Banach algebras with one dimensional radical

Lawrence Stedman

Abstract

A Banach algebra A with radical R is said to have property (S) if the natural mapping from the algebraic tensor product $A \otimes A$ onto A^{2} is open, when $A \otimes A$ is given the projective norm. The purpose of this note is to provide a counterexample to Zinde's claim that when A is commutative and R is one dimensional the fulfillment of property (S) in A implies its fulfillment in the quotient algebra A / R.

Let A be a Banach algebra with radical R and let A^{2} denote the linear span of products of elements of A. A is said to have property (S) if the natural map π from the algebraic tensor product $A \otimes A$ onto A^{2} is open, when $A \otimes A$ is given the projective norm.

Thus A will have (S) if there is a constant K such that

$$
\|z\|_{\pi}=\inf \left\{\sum\left\|x_{i}\right\| \cdot\left\|y_{i}\right\|: \sum x_{i} y_{i}=z\right\} \leq K\|z\|
$$

whenever $z \in A^{2}$.
In [2] Zinde proved that if $\operatorname{dim} R=1$ then property (S) will hold in A if it holds in the quotient algebra A / R, and stated the converse as obvious. However Loy [1] showed that if $\operatorname{dim} R=1$ and A / R has (S) then $R \cap A^{2}=0$ implies $R \cap \overline{A^{2}}=0$.

We provide an example of a commutative separable Banach algebra A

Received 21 September 1982.
with one dimensional radical R such that A has (S) and $R \cap A^{2}=0$ while $R \cap \overline{A^{2}} \neq 0$, thus showing that the converse to Zinde's result does not hold.

Let A_{0} be the complex commutative algebra generated by the formal symbols $\left\{r, a_{i}, x_{i}, z_{i}: i \in N\right\}$ subject to

$$
\begin{array}{rlrl}
r^{2} & =r x_{i}=r z_{i}=r a_{i}=0 & \text { for all } i, \\
x_{i} y_{i} & =a_{i} a_{j}=a_{i} x_{j}=0 & & \text { whenever } i \neq j, \\
x_{i}^{2} & =r+z_{i} & & \text { for all } i, \\
x_{i}^{2}-x_{i+1}^{2} & =a_{i}^{2} & & \text { for all } i .
\end{array}
$$

Thus an element $y \in A_{0}$ may be uniquely expressed as
(1) $y=r+\sum \alpha_{i} a_{i}+\sum \beta_{i} x_{i}+\sum \gamma_{i j} z_{i}^{j}+\sum \delta_{i} a_{i} x_{i}$

$$
+\sum \mu_{i j} a_{i} x_{i} z_{i}^{j}+\sum v_{i j} x_{i} z_{i}^{j}+\sum \pi_{i j} a_{i} z_{i}^{j}
$$

where $\lambda, \alpha_{i}, v_{i}, \gamma_{i j}, \delta_{i}, \mu_{i j}, v_{i j}, \pi_{i j} \in C$ for all i, j and the sums are finite.

Define a norm on A_{0} by

$$
\begin{aligned}
&\|y\|=|\lambda|+2 \sum\left|a_{i}\right| 2^{-i}+2 \sum\left|\beta_{i}\right|+\sum\left|\gamma_{i j}\right| 2^{-2 i j}+\sum\left|\delta_{i}\right| 2^{-i} \\
&+\sum\left|\mu_{i j}\right| 2^{-i(2 j+1)}+\sum\left|v_{i j}\right| 2^{-2 i j}+\sum\left|\pi_{i j}\right| 2^{-i(2 j+1)}
\end{aligned}
$$

It is easily checked that this norm is submultiplicative. Let A be the completion of A_{0} with respect to $\|\cdot\|$, then A is commutative and separable and each element of A is uniquely expressible as in (1) with possibly infinite sums.

$$
\text { Clearly } R=\operatorname{Rad} A=C r, R \cap A^{2}=0 \text { and, since } \lim z_{i}=0,
$$ $R \cap \overline{A^{2}}=R$.

To show that A has (S) we first consider $z \in A^{2} \cap A_{0}$, so

$$
z=\sum_{i=1}^{n} \alpha_{i} x_{i}^{2}+\sum_{j \geq 2} \beta_{i j} z_{i}^{j}+\sum \gamma_{i, j} x_{i} z_{i}^{j}+\sum \delta_{i} a_{i} x_{i}+\sum \pi_{i j} a_{i} z_{i}^{j}+\sum \mu_{i j} a_{i} x_{i} z_{i}^{j}
$$

