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Abstract. We show that for every ergodic Zd-action T, there is a mixing Zd-action
S which is orbit equivalent to T via an orbit equivalence that is a weak a-equivalence
for all a > 1 and a strong fc-equivalence for all b e (0,1). If T has positive entropy,
then S can be taken to have completely positive entropy. If the dimension d is
greater than one, the orbit equivalence may be taken to be bounded and a strong
b-equivalence for all b > 0.

Let T and 7" be ergodic, measure-preserving Zd-actions on Lebesgue probability
spaces (ft, 38, /JL) and (ft', 38', /A')- T and T" are said to be orbit equivalent if there
exists a non-singular, bimeasurable map <f>: ft -> ft', such that, for a.e. (o e ft, (f> maps
the T-orbit OT{u>) of w bijectively onto OT-(<f>(tii)). Equivalently, and more con-
veniently for our purposes, T and T are orbit equivalent if there is a Zd-action S
on ft, isomorphic to I", having the same orbits as T. That is, for a.e. a>, OT(a)) =
OS(CD). We refer to such a pair (T, S) as an orbit equivalence between T and S.

Given an orbit equivalence between T and S, there is a measurable function
a:ftxZdH>Zd given by, for all veZd and for a.e. w, Tv(co) = S"(M>I))(«), and
satisfying (i) a(w, •);Zd-*Zd is a bijection for a.e. w and (ii) a(w, u+w) =
a(&), u) + a(T"w, w), for a.e. w and all v, weZd. We refer to a as the cocycle of
the orbit equivalence (T, S). Conversely, given such a cocycle a for T (that is, a
function a satisfying (i) and (ii)) we can define a function a~':f txZd -*Zd by
a (a, a"'(w, u)) = i> and a Zd-action S by 5u(w)= r a ~ W ) ( « ) so that (T, S) is an
orbit equivalence with cocycle a. (Note that a"1 is the cocycle for (S, T).) Thus we
can (informally) regard orbit equivalences and the associated cocycles as the same
objects. We will indicate the above relationship between T and S by S = T" '.

We remark that a theorem of Dye [2] asserts that every two (ergodic, Lebesgue
probability measure-preserving) Zd-actions are orbit equivalent. On the other
extreme, we can describe isomorphism of Zd-actions by saying that T is isomorphic
to S if and only if there is an orbit equivalence between T and S with cocycle a
satisfying for all v, a.e. <u, a(w,v) = v. This paper concerns the classification of
Zd-actions up to orbit equivalences satisfying conditions less restrictive than
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isomorphism. The ideas here originated with observation of A. del Junco that one
can characterize even Kakutani equivalence in terms of orbit equivalences. Rather
than give his original characterization, we present one that comes out of his
subsequent work with D. J. Rudolph [1].

THEOREM [1]. Ergodic Z-actions T and S are evenly Kakutani equivalent if and only
if there is an orbit equivalence between T and S with cocycle a satisfying, for a.e. <o,
there exists / ( w ) c 2 of density 1, such that

(a((o,n)-n)
hm = 0.
n-»oo n

It is possible to give a similar characterization of uneven Kakutani equivalence but
as we will not need it, we won't state it here. (See [1].)

An important consequence of these ideas is the development of the notion of
Kakutani equivalence of Zd-actions (d>l) that is carried out in [1]. There one
finds a family of relations, -* M, parametrized by M 6 GL(n, R). The relation corre-
sponding to the parameter ideGL(n, R) can be defined using the statement of the
above theorem as a model.

Definition 1. Ergodic Zd-actions T and S are id-Kakutani equivalent (T ~>'d S) if
there is an orbit equivalence (T, 5) with cocycle a satisfying, for a.e. w, there exists
I(co)<=Zd of density 1, such that

\\a((o, v)-v\\
hm - i - = 0.

Again, this is not the definition given in [1], but is equivalent to it. We omit the
definition of the corresponding relation for M e GL(n, R), M ^ id, but mention two
facts proved in [1]. First, the parametrization of these relations satisfies: given
Zd-actions T, S and U, with T-^>M S~»M U, we get T-~*MM U. Second, given T
and M, there exists an action 5 with T-^M S.

It is natural to ask whether theorems known concerning Kakutani equivalence
for Z-actions extend to Zd-actions. We consider two such theorems and prove the
corresponding extensions. Namely, Friedman and Ornstein proved [3] that every
ergodic transformation T is Kakutani equivalent to a mixing one, and Ornstein and
Smorodinsky [5] proved that every ergodic transformation of positive entropy is
Kakutani equivalent to a K- automorphism.

A Zd-action T on (O, 38, /J.) is said to be mixing if for all A, Be 38, e>0 there
exists M such that for all veZd with |«|>M, \^(An T~VB)-^{A)ix(B)\<e. T is
called a K-system if it has no non-trivial factors of zero entropy.

We will show, in part, that for all ergodic Zd-actions T, and M e GL(n, R), there
exists a mixing action S with T ~»M S, and similarly if T has positive entropy, we
may choose S to be a K-system. We remark that in order to prove these results, it
is sufficient to prove them with M = id, as can be seen by applying the two facts
from [1] mentioned above.
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There is more to say, however, even in the 1-dimensional case. The orbit
equivalence condition describing even Kakutani equivalence suggests that one
consider other schemes of classification of ergodic actions, by varying the nature
of the restriction on the desired orbit equivalence. We consider here two variants,
both suggested by D. J. Rudolph.

In order to describe the first variant we need the following definition. A family
of sets {/(w)cZd}( U E n is called a sequence of measurable full density if there exist
an increasing sequence of measurable sets A, <= fl and a sequence of integers M,
such that lim1-,<x,/A(Ai) = l and for all coefl, I(w) = {Jc°=1{veZd\\\v\\cc> Mt and
Tv(a))e Aj}. Let a > l . We say that (T, S) is a weak-a-equivalence if there is a
sequence I(io) of measurable full density such that for a.e. u>,

\\a((D, v)-v\\a
 nhm - — — = 0.

MI-°° ||u||

The peculiar form of this definition is apparently necessary to make it correspond
to the equivalence relations described in [6]. In that memoir, Rudolph shows that
each of these (as well as other) equivalence relations admits an equivalence theorem
analogous to Ornstein's isomorphism theorem for Bernoulli shifts. That is, there is
for each a distinguished class of transformations, analogous to the finitely determined
transformations, which are characterized up to the appropriate equivalence relation
by their entropy. The equivalence theorem for even Kakutani equivalence is of
course one of these.

For the second variant, we let b e (0,1) and say that (T, S) is a strong b-equivalence
if

•J_^—111—=0

This condition does not give an equivalence relation on Z-actions; it is not transitive.
However, the condition that (T, S) is, for all b e (0,1), a strong b-equivalence, does
define an equivalence relation.

We will prove the following theorems.

THEOREM 1. Let Tbe an ergodic (Lebesgueprobability measure-preserving) Zd-action
on (ft, 58, /u,). There is a cocycle a for T giving a mixing action S = Ta , such that
the orbit equivalence (T, S) is for all a > 1, a weak a-equivalence and for all b e (0,1)
a strong b-equivalence.

THEOREM 2. Let Tbe as in theorem 1 with h(T)>0. Then there is a cocycle a as in
theorem 1, such that, in addition to the above, S=Ta is a K-system.

In dimension 1, if (T, S) is a strong b-equivalence for b > 1, then T is isomorphic
to 5 by an isomorphism that preserves orbits. The same holds for bounded orbit
equivalences; that is, orbit equivalences satisfying there exists MeU such that for
a.e. to, and all \v\ = 1, \a(w, v)-v\<M. In higher dimensions, however, this is not
so, and one can prove theorems corresponding to theorems 1 and 2 for these more
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restrictive conditions on a. These results will be presented following the proofs of
theorems 1 and 2.

