilde{\gamma}_{k}^{-1} = \begin{pmatrix} 0 & 0 & \tilde{\lambda}_{k}^{-1} \\ I_{n-k} & 0 & 0 \\ & & I_{n-k} & 0 \\ \tilde{\eta}_{k}^{-1} & & & \end{pmatrix}.$$

By similar reduction and the fact that $\eta^2 = -D^2$, we may assume that

$$\tilde{\lambda}_{k}^{-1} = \begin{pmatrix} 0 & 0 & I_{n'} \\ B_{n-k,2k-n}^{1} & 0 & 0 \\ B_{2k-n,2k-n}^{3} & B_{2k-n,n''}^{4} & 0 \end{pmatrix}.$$

Lemma 3.9 Let
$$e = 2k - n \ge 0$$
, $\theta_k = \begin{pmatrix} 0 & 0 & R_k \\ I_{n-k} & 0 & 0 \\ & I_{n-k} & 0 \\ Q_k & & \end{pmatrix}$ with

$$R_{k} = \begin{pmatrix} 0 & 0 & I_{n'} \\ B_{n-k,2k-n}^{1} & 0 & 0 \\ \hline B_{2k-n,2k-n}^{3} & B_{2k-n,n''}^{4} & 0 \end{pmatrix} = \begin{pmatrix} \eta_{n-k,e}^{1} & \eta_{n-k,n-k}^{2} \\ \hline \eta_{e,e}^{3} & \eta_{e,n-k}^{4} \end{pmatrix}$$

and

$$Q_k = \begin{pmatrix} 0 & 0 & 0 & I_{2k-n-n''} \\ 0 & I_{n''} & 0 & 0 \\ \hline 0 & 0 & I_{n''} & 0 \\ -I_{n'} & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{\lambda_{e,n-k}^1 & \lambda_{e,e}^2}{\lambda_{n-k,n-k}^3 & \lambda_{n-k,e}^4} \end{pmatrix}.$$

If θ_k is admissible, then

$$\theta_k \sim \begin{pmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ &$$

for some $T^2 \in Mat_{n''}, E \in GL_{2k-n-2n''}$. In this case, θ_k is $\hat{\psi}$ - τ -invariant.

Proof Let

$$C = \begin{pmatrix} C_{e,n-k}^{1} & C_{e,e}^{2} \\ C_{n-k,n-k}^{3} & C_{n-k,e}^{4} \end{pmatrix} = R_{k}^{-1} \text{ and } D = \begin{pmatrix} D_{n-k,e}^{1} & D_{n-k,n-k}^{2} \\ D_{e,e}^{3} & D_{e,n-k}^{4} \end{pmatrix} = Q_{k}^{-1}$$

and let $s_{1} = \begin{pmatrix} g & Y \\ g \end{pmatrix} \in S_{n}$, with $g = \begin{pmatrix} I_{n-k} \\ g^{1} & I_{e} \\ g^{3} & I_{n-k} \end{pmatrix}$,
(3.1) $g^{1} = \begin{pmatrix} 0 & r_{n'',n''} \\ 0 & 0 \end{pmatrix}, g^{3} = \begin{pmatrix} *_{n'',2k-n} \\ 0 \end{pmatrix},$

1333

C. Nien

$$Y = \begin{pmatrix} Y^{1} & & \\ Y^{2} & & \\ & Y^{3} & Y^{4} \end{pmatrix} \text{ with } \lambda^{3}Y^{1} + \lambda^{4}Y^{2} = Y^{3}C^{1} + Y^{4}C^{3} =: p,$$

where the subscripts denote the sizes of matrices. Then $s_2 = \theta s_1 \theta^{-1} =$

Therefore $s_2 \in S_n$ if and only if

$$Q_k\begin{pmatrix}Y^1\\Y^2\end{pmatrix} = \begin{pmatrix}\eta^4 g^3 C^1\\p\end{pmatrix}, \quad (Y^3, Y^4) R_k^{-1} = \begin{pmatrix}p, \lambda^4 g^1 D^1\end{pmatrix}.$$