where the sums are finite. Now

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} x_{i}^{2} & =\sum_{i=1}^{n-1}\left(\sum_{k=1}^{i} \alpha_{k}\right)\left(x_{i}^{2}-x_{i+1}^{2}\right)+\left(\sum_{i=1}^{n} \alpha_{i}\right) x_{n}^{2} \\
& =\sum_{i=1}^{n-1}\left(\sum_{k=1}^{i} \alpha_{k}\right) \alpha_{i}^{2}+\left(\sum_{i=1}^{n} \alpha_{i}\right) x_{n}^{2}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \|z\|_{\pi} \leq 4 \sum_{i=1}^{n-1}\left|\sum_{k=1}^{i} \alpha_{k}\right| 2^{-2 i}+4\left|\sum_{i=1}^{n} \alpha_{i}\right|+\sum_{j \geq 2}\left|\beta_{i, j}\right|\left\|z_{i}^{j-1}\right\| \cdot\left\|z_{i}\right\| \\
& +\sum\left|\gamma_{i j}\right|\left\|z_{i}^{j}\right\| \cdot\left\|x_{i}\right\|+\sum\left|\delta_{i}\right|\left\|a_{i}\right\| \cdot\left\|x_{i}\right\|+\sum\left|\pi_{i j}\right|\left\|a_{i}\right\| \cdot\left\|z_{i}^{j}\right\| \\
& +\sum\left|\mu_{i j}\right|\left\|a_{i} z_{i}^{j}\right\| \cdot\left\|x_{i}\right\| \\
& \leq 4\left[\sum_{i=1}^{n-1}\left(\left|\alpha_{i}\right| \sum_{k=i+1}^{n} 2^{-2 k}\right)+\left|\sum_{i=1}^{n} \alpha_{i}\right|+\sum_{j \geq 2}\left|\beta_{i, j}\right| 2^{-2 i j}\right. \\
& \left.+\sum\left|\gamma_{i j}\right| 2^{-2 i j}+\sum\left|\delta_{i}\right| 2^{-i}+\sum\left|\pi_{i j}\right| 2^{-i} 2^{-2 i j}+\sum\left|\gamma_{i j}\right| 2^{-i(2 j+1)}\right] \\
& \leq 8\left[\sum_{i=1}^{n-1}\left|\alpha_{i}\right| 2^{-2 i}+\left|\sum_{i=1}^{n} \alpha_{i}\right|+\sum_{j \geq 2}\left|\beta_{i, j}\right| 2^{-2 i j}+\sum\left|\gamma_{i, j}\right| 2^{-2 i j}\right. \\
& \left.+\sum\left|\delta_{i}\right| 2^{-i}+\sum\left|\pi_{i j}\right| 2^{-i(2 j+1)}+\sum\left|\mu_{i j}\right| 2^{-i(2 j+1)}\right]
\end{aligned}
$$

$\leq 8\|z\|$.
If $y \in A$ is written as in (1) with infinite sums, we denote by y_{k} the element of A_{0} obtained by summing all indices from l to k only.

Now consider an arbitrary $a=\sum_{i=1}^{n} t_{i, i} \in A^{2}$. Then

$$
t_{i}=\left(t_{i}\right)_{k}+\delta_{t_{i k}}, s_{i}=\left(s_{i}\right)_{k}+\delta_{s_{i k}}
$$

where $\delta_{t_{i k}}, \delta_{s_{i k}} \rightarrow 0$ as $k \rightarrow \infty$. So given any $p \in \mathbb{N}$ we may choose k sufficiently large to ensure that

$$
\max _{i=1, \ldots, n}\left\{\left\|\delta_{t_{i k}}\right\|,\left\|\delta_{s_{i k}}\right\|\right\}<\frac{1}{p} .
$$

Then $\quad a=a_{k}+\Delta_{k}$ where

$$
\begin{aligned}
& a_{k}=\sum_{i=1}^{n}\left(t_{i}\right)_{k}\left(s_{i \cdot k}\right)_{k} \\
& \Delta_{k}=\sum_{i=1}^{n}\left(\delta_{t_{i k}} \delta_{i k}+\delta_{t_{i k}}\left(s_{i}\right)_{k}+\delta_{s_{i k}}\left(t_{i}\right)_{k}\right) .
\end{aligned}
$$

Then $\left\|\Delta_{k}\right\|_{\pi} \leq n\left(p^{-2}+(M+N) p^{-1}\right)$ where

$$
M=\max _{i=1, \ldots, n}\left\|s_{i}\right\|, N=\max _{i=1, \ldots, n}\left\|t_{i}\right\|
$$

and so $\left\|\Delta_{k}\right\|_{\pi} \rightarrow 0$ as $k \rightarrow \infty$. Now

$$
\begin{aligned}
\|a\|_{\pi} & \leq\left\|a_{k}\right\|_{\pi}+\left\|\Delta_{k}\right\|_{\pi} \\
& \leq 8\left\|a_{k}\right\|+\left\|\Delta_{k}\right\|_{\pi},
\end{aligned}
$$

since $a_{k} \in A^{2} \cap A_{0}$. Letting $k \rightarrow \infty$ we obtain

$$
\|a\|_{\pi} \leq 8\|a\|
$$

whenever $a \in A^{2}$, so that A has property (S).

References

[1] Richard J. Loy, "The uniqueness of norm problem in Banach algebras with finite dimensional radical", Automatic continuity and radical Banach algebras (Lecture Notes in Mathematics. SpringerVerlag, Berlin, Heidelberg, New York, to appear).
[2] B.M. Зинде [V.M. Zinde], "Свойство 'единственности нормы' для коммутативнх Банаховых алсебр с конечномерным радикалом" [Unique norm property in commutative Banach algebras with finite-dimensional radicals], Vestnik Moskov. Univ. Ser. I Mat. Meh. (1970), No. 4, 3-8.

Department of Mathematics, Faculty of Science,
Australian National University, PO Box 4, Canberra, ACT 2600, Australia.