We remark that in Rudolph's memoir [6], he defines for Z-actions a class of
equivalence relations m^ parameterized by the class ^ of functions tl/:U~°^R~°
such that </*(()) = 0, \\> is non decreasing, i/>(x)>x and Vc>0

lim ~^-=C'(c) where lim C'(c) = l.
l(x) i

Two Z-actions T and S are m^-equivalent (he shows) if there is an orbit equivalence
(T, S) with cocycle a such that for a sequence /(w) of measurable full density,

ip(\a(to, n) - n\)
lim = 0.
n->cc n

ne I(a>)

These relations clearly generalize the notion of weak a-equivalence (for Z-actions),
but we can see that if, for all a a 1, T and S are weakly a-equivalent, then for all
ipe&i, T and 5 are m^- equivalent. Indeed, it is sufficient to show that for all i// e &x

there exists m e Z and x0 e R such that for all x > x0

xm><Mx).
We prove this as follows: Fix ij/e^ and c> 1. Choose xo> 1 so that for all x>x 0

.Mcx)<2C'(c)<A(x),

Choose m so that cm > 2C'(c) and cm > (2C'(c))V(^o)/^™- Then, for all integers
K

(ckxor>^(ck+ixo).
Indeed, cmxZ>(2C'(c))2i]j(x0)> <p{c2x0), so, for all k,

(ckx0)
m = (cm)kxo

m = (cm)klcmxZ > (2C'(c))'t-1(2C'(c))V(^o)

= (2C'(c))k+V(x0)>«A(ck+1x0).

Now suppose x > x 0 . Then for some k, xe[ckx0, ck+1x0], so that

xm>(ckxor>t(ck+*xo)>*(x).
Rudolph also defines another class of equivalence relations, these parameterized
by the class &2 of functions <t>:U~°^R"° such that <£(l)>0, <t> is non-decreasing,
and for all c > 0,

hm =1 .
^^•» 4>{x)

We will not reproduce here the somewhat complicated definition of these equivalence
relations. The reader familiar with them, however, will observe that our proofs of
theorems 1 and 2 can be altered so that for every sequence { ^ ) H C ^ 2 , the orbit
equivalence (T, S) can be constructed so that, in addition to the stated properties,
(T, 5) is, for each i, and m^.-equivalence.

Theorems 1 and 2 will be proved by constructing the desired cocycles quite
explicitly. The formal presentation of the constructions, however, may obscure their
simplicity, so we give here an informal description of the basic ideas.
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For a.e. w, the T-orbit OT(w) of w is endowed by T with what we might call a
Zd-affine structure. That is, a function a: OT(a))x. OT(a>)-»Zd given by a(w,, w2) = f
if T^w, = <02 and satisfying

(i') (Vw, e OT(o»)), a(w,, •) and a( •, wO are bijections between OT{u>) and Z d ;
and

(ii') (Vw,, w2, w3e OT(w)), a(w,, w2) + a(co2, «3) = «(«>i, w3).
We can visualize the elements of OT(a>) as occupying the lattice points of Zd where
we suppress the Zd-coordinates and preserve only the relative positions (in Zd) of
the lattice points.

If (T, T) is an orbit equivalence with cocycle a, then V gives the orbits another
affine structure a' related to a by

(1) a'(wi,w2) = «(wi,a((0i,w2)).

The function a', of course, determines T', so that T can be viewed as having been
obtained from T by a rearrangement of the elements of each orbit on the coordinate-
free lattice Zd, corresponding to the change in affine structures.

Thus, to construct an orbit equivalence, we must rearrange the orbits of T to
produce new affine structures and do so in such a way that the cocycle a denned
by (1) is measurable.

The rearrangements we will construct have a simple form. They will be obtained
by composing a sequence of rearrangements, each of which measurably selects
disjoint rectangular blocks on each orbit, and permutes the points inside these
blocks. By choosing the block sizes to grow fast enough, and the blocks to fill enough
of the orbits, the compositions of these rearrangements will converge to limiting
configurations on each orbit that give the desired affine structures.

To return to the language of cocycles, if (To, T,) is an orbit equivalence with
cocycle /3, and (T,, T2) is an orbit equivalence with cocycle /32, then the cocycle
for (To, T2) is the composition j82° j8i, where /32° fi^co, t;) = /32(w, /3,(w, v)). We say
that a sequence of cocycles {a,}f=1 for To converge to a if, for a.e. w and all v e Zd,
lim^oo a,(w, v) = a(w, v). (Note that such a limit a must satisfy the cocycle identity
(ii), and a(w, •) must be injective, but it need not be surjective.)

In the proofs of theorems 1 and 2, we will construct a sequence of cocycles {a,}°L,
for a given Zd-action To, where a, = /3, ° fii_1 ° • • • ° /?,, and each /3j is a cocycle for
T(a'-i} ' of the type we described informally above.

In order to describe more precisely the structure of the /3,, we introduce the
following notation. For LeZ+, we let

CL = {v = («„ . . . , vd) e Zd 11 s vt < L, i = 1,2, . . . , d}

CL = {v = ( v ] , . . . , v d ) e Z d \ \ v l \ £ L , i = l , 2 , . . . , d } .

For J, K, L e Z + , we call a permutation TT of CL a (J, K, L)-permutation if there
exists u 6 Zd, and ve CK such that for all weCj + u, TT{W) = w + v. (See figure 1.)
We refer to v as the translation vector of IT and denote it by tv{ir). More generally,
a permutation IT of CL+w, weZd, is called a (J, K, L)-permutation if it is of the
form 7T = TTW ° TT' ° TT"1, where TTW is translation by w, and TT' is a (/, K, L)-permutation
of CL.
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FIGURE 1. A (/, K, L)-permutation of CL.

We say that a bijection 7rofZd is a (J, K, L)-blockedbijection if there is a collection
{CL+ Wi} of disjoint translates of CL in Zd, on each of which v acts by a (/, K, L)-
permutation, and off which IT acts by the identity. If C} + u, + w, is the subset of
CL+ wt on which TT acts by translation, we call the sets {Cj_+ w,}, {C, + w, + wj , and
{CL+ wt\Cj + Uf + wi} the blocks, rigid blocks, and filler sets of IT, respectively.

We say that a cocycle a for a Zd-action T is a (/, K, L)-blocked cocycle if for a.e.
w, there is a (/, K, L)-blocked bijection TTW of Zd such that a(w, •) = ira-Trm(Q),
and the blocks, rigid blocks, and the permutations on them are measurably selected.
That is, for all (/, K, L)-permutations IT,

{a> | CL is a block of TTW and Tra\CL = IT}

is measurable. The /?, in our construction will be (J, K, L)-blocked cocycles.
Given ScZd,we£l, A<= £1 and a Zd-action T on H, we let Ts(a)) = {Tva)\ve S}

and r s ( A ) = { r "w |w£ / l , ueS} . Suppose p is a (J, K, L)-blocked cocycle for T.
By a block of /3 (respectively, a rigid block, or a filler set of ft) we mean a set of
the form Ts(<o), where S is a block (respectively, rigid block, filler set) of TT .̂
Finally, we say a (J, K, L)-blocked cocycle ft for T is a (/, K, L, e)-blocked cocycle
if fj.{to\(o is in a block of @}> 1 - e .

The following lemma isolates the arguments needed in theorems 1 and 2 to
construct cocycles that satisfy the weak a-equivalence and strong fc-equivalence
properties.

Informally, it says that these properties will be obtained if we compose a sequence
of blocked cocycles whose block structures grow sufficiently rapidly.

LEMMA 1. There is a sequence of functions {ft:N
i+l x (0, \)-*N}f=l such that if {ei}T=1

is an arbitrary summable sequence of numbers in (0,1) and {Kt}f=1 is an arbitrary
sequence of positive integers, and if {Jt}f=1 is a sequence of positive integers such that,
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for each i, Ji+l > / + 1 ( J , , J2,..., J{, Ki+U d, eI+1) and {a,}°l0 is a sequence of cocycles
fora 2°'-action To on (ft, 38, /A) (withao= identity) such that the cocycles pi = a, ° a".1,
of the action 7]_! = T Q ' 1 are (Jt, Kt, L,, e^-blocked cocycles, and L, < / j + 4X,, </ien
f/ie af converge to a cocycle a which gives a weak a-equivalence for all a>\ and a
strong b-equivalence for all b e (0,1), between To and S= T% '.

Proof. Let {a,}^L, be a sequence of (/,, Kt, L,, e,)-blocked cocycles for To. We first
consider the restrictions on the parameters sufficient to ensure convergence of the
a,. Note that, however the parameters are chosen, we have for a.e. w and for all veZd

\ai(a),v)-v\<Bi = 2d £ Lj.