Equivalently,

$$\begin{pmatrix} Y^1 \\ Y^2 \end{pmatrix} = Q_k^{-1} \begin{pmatrix} \eta^4 g^3 C^1 \\ p \end{pmatrix}, \quad (Y^3, \quad Y^4) = \begin{pmatrix} p, \quad \lambda^4 g^1 D^1 \end{pmatrix} \eta_k.$$

Also,

$$\begin{split} \psi_n(s_1) &= \psi_0(\operatorname{tr}(Y^1 + Y^4)) = \psi_0(\operatorname{tr}(D^1\eta^4 g^3 C^1 + D^2 p + p\eta^2 + \lambda^4 g^1 D^1 \eta^4)), \\ &= \psi_0(\operatorname{tr}(p(D^2 + \eta^2) + D^1\eta^4 g^3 C^1 + \lambda^4 g^1 D^1 \eta^4))) \\ &= \psi_0(\operatorname{tr}(D^1\eta^4 g^3 C^1 + \lambda^4 g^1 D^1 \eta^4)), \\ \psi_n(s_2) &= \psi_0(\operatorname{tr}(\eta^1 g^1 + g^3 D^4)) = \psi_0(\operatorname{tr}(\eta^1 g^1 + g^3 D^4)) = \psi_0(\operatorname{tr}(\eta^1 g^1 + g^3 D^4)). \end{split}$$

For θ_k to be admissible, it is necessary that $D^1\eta^4\lambda^4g^1 = \eta^1g^1$ and $g^3C^1D^1\eta^4 = g^3D^4$ for all g^1, g^3 as in equation (3.1).

Now we assume that θ_k satisfies

(3.2)
$$D^1 \eta^4 \lambda^4 g^1 = \eta^1 g^1$$
 and $g^3 C^1 D^1 \eta^4 = g^3 D^4$

for all g^1, g^3 as in equation (3.1). Write

$$\eta^4 = \begin{pmatrix} T^1 & 0 \\ T^2 & 0 \end{pmatrix}, \quad \eta^1 = \begin{pmatrix} 0 & 0 \\ T^3 & T^4 \end{pmatrix}, \quad \text{and} \quad C^1 = \begin{pmatrix} 0 & V^1 \\ 0 & V^2, \end{pmatrix}$$

where $T^2, T^3, V^1 \in Mat_{n''}$. Then

$$D^{1}\eta^{4}\lambda^{4}g^{1} = \begin{pmatrix} 0 & 0 \\ 0 & I_{n''} \end{pmatrix} \begin{pmatrix} T^{1} & 0 \\ T^{2} & 0 \end{pmatrix} \begin{pmatrix} I_{n''} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & r_{n'',n''} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & T^{2}r_{n'',n''} \end{pmatrix};$$
$$\eta^{1}g^{1} = \begin{pmatrix} 0 & 0 \\ T^{3} & T^{4} \end{pmatrix} \begin{pmatrix} 0 & r_{n'',n''} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & T^{3}r_{n'',n''} \end{pmatrix};$$
$$g^{3}C^{1}D^{1}\eta^{4} = \begin{pmatrix} *_{n'',2k-n} \\ 0 \end{pmatrix} \begin{pmatrix} 0 & V^{1} \\ 0 & V^{2} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & I_{n''} \end{pmatrix} \begin{pmatrix} T^{1} & 0 \\ T^{2} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} *_{n'',2k-n} \\ 0 \end{pmatrix} \begin{pmatrix} V^{1}T^{2} & 0 \\ V^{2}T^{2} & 0 \end{pmatrix};$$
$$g^{3}D^{4} = \begin{pmatrix} *_{n'',2k-n} \\ 0 \end{pmatrix} \begin{pmatrix} I_{n''} & 0 \\ 0 & 0 \end{pmatrix}.$$