If 7j+I is chosen so that
(a) Ki+1/Ji+1<ei+l; and
(b) (i + Bt)/Jt+1<et+l,

then setting

Fj = {to | Tf'+B^to) is contained in a rigid block of /3,+ih

we get M ( L C I CXLI Fj) = l- Let a> e U ° l , D^l , fj and » e 2d. Choose » so that |o| < i
and w e Pljl , ^ - Then for all j> i

aj(a), v) = ai(io, v) = lim ak(to, v) = a(u>, v).

As we remarked earlier, a necessarily satisfies the cocycle identity, and a(<o, •) is
injective. We also have that a(a, •) is surjective, for if w e H j l , Pj and w e Zd, then
there exists j such that j s: i and j + Bj > \w\. Now since aj(a), •) is bijective, there
exists v such that Oj(a>, u) = w, and since for all k^j, ctk(a), v) = aj(co, v), we get
a(to, v) = w.

We now see how to ensure that a gives a weak a-equivalence, for all a > l . It
will be somewhat easier to use the equivalent condition that a"1 gives a weak
a-equivalence, for all a > 1.

Fix a sequence a.foo, a,> 1. Suppose, in addition to (a) and (b) above, each Ji+l

is chosen so that there exists i?, > 0 such that
(c) ei+lJi+1> Rt> (|2d(X;=1 Lj + Ki+1)\

a')/ei+1; and
(d) Ki+JRL+i<ei+1.

Let G, = {to\ Tc«,(to) is contained in a rigid block of /31+1}. Then /x(U°°=i H,",- G,-) = 1.
Let Aj = f~ir=j {wl«> is not contained in the filler set of Bj}. Then the A} increase

and^i(Aj)-» 1. Let w e O J l , G;, and define 7 ( w ) c Z d by saying »e /(w) if ||u||oo> Rj
and St'(a>) e Aj. We now check that for all a > 1

lim
|t)|-.oo

Fix a > 1 and choose ./> i so that a}> a. If Rj-s, ||u||ao^ Rj+i and ne I(o), we get
S"(w)=r;+ 1(w) so that

\q-1(to,v)-v\a Ia7+
1

1(tt,,i>)-i>|''

Letting _/ -» oo gives the desired result.

Bj+
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Finally, to ensure in addition that a be a strong b-equivalence for all be(0,1),
fix a sequence b^l, bte (0,1). Suppose that each Ji+1 is chosen so that there exists
Ri > 0 such that

(e) e,+1Jj+1 > R, > (2/ei+l)(2d Yj+\ L,)\ and
(f) Ri>4dY1

i
J=lLj.

Then if H, = {a)\TfR,(co) is contained in a rigid block of Bi+l}, w(U^-i OT-i Ht) = 1.
On the basis of the foregoing argument, we can give explicit values for the desired

functions f: set

fi+\U\,Ji, • • • ,J>, Ki+1, d, eI+1)

[ Ki+1 i + 2Y'.,Jj (4d Y' Jt + Ki+1)
a-

The reader may verify that if /j+i is chosen greater than/+ 1 , we obtain conditions
(a)-(f) and hence the conclusion of the lemma. •

Proof of theorem 1. As we have already indicated, we will build a sequence of
cocycles {a,}?!, for T such that for all i, /3, = a, ° aT-i is a (/,, Kh Lh e,)-blocked
cocycle for Ti=Ta>\

The limit a of the a, will be the cocycle giving the desired mixing action S = Ta '.
We need only concern ourselves here with showing that S is mixing. The fact that
a may be constructed to satisfy simultaneously the weak a-equivalence property
and the strong b- equivalence property for all a > 1 and b e (0,1) will follow from
lemma 1 and the observation that the sequence {/,} may be chosen as it must for
lemma 1 to apply, without interfering with the mixing properties of the construction.

We say that a Zd-process (T, P') is e-mixing between L and L', L< L'el+ if for
all veCL\CL:

|dist (P' v (T'YVP') - (dist P' x dist P')\ < e.

We fix for the remainder of the argument a refining sequence of (finite) partitions
{P,}?Li of O, which increase to 98, and a sequence {eJ^Lic (0,1) with et < ei_]/2,
all i.

The cocycles a, that we construct will be such that, for all 1 <j < i < k, the Zd-action
Tk= Ta*' will satisfy

(2) (Tk, Pj) is (SJ/2'"-')-mixing between L, and L1+1.

Once we establish (2), the proof will be complete, since (2) implies that for all j < i,
(S, Pj) is e,/2'~J-mixing between L, and Ll+1, and hence (5, Pj) is mixing. Since the
Pj increase to 38, we have that S is mixing.

The construction will be completed when we describe the (J,, Kh L,, e,)-blocked
cocycles /?,. In order to define j8, we need only choose the parameters Jh Kh L, and
e, and specify the blocks of /3, (in the orbits of T)_,) and the (/,, Kt, L,) permutation
associated with each block.

To do this for /Jj, fix e, < e,, whose size will be determined by the argument to
follow. Choose K, so that all a> in a set E, <= fi with /j.(El)>l-el have a (T, P, -
CKl)-name with the distribution of P, within g; of dist (P,). Choose L,>X,/e,.
Fix e2 < Ei (again, whose size is determined by the following) and choose K2> LJe2
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so that there exists £2^(1 with ft(E2)> 1-e2 and all coeE2 have (T, P2,-CK2)-
names with P2 distribution within e2 of dist(P2). Choose L2> K2/e2 and M,, a
multiple of L, with M,> L2/ e,. Let B, be the base of a Rokhlin tower 3'1 =
{TVB1}V£CMI such that /i(Tc"iB,)> 1-e, and

(3) (VweB,)(35c CMl) such that |S|> (1-e,)|CMJ and (Vue S)T"w e £,.

For each a)efl,,we can write TCMI(W) as a disjoint union

U Tc^+W(w).

The sets TCL<+W(CJ) will be the blocks of the cocycle Bi. To specify the associated
permutations, we fix a set II, = {TT, , . . . , vK*} of (L, - K,, X,, L,)-permutations of
Ctl that act by translation on CL,-x, and have pairwise distinct translation vectors
in CKi. Using these we construct a family 2, of [Xf]<M'/Ll) permutations of CMl

by selecting, in all possible ways, an element of II, to act on each CLl + w<^ CMl,
we L,CMl/Ll. (See figure 2.)

/

FIGURE 2. Schematic diagram of an element of Sr.

Now let o-
Qi = (T, PI)CM

be a measurable function such that for each atom A of
is uniformly distributed on 2, . (Here and hereafter, we use

the notation (T,P)S to denote the partition \/vsS T~"P.) Thus o-, specifies the
(L, - Kt, £ , , L,)-permutation associated with each block of fix.

We now verify that (T,, P1) = (T^1', P,) is e,-mixing between Lt and L2. Fix
u e Ci^CLl. We must show that

|dist (P, v Tr^P,) -dist P, x dist P,| < e,.

We note that the tower STY has become a tower §~x for 7, with base Bx =
{Tw(w)\(oe Bt and al(a)){w) = ( 1 , . . . , 1)}. We also get a partition Q, of B, whose
atoms are the sets A = {r14>(w)|w€/4 and <7,(w)(w) = ( 1 , . . . , 1)} where A is an atom
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of Qt. Informally, we could describe the above by saying that each P,-pure column
of STX

 n a s been permuted (in I^J different ways) and the bases of these new columns
are the atoms of the partition Qx of Bx.

Given AeQlt we say that u e CMl is a good position for A if for all we A both
T""CKI(W) and 7"u+"~c*.(a)) are contained in rigid blocks of /3,, and

(4) |dist(P1)-dist7-^,(A)(PI)| <e ,

and

(5) |dist (P,) -distT—-cKl(/1)(Pi)| < e,.

We see that:
(6) a fraction greater than 1 - (2ei + 4dei) of the « e CMl are good positions for A
This follows from the facts that v e C^XC^, KJL, < e,, L2/M, < e, and conditions
(3).

We will show that, for all good positions u for A,

(7) |distT^(P,v T7uP1)-distP1xdistP,|<2e1.

From (7) and (6) we see that if ex is sufficiently small,

|distTCM,^(P, v TpP,) -dist Pj x dist P,| < e,/2,

and by arguing similarly on every atom of (?,, we see that

|distT-CM.B.CP, v T^P,) -dist P, x dist P,| < e,/2,

and since /j,(TfM\Bl)> l — et we have

|dist(P,v Tr°P,)-dist P,x dist P,|<e1 + 2e1,

which we may assume is less than ex.
To establish (7), we let (Pi)A- CM,^Pi denote the function determined by the

(T, Pj, CMl)-name of the points in A, and we also regard Pt itself as a discrete
random variable on ft. Fix a good position M for A, and let 77-u: A-* I^ (respectively
7ru+t): A~-»I1,) satisfy for all <oeA, TTU{(O) (resp. TTU+V(<D)) is the element of F^ that
was selected to act on the block of /?, containing T"(u) (resp. T"+W(<o)).

For all a) e A,

(P, v TrI)P,)( Tra.) = [(P,)A(« - h»(w«(w))), (P ,U« + v - tv(iru+v(to)))].

But since v& CLl, tv(wu) and tv{iru+v) are independent random variables, so

dist (P! v 77UP,) = dist (Pi)A(" - ^(TTU)) X dist (P,)A(M +1; - tv{iru+v)

= dist (P,)x dist (P^.
TU~CKHA) T"+-CKHA)

Since u is a good position for A, conditions (4) and (5) imply (7).
We now describe the iterative procedure by which this construction is completed.

At the ith stage, we have constructed T^i, and we have chosen {L,-}j=1 and {Kj}'j=i

and {sj}'j=i and we know that for all 1 <_/< fc< i - 1

(8) (Ti.,, Pj) is (ej/2k"^-mixing between Lk and Lk+1.

In the previous stage of the construction, we chose Kt so that every w in a set Et <= ft
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with fi(Ej)> 1 — et has a (T,_2, Pt, -CK.)-name with distribution of P, within e, of
dist(Pj). We made Tj_, from 7̂ -_2 by an (L,-_,-JC,-_,, K,_,, L,_,, e,_,)-blocked
cocycle /?>_! and /£, was chosen so that X, > L,_,/ e,. Thus for all we Ef the ( T ^ , Pj,
— CX|)-name of w has ^-distribution within e,+2dej of dist(Pj).

We continue by choosing ei+1 < ej+, of size to be specified later, and Ki+l > Lt/ e,+1

so that there exists £,+,<=£! with /i.(£I+1)<e1+1 and every we£ I + 1 has a
(7]_!, Pi+1,-CK.+i)-name with P,+1-distribution within ei+l of dist (P,+1). Choose
L1+1> Ki+l/ei+i and Mf> Lj+,/e,-, Mf a multiple of L,+1, and M, so large that we
can build a {T^, CM.)-Rokhlin tower Srt with base Bt, /i(TCM.B,)> l - e f and for
all loeBi there exists S c CM| such that \S\> (1 -e j-2de1) |CM. | and for all ueS,

We can now construct a cocycle /3, for 7^_! and rf = Tfii exactly as in the first
stage of the construction, and verify that (7^, P,) is e,-mixing between L, and LI+1.
By the choice of e, and the fact that the sequence {P,} is increasing, we get for all
j^i, (Tj, Pj) is Ej/l1'1 mixing between L, and L,+1. It remains to show, however,
that the mixing behaviour of 7]_, as in (8) is still exhibited by Tt.

For j^i — 2, we have that

so that if e, is sufficiently small, the mixing conditions satisfied by 7^_, between L,
and Lj+1 are satisfied by Tj as well.

To preserve the mixing behaviour of 7]_, between L,-_i and L,, fix ve CL.\CLii,
and M e CM..

Case 1. As in the first stage of the construction, let B, denote the base of the
CM.-tower we construct for Tt. Suppose that u is such that for all a> e Bit T"'CKI((O)

and T"+V~CKI(CO) are contained in the same rigid block of /3f. Then

dist (Pf_, v 7 7 ^ , - ! ) = - ^ I dist (Pi-, v 7T-,P,-i)

so that

|dist (P,-! v TpP,-,) -dist (Pi.,) x dist (P,_,)| < e,_,.

Case 2. Suppose that for all we B,, T"'CKI((O) and T"+ I I"C K,(W) are contained in
different rigid blocks of /?,. Suppose also that for a set of atoms A of Q, (notation
as in the first part of the construction) of measure greater than 1 - (2e,- + 4de;)1/2, u
is a good position for A. For each such A,

|dist (Pj_i v 77"Pi-i) -dist P,_i x dist P(_,| <2ef,

so if et is sufficiently small,

|dist (P^j v T7UP,_!) -dist Pi_, x dist P,_,| < e^!.

These two cases account for a fraction greater than 1 - [2ej +4det]
l/2 of the u e CMi
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so since fi(Ti)>l-ei,v/e see that if e, is sufficiently small,

|dist (P,_, v T^Pi-i) -d is t P,_, x dist P.-J < £<_,. D

In order to prove theorem 2, we will make use of a family of Zd-Bernoulli processes
which we will describe as measures on {0,1}Z constructed by the standard com-
binatorial device of concatenating finite blocks of symbols to specify the measures
of cylinder sets. The blocks in question are functions B{: CSj-»{0,1}, je^f, i =
0 , 1 , 2 , . . . , and their inductive definition is governed by parameters {ri}f=l and
{m,}f=0 in Z+. Given the i-blocks B\ and {r,}J=1 and {m,}JIo we construct the
(i+l)-blocks in two stages. First we choose m, and construct blocks Bf+1:Cj.+1-»
{0,1}, keXi+u where sj+1 = \((2mi + l)(2si + l)-l) by concatenating i-blocks,
(2m, + l ) d at a time, in all possible ways.

We then choose ri+i and define the (i+l)-blocks B^: CJf+I-»{0,1}, fce3ifi+1,
v e Cr.+1, where si+l = s,+, +2r,+1, by setting

if webdy(CSj+1)
Bt+l(w-v) if we Cs-+1 + u
otherwise.

We begin the construction by defining only one 0-block, namely Bo:Co^{0}. We
also stipulate that

(9) I -?<oo
i = l Si

and

(10) ^ t T O -

We then define a stationary measure n on {0,1}Z by setting for each cylinder y,
fj-i(y) equal to the frequency of occurrence of y in B{ and /i,(y) =
(1/l^il) Xjejf, f^Hy), and /i(y) = lim,^jP/ij(y). Condition (9) insures the existence
of this limit.

In order to show that the processes described are Bernoulli (that is, isomorphic
to independent processes), one can verify a Zd-version of the very weak Bernoulli
condition. These processes actually satisfy a condition stronger than what we need,
but easier to state.

Definition. Given a Zd-action T on (ft, 38, JJL) and a finite partition P, we say that
the Zd-process (T, P) is symmetrically very weak Bernoulli if (Ve > 0)(3 iV)(Vn > N)
(Vm>«)(3ac(T, P)cm\cn) such that fi(\Ja)> 1-e and (Va,,a2ea)

d[(T,P)Cn\aiAT,P)cnl2]<s.

The processes above can be shown to be symmetrically very weak Bernoulli by a
nesting argument exactly like that of [4]. For a proof that this implies isomorphism
to an independent process, we refer the reader to [8].

In our proof of theorem 2, it will be most convenient to use certain factors of the
processes constructed above. Namely, if (T, P) is one of these processes (where P
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is the partition according to the coordinate at the origin) we consider the factor of
(T, P) given by the partition B into the various types of 1-blocks and their comple-
ment. That is, if we let

bv
1={a>\u-*P(T"(a>)) gives the 1-block B\ on Te».(w)},

we set

(an arbitrary fixed symbol) otherwise.

We will refer to the sets Tc*i(w), web" as blocks of type v, and we let STl denote
Tc*<(\Jvscr 61°), and we refer to the process (T, fi)asa(/, K, L, e) -blocked Bernoulli
process, if S! = J,rx = K, s, = L, and /u.(5"i) < e.

We will use blocked Bernoulli processes to direct the construction of the orbit
equivalence in theorem 2. Of particular importance is the fact that for each blocked
Bernoulli process (T, B), given that a block occurs at specified coordinates, the type
of that block is independent of the name outside the block. More precisely, if
b = {w\ TC',((o) is a block}, then for all m> sl, B±(T, B)cm\c,, conditioned on b.

We remark that we can easily construct blocked Bernoulli processes of arbitrarily
small entropy.