Condition (3.2) implies that $T^2 = T^3, V^1T^2 = I_{n^{\prime\prime}}, V^2 = 0$. That is ,

$$\theta_k = \begin{pmatrix} 0 & 0 & \tilde{\eta}_k \\ I_{n-k} & 0 & 0 \\ & I_{n-k} & 0 \\ Q_k & & & \end{pmatrix}, \text{ with } \tilde{R}_k = \begin{pmatrix} 0 & 0 & 0 & I_{n'} \\ T^2 & T^4 & 0 & 0 \\ * & * & T^1 & 0 \\ * & * & T^2 & 0 \end{pmatrix}.$$

Note that $V^1T^2 = I_{n''}$, implying det $T^2 \neq 0$, and hence

$$\theta_k \sim \begin{pmatrix} 0 & 0 & 0 & I_{n'} \\ T^2 & 0 & 0 & 0 \\ E & 0 & 0 \\ I_{n-k} & & & T^2 & 0 \end{pmatrix} \\ I_{n-k} & & & & & \\ Q_k & & & & & & \end{pmatrix},$$

for some $E \in \operatorname{GL}_{2k-n-2n''}$.

In the case of fields, there exists some $g \in GL_{2k-n-2n''}$ such that $gEg^{-1} = E^t$, where E^t denotes the transpose of E. In the case of quaternion division algebras, there exists some $g \in GL_{2k-n-2n''}$ such that $gEg^{-1} = \overline{E}^t$ [Ra, Lemma 3.1]. In either case, there exists $g \in GL_{2k-n-2n''}$ such that $gEg^{-1} = E^{\tau}$. Let

$$\zeta = \operatorname{diag}(I_{n'+n''}, g, I_{n-k+2n''}, I_{n'+n''}, g, I_{n-k+2n''}).$$

Then $\zeta \theta_k \zeta^{-1} = \theta_k^{\tau}$ and θ_k is $\hat{\psi}$ - τ -invariant.

Proposition 3.10 Every admissible double coset S_ngS_n is $\hat{\psi}$ - τ -invariant.

Proof The proof is by induction on the index *n* of GL_{2n} . By Bruhat decomposition, $GL_2 = B_2W_2B_2 = S_2DW_2DS_2$, where $D = \{ \begin{pmatrix} a \\ 1 \end{pmatrix} \mid a \in A^* \}$. Representatives of $S_2 \setminus GL_2 / S_2$ can be expressed by $\xi_1(a) = \begin{pmatrix} a \\ 1 \end{pmatrix}$ or $\xi_2(a) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $a \in A^*$. Since

1335

 $\xi_1(a) \begin{pmatrix} 1 & x \\ 1 \end{pmatrix} \xi_1(a)^{-1} = \begin{pmatrix} 1 & ax \\ 1 \end{pmatrix}, x \in A$, and ψ_0 is nontrivial, there exists $x \in A$ such that $\psi_0(ax) \neq \psi_0(x)$ for $a \neq 1$. Hence $\xi_1(a)$ is not admissible for $a \neq 1$. For a = 1, $\xi_1(a) = id$ is $\hat{\psi}$ - τ -invariant. In the case of A = F, $\xi_2(a), a \in F^*$ is τ -invariant. In the case of A = D, there exists $b \in D^*$ such that $bab^{-1} = \bar{a}$ for $a \in D^*$. (Either refer to [Ra, Lemma 3.1] or check by direct computation.) Therefore, there exists $\begin{pmatrix} b \\ 1 \end{pmatrix} \in Mat_2$ such that $\begin{pmatrix} b \\ 1 \end{pmatrix} \xi_2(a) \begin{pmatrix} b \\ 1 \end{pmatrix}^{-1} = \xi_2(a)^{\tau}$ and $\xi_2(a)$ is $\hat{\psi}$ - τ -invariant. The conclusion is then true for n = 1. Now we assume that it is also true for $1, \ldots, n-1$.