Definition. A Zd-process (T, P) is symmetrically K-mixing at Co if for all e > 0 there
exists N such that for all m> N

We remind the reader that P±.e Q means that (3<?<= (?) with /x({J g ) > 1 - e , and
for all ^ e g , |dist, P-dist P\ < E.

LEMMA 2. If a Zd-action T on (ft, 53, /x) admits a sequence of partitions P, such that
P,f33, and each (T, P,) is symmetrically K-mixing at Co, then T is a K-system.

Proof. Fix a finite partition P with h(P) = B > 0. Choose e so that \P-P\<s implies
(for all Inactions S) \h(S, P)-h(S, P)\<B/2. Choose i so that for some P c P1(

\P-P\< e. Since (T, P,) is symmetrically K-mixing, it follows that (T, P) is as well.
For each «eZ + , let T" denote the Zd-action given by (T")v = Tnv. Choose n so
that \h(T", P)- h(P)\ < B/2. Then h(T", P)>0, so that h(T", (T, PCnJ>0 and so
h(T, P)>0 as desired.

LEMMA 3 (The relative Sinai theorem [7]). Let Tbe an ergodic Zd-action on (ft, 38, /x)
and P a finite partition such that h(T, P) < h(T). Let (f, B) be a Z"'-Bernoulli process
on (ft, 33, jx) with h(f, B) < h( T) - h(T, P). Then there exists a partition B on ft such
that (T, B) and (f, B) have the same finite distributions, and {B)T1(P)T.

LEMMA 4. Let Tbe a Zd-system on (ft, 38, fx) and P a partition such that h(T, P) <
h(T). Then for all partitions Q and E > 0 , there exists Q' such that \Q'—Q\<E and
h(T,PvQ')<h(T).

This can be proved exactly as is lemma 2 of [5].

Proof of theorem 2. As in the proof of theorem 1, we will construct a cocycle a as
the limit of cocycles at for T, where for all i, B{ = a, ° aT-i is a (2J, +1 , K,, 2Lt +
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1, e,)-blocked cocycle for T) = T"'-'1. At the ith stage of the construction, having
made Ti-i, we will choose a (Jt, Kiy Lf, e,)-blocked Bernoulli factor (7]_,,Bj) of
T)_! and use the blocks of this factor to specify y3,. Viewed as a rearrangement of
the orbits of Ti_l, Bt will act by permuting each orbit within the blocks, leaving the
rest of the orbit fixed. In order to define j8f, then, it is sufficient to specify the
permutation associated with each type of block, and we will associate with the
blocks of type v a permutation TTV of CL. that translates CL._2K. by v and is arbitrary
(but fixed) on Q , \ Q , - 2 K , -

We begin by choosing a sequence of finite partitions PjfSS, and e^O. Choose P,
by lemma 4 so that | P , - P , | < £ i and h(T, P^KhiT). Choose £i<£i with size to
be determined by the argument to follow. Choose Kx so that there exists E, c (1,
with /x.(£t) > 1 — ex and for all a>&Ex the (T, P,, CK,)-name of to has Px distribution
within e, of dist(P,). Choose B, by lemma 3 so that (T, £,) is an ( L , -
2X,,K,,L1,e1)-blocked Bernoulli process with h{T,Pl\iBl)<h(T) and

Let Pi be the cocycle for T determined by (T, Bx) as described above. We now
show that (37V,)(Vm> NX)PX±.^(TX, Px)cm\cNl = Qi•

Let AT, = 3L! and fix m > TV,. Let /?, = (T, P, v Bi)cm+L \cN _L • Let a denote the
collection of sets a(p v b, u, w) obtained by specifying pvf teR, , u e CKl, w e CLl

and setting

a(p v b, u, w) = {w| TCL.+>V(&>) is a block of /^ of type u,

and to is contained in the corresponding rigid block,

and the Rt name of Tu{u>) is pvb.)

We define an equivalence relation on (X by setting a, = a{(pv b)l,u1,w1)~
a((p v b)2, u2, w2) = a2 if M 2 ~ " I = vf2-Wi and (pv b)x = (p v fe)2. Note that a t ~
a 2 ^M( a i ) = M(a2) and a, and a2 are contained in the same atom of Q,. Also, if
R'i = (T,Pi)cKi, then a,~a2=»dist T""'«;|ai = dist T~^R[\a2. Let [a] denote the
equivalence class of aef t . We say that [a] is good if

(i) The parameters M, corresponding to the elements of [a] range over all of CKi

(equivalent^, #([«]) = #(CKl)); and
(ii) (Va 'e [a ] ) /x (a 'n r - u ' (£ 1 )>( l -e f ) A t (a ' ) , (equivalently, (3a 'e[a])/x(a 'n

T~"'(E1)> (1-e'l)fi(a'), by the remark above).
Now if TC2Ki(co) is contained in a rigid block of Blt then there exists a e a such
that to e a and [a] satisfies (i). Thus, if fi(ST^) and Kx/Lx are chosen to be sufficiently
small, we have /i({aeOt|[a] satisfies (i)})> 1 - 2 e , .

Since /J.(E1)>1-e,, / i ( {a€a | [ a ] satisfies (ii)})> 1 — e^. Thus,

U a)
[a]good /

>l-2e1-ef>l-(4e1)
1/2

\[a]good /

And therefore if

[a]good
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Fix pe^. Since p is nearly covered by (complete) good equivalence classes [a] ,
it is sufficient to show that for such a class [a ] , the distribution of P, on U a e [ a ] a'
is close to dist (P,). Since [a] is good, there is a family 9 c J i [ such that [J 3) <= £, ,
and for all a, = a((p v b)t, «,-, w,) e [a] ,

Now for all d e 2 the distribution P, on [Jt (at, n T Uid) is exactly the distribution
of P] on the CKt-coordinates of d. Since this distribution differs from dist(Pj) by
less than e,, we have P\ ±e ' Q, as desired, provided e^ is chosen sufficiently small.

Now h(Tl) = h(T). In fact Tx~ T by an isomorphism that preserves the orbits
of T and T,. Namely, if we set

if to 6 3~x

r(i>) if w = Toa>', where T^,(w') is a block of 0 , ,

then wi-> rg(<u) is an isomorphism between T, and T. (In other words, Z3, is within
a coboundary of the identity.)

We can now see that h(Tif Ptv B1)<h{Ti). We see that for all n and all ae
{T, P\ v Bs)cn+2L, there exists ae(T,, P^ v B,)cn such that a c a. By the Shannon-
MacMillan theorem for all 17 > 0 there exists N such that for all n > N a collection
of fewer than 2 ( 2 ("+ 2 L . ) + 1 ) ' ( ' 1 ( r^v B . ) + ' ' ) atoms of (T, ^ v B,)cn+2Li cover a set of
measure greater than 1 - 77.

Thus, a collection of fewer than 2
(2('1+2L.)+1)d<'l(7'-VB.)+'>) atoms of (T,, P, v B,)Cn

cover such a set. But for all h> h(T, Pt\/ Bj) and 17>0, if n is sufficiently large,
then 2

(*n+2L<)+1}'WT^vB^)<2(2n+1)d(R+r'), so that h{Tx,Pxy B,)^h, and hence

n(r,, P, v Bj< n(^, Pi v Bj)< h(T) = M^i)-

We now show how to continue the construction at this and every subsequent stage.
At the ith stage, when we have constructed (Tt, \f'j=l (Pj v B})) so that h(Th \f'J=l (Pj v
Bj))<h(T,), we choose Pj+1 so that | P j + 1 -P f + 1 |<e j + 1 and M ^ , V]=i (Pj v B,) v
P,+i)< M 7 J ) , and then set P,+1 = Pi+1 v P,. We choose ei+1 < eI+1 and X,+, so that
there exists £ ,+,cf t with ju(Ej+1)> l - e i + , and every w e £,+, has a
(Tj, P,+i)cK -name with Pi+1-distribution within e,+, of dist (Pi+\). We then choose
LI+1 and using lemma 3, select a partition Bi+l so that (T), Bi+l) is an (Li+i —
2X1+1, Ki + U Li+l, e,+1)-blocked Bernoulli process such that (Tf, Bi+l)z"±(Tj, Pi+1 v
V_U B,) and M ^ , PI+1 v V]=i B,) < M^) - We then form e1+1 and Ti+l = Tfr+'1 as in
the initial stage of the construction and argue that h(Ti+1, P,+i v (Vj-=i fy)) < M^+i)
and if e1+1 and Li+1 are chosen appropriately, and N1+1 = 3L1+1, then

(11) (Vm>N l + 1 ) P j + 1 X e - (T i + 1 ,P i + 1 )c m \c N •
1 + 1

We must show, however, that we can preserve the approximate independence
achieved at each stage.