Lemma 3.6 deals with the case of $\alpha_k \neq \beta_k$, and others do the same for $\alpha_k = \beta_k = 0_k$, therefore it suffices to show that $\gamma_k = d_1(\alpha)\sigma_k d_2(\beta)$, with $\alpha_k = \beta_k \neq 0_k$, is either non-admissible or $\hat{\psi}$ - τ -invariant.

Since rank(α_K) \neq 0, there exist $g, h \in \operatorname{GL}_{n-k}$ such that

for some $\delta_{k-1} \in Mat_{n-k-1}$. With suitable choices of $\hat{m} \in \hat{M}_n$, $\hat{u} \in \hat{U}_n$,

$$\gamma_k \sim_{\hat{m}} \begin{pmatrix} * & 0 & 1 & * & * & * \\ \delta'_{k-1} & 0 & * & * & * \\ * & 0 & * & * & * \\ & & 0 & 0 & 1 \\ & & & * & \delta'_{k-1} & 0 \\ w_k & & & & & * \end{pmatrix} \sim_{\hat{u}} \begin{pmatrix} 0 & 1 & & & \\ \delta''_{k-1} & 0 & * & * & \\ * & 0 & * & * \\ & & 0 & 0 & 1 \\ & & & * & \delta''_{k-1} & 0 \\ w_k & & & & & \end{pmatrix} = \tilde{\gamma}_k.$$

Let

$$N = \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \end{pmatrix} \in \mathrm{GL}_{2n-2}$$

be embedded in GL_{2n} as

$$\begin{pmatrix} 1 & & \\ N_1 & N_2 & \\ & & 1 \\ N_3 & N_4 \end{pmatrix}, N_i \in \operatorname{Mat}_{n-1}.$$

By induction assumption, there exist $\hat{s} = (s_1, s_2)$ with

$$s_1 = \begin{pmatrix} 1 & & & \\ & q & & Y \\ & & 1 & \\ & & & q \end{pmatrix}$$
 and $s_2 = \begin{pmatrix} p & & Z & \\ & 1 & & \\ & & p & \\ & & & 1 \end{pmatrix}$,

where $p, q \in GL_{n-1}, Y, Z \in Mat_{n-1}$ such that either $\hat{s} \in \hat{\mathbb{H}}_{\tilde{\gamma}_k}$ and $\hat{\psi}(s) \neq 1$ or $\hat{s} \cdot \tilde{\gamma}_k = (\tilde{\gamma}_k)^{\tau}$ and $\hat{\psi}(\hat{s}) = 1$. Note that the above embedding is consistent between (τ_{n-1}, ψ_{n-1}) and (τ_n, ψ_n) . Hence the conclusion holds by induction.

4 Main Theorems

Theorem 4.1 For any $n \in \mathbb{N}$, let $G = \operatorname{GL}_{2n}(\mathbb{F}_q)$, where \mathbb{F}_q is a finite field. Then

dim Hom_{*G*}(ρ , Ind^{*G*}_{S^{*n*}</sub> ψ_n) ≤ 1 </sub>}

for any irreducible representation of G.

Proof Let $\pi = \text{Ind}_{S_n}^G \psi_n$. Proposition 3.5 implies that an element

$$\triangle : G \mapsto \operatorname{Hom}_{\mathbb{C}}(\operatorname{Ind}_{S_n}^G \psi_n, \operatorname{Ind}_{S_n}^G \psi_n)$$

satisfying $\triangle(s'gs) = \pi(s') \circ \triangle(g) \circ \pi(s)$ for $s, s' \in S_n$ is τ -invariant. By Theorem 2.1 Hom_{*G*}(Ind^{*G*}_{S_n} ψ_n , Ind^{*G*}_{S_n} ψ_n) is abelian and the result follows.

Lemma 4.2 Let G denote $GL_{2n}(A)$, where A is a p-adic field \mathcal{F} or a quaternion division algebra D over \mathcal{F} . If T is a distribution on G satisfying

$$T(L_{h_1} \circ R_{h_2}(\eta)) = \psi_n(h_1 h_2^{-1}) T(\eta)$$

for $h_1, h_2 \in S_n(A), \eta \in C_c^{\infty}(G)$, then T is τ -invariant.