In fact, at the jth stage, when we construct Bj and 7}, we make the construction
so that

(12) (Vi<7)(Vm>Nf) i U ^ ^
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We do this by requiring that for all k we build (Tk, Bk+l) so that

(i({a)\Tk"k(<o) is contained in a rigid block of /3k+1})> 1 —£.

Since the ek decrease and the Nk increase, this gives that for all i<j, if Gtj =
{(o |(Vfce [i +1 , ; ] ) TfN<(w) is contained in a rigid block of /3J, then

Now to establish (12), we fix m> N{, and choose m' so that if a e R = (Tt, Pf)cm./cNy
\fJ

k=i (Tk, Bk+1)cm, and a <= GiJy then there is a (unique) pe(Tj, Pi)cm\cN. containing
a.

From (11) we know that there is a collection of atoms "<?<= (Tit Pi)cm\cN with
such that for all ce<£, distcP, -d is t Pj|<e,-. Since

(T,, J>)cm.±Vi~J, (Tk, Bk+l)Cm; we have for all ce «,

and for each such a e /?,

|dist Pj - dist Pt\ = |dist P, - dist P,| < e,.
a c

Thus,
€/{ |f lcGy and |dist P, - dist P, < e,})> (1 - e,)2> l -3e ;

a

(providing e?<e,) . Let Q denote the partition consisting of the elements of R
contained in Gtj and the complement of their union, and let Q = Q v (7}, Pi)cm\cN •
Then Q^(Tj, P,)cm\cN, and Pf ±

3e' <?, so P,±i9'<*(T}, Pt)Cm\cNl, as desired.
Now, as in the proof of theorem 1, if the parameters /, are chosen to grow rapidly

enough, then the cocycles a, = /3, ° /?,_! ° • • • ° fix converge to a cocycle a that satisfies
the weak a-equivalence and strong fe-equivalence properties for all a 2:1 and
b € (0,1). To verify that S = T" is a K system we first note that condition (12) holds
with S in place of TJ. Now we can show that for all i, (S, Pt) is symmetrically
K-mixing at Co. For given e > 0, we can choose j > i and N, so that e,- < e and for
all m>Nj, Pj±e'(S,Pj)em\cN.- If e, is sufficiently small (say e,<e8/37) then
P,J-(S, Pi)cm\cN • The theorem now follows from lemma 2. •

We now proceed to show that in dimensions d > 2, we can construct bounded and
strong b-equivalences (b > 1) of ergodic Zd-actions to achieve mixing and X-mixing.
More precisely, we prove the following.

THEOREM 3. Let T be an ergodic 7Ld-action (ds:2) on (£1, 38, /i). 77ien f/iere is a
cocycle a for T giving a mixing action S=T" such that the orbit equivalence (T, S)
is, for all b > 1, a strong b-equivalence, and both (T, S) and (S, T) are bounded orbit
equivalences.

THEOREM 4. Let T be as above with h(T)>0. Then a may be chosen so that in
addition to the above, S= Ta is a K-system.

Because of the similarity of the proofs of these theorems to those of theorems 1
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(13)

and 2, we will confine ourselves largely to pointing out the novel aspects of these
arguments.

Given T, we will construct a as before, as a limit of cocycles a, of T, each of
which gives a Zd-action Tt - T"' . Each a1+1 will be obtained as /31+1 ° a,, where
Bi+1 is a cocycle for T). The construction of Bi+l will also be of the same character
as before. Namely, we will choose a Rokhlin tower T = Tf'B for Tt with base B
and choose a measurable function TT mapping B into a set of permutations of C,.
We then let g: fl -> Zd be given by

7"(W))(W)-M, if we T7B and ue C,

if w g T

and set

(Informally, we permute each orbit block T^'(w), where w e B, by TT(W).)

The main difference between these arguments and the previous ones is in the
choice of the permutations assigned to the orbit blocks by the function TT. Here we
use a somewhat more complicated family of permutations, not available in one
dimension. In order to simplify our discussion, we will describe these permutations
and present our arguments in dimension two and then indicate briefly how one may
extend these ideas to higher dimensions.

Let k and r be integers with r > l\k\. We define a permutation TTK, of Cr as follows.
Let S, = {veZ2\ ||t)||co= /}. Then if t > 0 , TrKr leaves each S,c Cr invariant, rotating
the points of S, counterclockwise by

/ units,
k units,
r -1 units,

ifOs/<A:
if k < / < r - k
if r - k < / =£ r

For k < 0, we let nKr be the inverse of ir-Kr. We refer to TTK, as a k-twist of Cr.
(See figure 3.) Similarly, by a fc-twist of a translate Cr+v of Cr, we mean a

F I G U R E 3. A fc-twist of Cr.
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permutation of the form irvvktrTT_v, where irv denotes translation by v. If v is a
fc-twist of Cr + v, then we refer to the four sets {w e C, + v | TT( W) - w = (k, 0) (respec-
tively, (0, k), (-k, 0), (0, -k))} as the rigid sectors of ir.

We now concatenate fc-twists on blocks congruent to Cr to produce permutations
of large blocks. Specifically, we choose K>0, r>2K and s>0, and let

Q= U (C, + v)
tie(2r+l)Cj

(so that f=3[(2r+l)(2s+l)- l ]) . We now construct a permutation a of C, by
choosing, for each ve(2r+\)Cs, an integer kr, \kr\<K, and applying a fcr-twist to
Cr + v. Similarly, we construct a permutation p of C-, by choosing, for each ve
(2r+l)Cs such that Cr + v + (r,r) c Cr, an integer /„, |ZU| < K, and applying an /„-twist
to Cr + v + (r, r), and by setting p equal to the identity elsewhere. We now form the
composition p° cr, and extend this to a permutation n of C,, where f = t(r, s) = i+10,
by setting v equal to the identity on C,\CT. We call such a permutation IT a
(X, r, s)-rwisf on C,, and let n K r s denote the set of all such. (See figures 4(a), 4(b).)
We refer to (K, r, s)-twists of a translate Ct + v of C,, with the obvious meaning,
and identify the set of such with UKr,s- By a rigid sector of n 6 U.Krs, we mean the
intersection of rigid sectors of component fc^-twists and /u-twists of n. By a rigid
(K, r, s)-sector of C, (t=t(r,s)), we mean an intersection, over all neUKrs, of
rigid sectors of TT. Finally, given a Z2-action T, integers K, r, s, and t= t(r, s), and
a Rohklin tower r - TC'B with base B, then by a rigid (X, r, s)-sector of T we mean
a set of the form TA{w), where weB and A is a rigid (K, r, s)-sector of C,.

The (K, r, s)-twists will play the role in the present constructions that the (/, K, L)-
permutations played in the previous arguments. In particular, in the above descrip-
tion of the cocycles /3,+1 in our construction, the function IT will take values in
n/cr.s, for some choice of K, r, and s. We will refer to a cocycle so constructed as
a (K, r, s)-twist cocycle.

c,

FIGURE 4(a). Schematic diagram of a (K, r, s)-twist on C,.
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SEfo

FIGURE 4(b). Detail of a (K, r, s)-twist on C,.

It will be convenient in implementing our construction to use sequences of Rokhlin
towers that are nested in a special way. Given a Z2-action T and integers Kt, r(, st,
t. = t(r,, s^ and a sequence of Rokhlin towers T, = Tch{Bi) in bases Bt, we say that
these towers are well-nested (with respect to the parameters Kt, r,, and st) if for all
i<j and all to e £,, TCii(co) is contained in a rigid {K}, rh s,-)-sector of T, or in T).