Proof We verify the assumptions of [BZ, Theorem 6.10].¹

The assumptions of Theorem 6.10 in [BZ] in this case are the following:

- (i) The action of Ĥ is constructible (same as constructive in the sense of [BZ]), which means that the set of {(g, h ⋅ g) | g ∈ G, h ∈ Ĥ} is a union of finitely many locally closed subsets of G × G.
- (ii) For each $\hat{h} \in \hat{\mathbb{H}}$, there is $\hat{h}_{\tau} \in \hat{\mathbb{H}}$ such that $\hat{h} \cdot g^{\tau} = (\hat{h}_{\tau} \cdot g)^{\tau}$ for all $g \in G$.
- (iii) $\tau^2 = \text{id.}$
- (iv) If *T* is a nonzero $\hat{\mathbb{H}}$ -invariant distribution on an $\hat{\mathbb{H}}$ -orbit *Y*, then $Y^{\tau} = Y$ and $T^{\tau} = T$.

The conclusion is that any $\hat{\mathbb{H}}$ -invariant distribution on G is also τ -invariant.

By [BZ, Theorem A §6.15], the action of $\hat{\mathbb{H}}$ is constructible on $\operatorname{GL}_{2n}(\mathcal{F})$. Also $\iota\hat{\mathbb{H}}$ is constructible on $\operatorname{GL}_{4n}(K), K = \mathcal{F}(\sqrt{\alpha})$, and its closed subgroup $\operatorname{GL}_{2n}(D)$, where ι is the embedding defined earlier. Condition (i) is then verified. For condition (ii), take $\hat{h}_{\tau} = (h_2^{-\tau}, h_1^{-\tau})$ for $\hat{h} = (h_1, h_2) \in \hat{\mathbb{H}}$. Since \mathbb{H} is τ -invariant and $(\hat{h}_{\tau})_{\tau} = \hat{h}$, τ induces an anti-involution on $\hat{\mathbb{H}}$ (still denoted by τ) $\tau : \hat{\mathbb{H}} \mapsto \hat{\mathbb{H}}$ by $\hat{h} \mapsto \hat{h}_{\tau}$. The action of $\hat{h} \in \hat{\mathbb{H}}$ satisfies that $\hat{h} \cdot g^{\tau} = (\hat{h}_{\tau} \cdot g)^{\tau}$ for all $g \in G$. Condition (iii) is obvious. To verify condition (iv), let T be a nonzero $\hat{\mathbb{H}}$ -invariant distribution on an $\hat{\mathbb{H}}$ -orbit $Y = \mathbb{H}g\mathbb{H}, i.e., T(\hat{h} \cdot (\eta)) = T(\eta)$ for all $\hat{h} = (h_1, h_2) \in \hat{\mathbb{H}}$ and $\eta \in C_c^{\infty}(Y)$. Then $Y \cong \hat{\mathbb{H}}/\hat{\mathbb{H}}_g$. ($\hat{\mathbb{H}}_g$ the stabilizer of g in $\hat{\mathbb{H}}$.) Define a character $\hat{\psi}_n$ of $\hat{\mathbb{H}}$ by

$$\hat{\psi}_n(\hat{h}) = \psi_n(h_1h_2^{-1}) \text{ for } \hat{h} = (h_1, h_2) \in \hat{\mathbb{H}},$$

¹This proof mimics [So, Theorem 2.3]. We keep it here for the sake of compleness.