Given a well-nested sequence of towers rt for T as above, and measurable
functions IT, : B, -»• nXi)r|>s., we obtain cocycles /3, for T. Note, however, that we may
equally well regard jS, as a cocycle for 7^_, = r"'-'1, where a,_1 = j8,_1°- •°P^.
Indeed, B, is the base of the Rokhlin tower T, for Tj_, which coincides with T,, SO
that 7T, determines a cocycle )8, for 7;_,. In fact, if g, is the solution (13) to the
coboundary equation (14) for f}t and T, and g{ is the corresponding function for j8,
and 7]_,, then g, = g,, as a result of the well-nested property. Thus, in our construction
we can refer without confusion to twist cocycles arising from well-nested towers,
without specifying whether the towers and cocycles are to be associated with T or
with the constructed actions 7 .̂

The following is the counterpart to lemma 1 in the present setting.

LEMMA 5. There is a sequence of functions {/: JV1'-* N}f=l such that if {K^x is a
sequence of positive integers and if {at}T=o is a sequence of cocycles for a T'-action
To on {Cl, 53, /A) (with ao= identity) such that the cocycles /?, = at ° aT-i of the action
Tj_i = To"'1 are (Kt, r,, Sj)-twist cocycles, whose corresponding towers T, are well-nested
and, for each i, min {rj Kt, si/ri}>f(Ku K2,..., Kt), then the cocycles a, converge
pointwise to a cocycle a which gives a Zd-action S=Ta , such that (T, S) is, for all
b>\, a strong b-equivalence, and both (T, S) and (S,T) are bounded orbit
equivalences.

Proof. Fix a summable sequence foX)}?!,. To ensure that the a, converge to a
(bijective) cocycle, we let Mt = i + 2£J= 1 K, and choose f (X,, K2,..., Kt) so large
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that if min {rj Ku sj>,} >fi(Kl ,K2,...,Kt) and we set

F; = {a)\T._"'-'(w) is contained in a rigid sector of T, or in T '}^

then fJ-(Fi) > 1 - et, so that /u(Ujli (~)7=J ^1) = 1- We t n e n argue as in the proof of
lemma 1.

In order to show that a and a"1 will be bounded, we need the following facts
about twist permutations, which the reader can verify. Let it be a (K, r, s)-twist of
C,. Then for all v, weC,, \\v-w\\ = l implies \\ir(v)-ir(w)\\ < 10, and ||t)-w||alO
implies \\v(v)-IT(W)\\>1. Now suppose that ||v|| = 1, and observe that for all a>,
there is at most one i such that ai+1(co, v) ^ a,(o>, v). Indeed, given w, if / is the first
integer such that ai+l(a), v)^ <*;(«, v), then &> and T"(w) (=Tv(a>)) are contained
in an orbit block Tfu+iiw'), w'e Bi+l, and since the towers are well-nested, a,(w, v)
remains constant for j > / + l . Hence, by the above remarks, ||a(w, v)\\ =
\\ai+1(w, v)\\ = \\pi+1(co, v)\\ < 10, so that a is bounded.

To argue that a"1 is bounded as well, suppose that || v|| = 1 and a(w, w) = v. Then
we claim that ||w||<10. In fact, for all i, ||a,(w, u)|| < 10. For if, for some i,
||«i(<w, t>)||5rlO, then one of two cases obtains. Either o> and T?(<o) are not in a
single orbit block of T,+1, in which case ||a,+1(w, t;)||> 10 (using the fact that
(K, r, 5)-twists leave a boundary of width 10 fixed), or a> and 77(«) are in a single
orbit block of T,+1, in which case ||a,+1(w, v)\\ > 1, and since the towers are well-
nested, aj{(o, v) = ai+i(w, v) for ally > i + l. Thus, ||a(w, w)\\ =lim ||aj(w, w)||> 1,
a contradiction.

Finally, we show that we can ensure that a"1 gives a strong b-equivalence, for
all 6 s i . (This is equivalent to showing that a does so.) For each i, choose
MKf • • Kt) so large that if min {rjKt, si/ri}>fi(Kl,..., Kt) then there is an
increasing sequence of positive integers Nt such that (2£j=1 Kj)'/2Ni<ei, and if

Gi = {w | Tfi1>((o) is contained in a rigid sector of T, or x^},

then M(G,)> 1 - e h so that M(U7 = 1 Htj G,) = 1.
Then we can argue that for all co e Ujli P l ^ <J, and all t > l ,

For suppose to e (~X°=j Gt and b a 1 is given. If k £7 and bk 2 b, then for all

||a-'(a>, i>)-o||fc_||afcV, v)-v\\b J2 !*_, K,)b'
\\v\\ \\v\\ 2Nk

which establishes the desired limit. •

The following is the basic fact about {K, r, s)-twists that is required to prove theorems
3 and 4. We leave the proof to the reader.

LEMMA 6. Fix e > 0 and K. Ifr/K and s/r are sufficiently large, and t = t(r, s), then
there exists A<= C, with |A|/|C,| > 1 - e such that for alive A and allf: C, -> P, a finite
set,

r°vr~1)|1))=T-=-T X (dist/ |o +J.
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In other words, by permuting/by the elements of II ̂ u s , and weighting e a c h / 0 TT"1

equally, we obtain a distribution on Pc< whose marginal distribution on most
coordinates v coincides with the distribution of/ itself, restricted to the coordinates

Proof of theorem 3. The proof is essentially the same as that of theorem 1, with the
exception that we must now use well-nested towers to build our sequence of cocycles.
Given T on (fl, £$,/*,), we choose finite partitions P^Sft, {e.1^,40, and sequences
{/£,}?!,, {/•,•}£!,, and {s,}°l, increasing as required by lemma 5. The K( are chosen
so that (for suitable e, < e,) there exists £, <=• O with /*(£*) > 1 - e, and for all w e Et

the distribution of Pt on T C K , (W) is within e, of dist(P/). The X, are also chosen
to increase so rapidly that if Tt = Ta>' and for all veZ2, wef t , ||«;(w, v)- v\\ < M,
then for all a> e £i+1 the distribution of P1+1 on TfKn-i(w) is within 2e1+1 of dist (Pi+1).
(It would be sufficient that 2 £ j = 1 Kj/Ki+1 < e,+1/4). Finally, we choose a sequence
{Ljjfoo and let Cu. =U1)e(2»i+i)cL (C, + u), and we build a sequence of towers
T, = Tc-i(Bi) with bases Bt and /A(V;) > 1 - et.

Note that each T, can be regarded as a C,.-tower T\ by taking as the base
^j = Uu£(2ij+i)cL TVB{. We can make the r\ well-nested by simply deleting every
orbit block Tc<,{u>'), (o'e B't, which for s o m e j > i is not contained in a rigid sector
of T'J and is not contained in (rj)c. If the {rt/Ki}'*Ll and {si/r,}f=1 grow sufficiently
rapidly, this entails deleting less than e, of the measure of r\. Let T" denote the
C,.-tower that remains and B" its base.

We now construct the permutation-valued function TT" needed to specify the
cocycles of our construction. They will be defined so as to satisfy certain inductive
conditions with respect to an auxiliary sequence of partitions {K,}?Lo- Specifically,
we let Ro be the trivial partition (O, 0 ) , and given Ro, Rt • • Rt-i, we define a
function TT, mapping Bt into permutations of CU: in such a way that for distinct v
and w in (2tj + l)CL., the maps w-^ H;(a))\ct +„ and «!-»#;(<o)|c,+w and the partition
(T, P, v Vjlo ^/)cu |B, a r e jointly independent, and the above maps take their values
in and are uniformly distributed on n K | r . S j . We then modify TTJ to TT, by setting
7i"i(w)|c,+t. = id when Tc;+V(w) is a deleted block. Rt is defined to be the partition
obtained by labelling the points of an orbit block Tc-,(w), coeBt, by TT,(W), and
labelling T\ by a fixed symbol. Each TT, then gives a IIK|,.,,.-valued function TT" on
B'[ by setting TT"(W") = •7r1(w)|c, +„, when « e Bf and w"= Tv{<o) e Bf. We then argue
as in the proof of theorem 1 that if the sequences {LJfli, {ri/^r}?^i> {•Si/ri}i^i and
{l/e,}°L, grow sufficiently rapidly (as required by lemma 6) the (Kj, r,, s,)-twist
cocycles /?; determined by T" and IT" give cocycles a,• = B,;° • • • ° Bx converging to
a so that the orbit equivalence between T and S = Ta is of the desired type and for
all j < i , (5, Pj) is Ej/2' ^-mixing between 3t, and 3/ j + 1 , so that S is mixing. •

Proof of theorem 4. We begin by devising the family of Bernoulli processes we use
to direct our construction. Let K, r, s and / = t(r, s) be given (with r > 2K) and let
(T, B,) be a (two-dimensional) blocked Bernoulli process, where the parameter sx

of (T, B,) equals /. Let B, denote the two-set partition which distinguishes blocks
of (T, Bi) from non-blocks. Thus, (T, Bx) can be viewed as the extension of (T, B^)
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obtained by labelling each block of (T, S,) by an element of Cn in such a way that
for every finite (T, B^-name a, all the names that can be obtained from a by labelling
its blocks as above are equiprobable. We wish to consider the extension (T, B) of
(T, B,) obtained by labelling (T, B^-blocks in this manner by elements of n K r s

rather than by elements of Cr|. As before, such a process can be shown to be
Bernoulli by a nesting argument, and we refer to it as a (K, r, s)-Bernoulli process.
We note that for all e > 0 and all M > 0 there is a (K, r, s)-Bernoulli process with
entropy less than e and K, r/ K, and s/ r greater than M.

Now given T of positive entropy on (il, 58, /A) we choose finite partitions Prfdb
and e,jO and proceed as in the proof of theorem 2 to obtain partitions {PJTli and
{B,-}"i such that for all i, I ^ - P ^ e , , Pi+i => pit (T, P,)±(T,B,) and (T, B,) is a
(X,, /•;, 5,)-Bernoulli process. Let ft, = {&> | Tc'i(a>) forms a block of (T, B,)}, and let
Tj= Tc't(bj) denote the C,.-Rokhlin tower for T with base ft,. The T, are not
well-nested, but we can make them so by simply deleting from each T, the sets
Tc'i(a>) where weft; and for somey>i , 7"c'.(w) is not contained in a rigid sector
of Tj and TC'i((o) is not contained in TJ. We let f, = T€u(bi) denote the tower with
base ft; that remains after this deletion, and we let B, denote the partition obtained
from B, by including the deleted set in the set that formerly consisted of T°. Let
7T,: ft, -» nKrV.[S. be given by 7r,(w) = B,(w). We are free to do all of the above in such
a way that the parameter sequences {Ki}°°=1{ri/Ki}'~°=] and {5,/rJ^L, increase as fast
as we wish.

We must show that if the parameters increase fast enough, then the cocycles /^
determined by the towers T, and the functions TT, give cocycles a,, = f5t ° • • • ° /3,
converging to a cocycle a for T of the desired type. We will argue, in fact, that the
parameters can be chosen so that (letting 7} = T"i )

n\CN.-(15) (Vi)PN,.)(V/>O(Vm>iV,) PlL*>(TJ,Pi)C

Once this is established, the proof can be completed exactly as was the proof of
theorem 2.

In the proof theorem 2, this was accomplished in two stages, first showing how
to get e,-independence for (Tj, P,), and second, showing how to preserve this
behaviour for subsequent Tj. Here we will do this in one step. Additional care must
be taken here since we no longer have all the independence properties of the factors
(T, Bj) that specify the orbit changes.

Fix i<7, and let N, = 10f,-. Fix m > N,-. The outline of our argument to establish
(15) is similar to that of theorem 2 in that we produce a partition refining (T), Pj)cm\cN

that is e,-independent of P,, for sufficiently small et to imply (15).
To do this, assume the parameters have been chosen so that 3 J.'k=i k < l> a n d ' e t

^ • = ^ - 3 1 ^ , rt. Let m > m + 3 l i = 1 r k . Let Q = (T, Pdc^c^.v Vi_ , (T, Bk).
Write ^i ~ q- (for g, e Q) if either (i) there exists ve C,. such that for all a>, w'eqiU q2

the points TC'<+v((o) form a (T, Bj)-block and the points TC">Ki(<o) are contained in
a rigid sector of that block, and the Q-names of w and w' agree in every respect
except possibly for the B,-name of the above block, and Tc~,+l>(«) is contained in
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a rigid sector of a (T, Bj+1)-block, or (ii) q, and q2 are not in any of the equivalence
classes described in (i).

Let Q denote the partition consisting of the unions of these equivalence classes.
Note that we can make the atom q0 of Q corresponding to condition (ii) arbitrarily
small by choosing the parameters rk/Kk, sk/rk and 1/n(fc

k), k=i, i+l,...,j,
sufficiently large.

For each k, let gk denote the solution to the coboundary equation (14) with respect
to j3fc and T such that gk(a>) = 0 on fc

k. For u e CK., qeQ, q^ q0, let

a(u,q) = {a\g,(«) = u, and T*-> g*M(u>)e q}.

(Note that Slc=i Sk is. in fact> constant across a(u, q).) Write a(u, q)~ a'(u', q') if
q = q'. Let [a] denote the equivalence class (so defined) of such a set a.

We make the following observations about these equivalence classes. First, if
rtlK{, s,/r, and l//x(fj) are sufficiently large, then the subset of 0, not contained
in the union of the above equivalence classes is arbitrarily small. Second, if a ~ a'
then fi{a) = /j.(a'). Third, if a~a' and v (resp. v') = Y.'k=l g(c(w), for all we a
(resp. a') and R = (T, P,)eK , then dista T"R = dista. T" R. (Denote this common
distribution by S([a])). To verify the second and third observations, we use the fact
that, conditioning on the set of points with a (T, B,)-block at specified coordinates,
the J3,-name of that block is independent of the process {T,Pi\i V' kiki Bk) and of the
process (T, B,) outside that block. Fourth, the sets a(u, q), and hence the equivalence
classes [a], are pairwise disjoint. Fifth, if a ~ a', then a and a' are contained in the
same atom of (7}, Pi)cm\cN.-

Now suppose that Kj was chosen so that (I''k^1 tk)/K, is very small compared to
g,, and so that for all w outside a set of measure much less than e,, the distribution
of Pj on Tc"/(w) differs from dist (P,) by much less than e,.

Fix an equivalence class [a(u, q)]. Then there exists we C,, and there exists a
permutation TT of C,. such that for all a'e[a] and all cj'ea', if u' = Xk=i gk((o'),
then T"'+Cu~w(a>') is a (T, B,)-block, and the cocycle <*,_, = /S,-, ° • • • ° p1 permutes
the points of this block by IT. Observe that for all w € U [a], T1^-1 gk(<u)(«) occupies
position w in its (T, B,)-blockand v'1(w-u') is the position each point of a(u', q)e
[a] occupies in the (T, B,)-block containing it. Furthermore, the values TT~1{W - u')
are pairwise distinct, for distinct u', and are contained in w + CKi+Y.'k=i tk-

Thus, since the random variable u o n l j [a](u: w>-*u'if we a(u', q)) is uniformly
distributed on CKl, the random variable w-XL=i 8k{u), which equals v~\w-u')
for a) e a(u', q), is nearly uniformly distributed on CKl. Consequently, the distribu-
tion of Pj on U [a] is nearly the average of the marginal distributions of 5([a]) at
each of its coordinates. For most [a], this average nearly equals dist (Pf), and this
establishes (15). •

In order to prove theorems 3 and 4 in dimension d > 2, we only have to exhibit a
suitable family of permutations to play the role of the (K, r, s)-twists.

Fix r>2|fc| and \-zi<j<d. By a kjj-twist o/Cr<=Zd, we mean a permutation
obtained by choosing a two-dimensional fe-twist TT and applying TT to each of the
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two-dimensional cubes of radius r in Cr parallel to the i, ./-plane. Similarly, we
define a fcfJ-twist of a translate Cr + v of Cr.

Given r > 2K > 0, s>0, t = t(r, s), and 1 s i <j < d, we define a (K, r, s)ij-twist
of C, to be a permutation obtained by applying a fcy-twist to each block Cr + t>,
ue (2r+ 1)CS, the choice of fc varying with V, and then applying a /c^-twist to each
Cr + v + (r,..., r) contained in Cj = y_)v^2r+1)Ci{Cr+ v), again, k varying with v, and
finally, fixing the points we C, such that ||w||oo> f -10. We then let n ^ ' r , denote
the set of (K, r, s),j-twists, and U.K,r,s

 =Uis,-<_,-s</ H'lcrs- The reader can verify that
the families n ^ r s satisfy the key property needed to prove theorems 3 and 4, namely
the counterpart to lemma 6. Given this, all the arguments go through as before.
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