then $\hat{\psi}_n$ is τ -invariant and $C_c^{\infty}(Y) \cong \operatorname{ind}_{\hat{H}_g}^{\hat{\mathbb{H}}}$ 1 (un-normalized compact induction). We have that

$$T \in \operatorname{Hom}_{\hat{\operatorname{H}}}(\operatorname{ind}_{\hat{\operatorname{H}}_g}^{\hat{\operatorname{H}}} 1, \hat{\psi}_n) \cong \operatorname{Hom}_{\hat{\operatorname{H}}_g}(\delta_{\hat{\operatorname{H}}} \delta_{\hat{\operatorname{H}}_g}^{-1}, \operatorname{Res}_{\hat{\operatorname{H}}_g} \hat{\psi}_n)$$

by Frobenius reciprocity, where $\delta_{\hat{H}}, \delta_{\hat{H}_g}$ are the modular functions of $\hat{\mathbb{H}}$ and $\hat{\mathbb{H}}_g$, respectively. Since $|\hat{\psi}_n| \equiv 1$ and $\delta_{\hat{\mathbb{H}}} \delta_{\hat{\mathbb{H}}_g}^{-1}$ is positive, by Schur's lemma we have either

$$\dim \operatorname{Hom}_{\hat{\operatorname{H}}_g}(\delta_{\hat{\operatorname{H}}} \delta_{\hat{\operatorname{H}}_g}^{-1}, \operatorname{Res}_{\hat{\operatorname{H}}_g} \hat{\psi}_n) = 0 \quad \text{or} \quad \delta_{\hat{\operatorname{H}}} \delta_{\hat{\operatorname{H}}_g}^{-1} = \operatorname{Res}_{\hat{\operatorname{H}}_g} \hat{\psi}_n \equiv 1.$$

Therefore we conclude that $\operatorname{Hom}_{\hat{H}_g}(\delta_{\hat{H}}\delta_{\hat{H}_g}^{-1}, \operatorname{Res}_{\hat{H}_g}\hat{\psi}_n) = 0$ for those non-admissible *g*, *i.e.*, there is no nontrivial \hat{H} -invariant distribution *T* on such *Y*.

Now we consider those $\hat{\psi}$ - τ -invariant g. We may assume that $\delta_{\hat{H}}\delta_{\hat{H}_g}^{-1} \equiv 1$, since otherwise $\hat{\mathbb{H}}$ -invariant distribution on such Y is trivial. Note that $\hat{k} \cdot g = g^{\tau}$ for some $\hat{k} \in \mathbb{H}$ implies that the double coset $Y = \mathbb{H}g\mathbb{H}$ is τ -invariant. It remains to show that $T^{\tau} = T$. In our case T is proportional (see [BZ, 6.12]) to

$$T_1(\eta) = \int_{\hat{\mathbb{H}}/\hat{\mathbb{H}}_g} \eta(\hat{h} \cdot g) \hat{\psi}_n^{-1}(\hat{h}) \, d\hat{h},$$

where $d\hat{h}$ is a left $\hat{\mathbb{H}}$ -invariant measure on $\hat{\mathbb{H}}/\hat{\mathbb{H}}_{g}$. We have

$$\begin{split} T_{1}^{\tau}(\eta) &= T_{1}(\eta^{\tau}) = \int_{\hat{\mathbb{H}}/\hat{\mathbb{H}}_{g}} \eta((\hat{h} \cdot g)^{\tau}) \hat{\psi}_{n}^{-1}(\hat{h}) \, d\hat{h} \\ &= \int_{\hat{\mathbb{H}}/\hat{\mathbb{H}}_{g}} \eta(\hat{h}_{\tau} \cdot g^{\tau}) \hat{\psi}_{n}^{-1}(\hat{h}) \, d\hat{h} \\ &= \int_{\hat{\mathbb{H}}/\hat{\mathbb{H}}_{g}} \eta(\hat{h}_{\tau} \cdot \hat{k} \cdot g) \hat{\psi}_{n}^{-1}(\hat{h}) \, d\hat{h} = \int_{\hat{\mathbb{H}}/\hat{\mathbb{H}}_{g}} \eta(\hat{h}' \cdot g) \hat{\psi}_{n}^{-1}(\hat{h}') \hat{\psi}_{n}(\hat{k}) \, d\hat{h}' \end{split}$$

The last equality is obtained by the change of variables $\hat{h}' = \hat{h}_{\tau} \cdot \hat{k}$ along with our assumption that $\delta_{\hat{H}} \delta_{\hat{H}_g}^{-1} \equiv 1$ and the fact that $\hat{\psi}_n$ is τ -invariant. Since $\hat{\psi}_n(\hat{k}) = 1$, we have

$$T_1^ au(\eta) = \int_{\hat{\mathbb{H}}/\hat{\mathbb{H}}_g} \eta(\hat{h}'\cdot g) \hat{\psi}_n^{-1}(\hat{h}') \, d\hat{h}' = T_1(\eta).$$

Theorem 4.3 Let $G = GL_{2n}(A)$, where A is either a p-adic field \mathcal{F} or a quaternion division algebra D over \mathcal{F} . Then dim $Hom_G(\rho, Ind_{S_n}^G \psi_n) \leq 1$ for any irreducible representation ρ of G.

Proof We have obtained dim $\operatorname{Hom}_G(\pi; \operatorname{Ind}_{S_n}^G \psi_n) \cdot \dim \operatorname{Hom}_{S_n}(\operatorname{Res}_{S_n}^G \tilde{\pi}; \psi_n) \leq 1$ for any irreducible representation π of G from the previous theorem and the Gelfand–Kazhdan criterion. It suffices to show that if π has a nontrivial Shalika functional, then $\tilde{\pi}$ will also have one. Assume that Λ_{π} is a nontrivial Shalika functional for π ,

Uniqueness of Shalika Models

i.e., $\Lambda_{\pi}(\pi(h)\nu) = \psi_n(h)\Lambda_{\pi}(\nu)$ for all $\in S_n$ and $\nu \in V_{\pi}$. Define a representation π' on the same vector space V_{π} by $\pi'(g)\nu = \pi(\xi g^{-\tau}\xi^{-1})\nu$, where $\xi = \text{diag}(I_n, -I_n)$. Then $\psi(\xi s^{-\tau}\xi^{-1}) = \psi(s)$ for $s \in S_n$, and Λ_{π} is also a Shalika functional for π' .

In the case of \mathcal{F} , define another representation π'' on the same vector space V_{π} by $\pi''(g)v = \pi(g^{-t})v$. Then $\pi'' \cong \tilde{\pi}$ by [BZ, Theorem 7.3]. Since $\xi g^{-\tau} \xi^{-1}$ is conjugate to g^{-t} , we have $\pi' \cong \tilde{\pi}$.

In the case of *D*, define another representation π'' on the same vector space V_{π} by $\pi''(g)\nu = \pi(\eta \bar{g}^{-t}\eta^{-1})\nu$, where $\eta(i, j) = (-1)^i \delta_{i,2n-j+1}$. Then $\pi'' \sim \tilde{\pi}$ by [Ra, Theorem 3.1]. Since $\xi g^{-\tau} \xi^{-1}$ is conjugate to $\eta \bar{g}^{-t} \eta^{-1}$, we have $\pi' \sim \pi'' \sim \tilde{\pi}$.

In either case,

 $\dim \operatorname{Hom}_{G}(\tilde{\pi}; \operatorname{Ind}_{S_{n}}^{G} \psi_{n}) = \dim \operatorname{Hom}_{G}(\pi'; \operatorname{Ind}_{S_{n}}^{G} \psi_{n})$ $= \dim \operatorname{Hom}_{S_{n}}(\pi'|_{S_{n}}; \psi_{n})$ $\geq 1,$

which completes the proof.

References

[BZ]	I. N. Bernšteĭin and A. V. Zelevinskiĭ, <i>Representations of the group</i> $GL(n, \mathcal{F})$, where \mathcal{F} is a
	non-Archimedean local field. Russ. Math. Surveys 31 (1976), no. 3, 1–68.
[CKPS]	J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, <i>Functoriality for the classical</i>
. ,	groups, Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 163–233.
[Ga1]	P. Garrett, The Gelfand-Kazhdan criterion. http://www.math.umn.edu//garrett/m/v/.
[Ga2]	, Uniqueness of invariant distributions. http://www.math.umn.edu//garrett/m/v/.
[GaRe]	A. M. Garsia and C. Reutenauer, A decomposition of Solomons descent algebra. Adv. Math.
. ,	77(1989), no. 2, 189–262.
[Ge]	S. I. Gelfand, Representations of a general linear group over a finite field. In: Lie Groups and
	Their Representations. Halsted, New York, 1975, pp. 119–132,
[GK]	S.I. Gelfand and D. Kazhdan, Representations of the group $GL(n, K)$, where K is a local field. In:
	Lie Groups and Their Representations. Halsted, New York, 1975, pp. 95–118.
[GRS]	D. Ginzburg, S. Rallis, and D. Soudry, <i>Generic automorphic forms on</i> $SO(2n + 1)$: functorial lift
	to GL(2n), endoscopy, and base change. Internat. Math. Res. Notices 2001, no. 14, 729–764.
[Gr]	B. H. Gross, Some applications of Gelfand pairs to number theory. Bull. Amer. Math. Soc.
	24 (1991), no. 2, 277–301.
[GT]	W. T. Gan and S. Takeda, On Shalika periods and a conjecture of Jacquet-Martin. To appear in
	Amer. J. Math.
[JaS]	H. Jacquet and J. Shalika, Exterior square L-functions. In: Automorphic Forms, Shimura
	Varieties, and L-functions. Perspect. Math. 11, Academic Press, Boston, MA, 1990
	pp. 143–226, 143-225.
[Ji1]	D. Jiang, On the fundamental automorphic L-functions of $SO(2n + 1)$. Int. Math. Res. Notices
	2006 . art. id. 64069.
[JiQ]	D. Jiang and Y. Qin, Residues of Eisenstein series and generalized Shalika models for SO(4n). J.
	Ramanujan Math. Soc. 22,(2007), no. 2, 101–133.
[JiS1]	D. Jiang and D. Soudry, <i>The local converse theorem for</i> $SO(2n + 1)$ <i>and applications</i> . Ann. of
	Math. 157(2003), no. 3, 743–806.
[JiS2]	, Generic representations and local Langlands reciprocity law for p -adic SO $(2n + 1)$. In:
	Contributions to Automorphic Forms, Geometry, and Number Theory. Johns Hopkins Univ.
	Press, Baltimore, MD, 2004, pp. 457–519.
[JR]	H. Jacquet and S. Rallis, Uniqueness of linear periods, Compositio Math 102(1996), no. 1,
	65–123.
[JM]	H. Jacquet and K. Martin, Shalika periods on GL ₂ (D) and GL ₄ . Pacific J. Math. 233(2007), no.

C. Nien

- [Ki] H. H. Kim, Applications of Langlands' functorial lift of odd orthogonal groups. Trans. Amer. Math. Soc. 354(2002), no. 7, 2775–2796 (electronic).
- [PR] D. Prasad and A. Raghuram, *Kirillov theory of* GL₂(D) where D is a division algebra over a non-Archimedean local field. Duke J. of Math, **104**(2000), no. 1, 19–44.
- [Ra] A. Raghuram, On representations of p-adic GL(2, D). Pacific J. Math. 206(2002), no. 2, 451-464.
- [Sa] Y. Sakellaridis, A Casselman-Shalika formula for the Shalika model of GL(n). Canad. J. Math. 58(2006), no. 5, 1095–1120.
- [So] D. Soudry, A uniqueness theorem for representations of GSO(6) and the strong multiplicity one theorem for generic representations of GSp(4), Israel Journal of Mathematics, Vol. 58, no. 3 (1987).

Department of Mathematics,, National Cheng Kung University, Tainan 701, Taiwan e-mail: nienpig@mail.ncku.edu.tw,