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ABSTRACT
Identifying individual words is an essential part of the reading process that should occur first so that
understanding the structural relations between words and comprehending the sentence as a whole
may take place. Therefore, lexical processing (or word identification) has received much attention in
the literature, with many researchers exploring the effects of different aspects of word representation
(orthographic, phonological, and semantic information of words) in word identification. While the
influence of many orthographic and phonological factors in normal reading are well researched and
understood (Rayner, 1998, 2009), the effect of semantic characteristics of a word in its identification
has received relatively less attention. A complete account of lexical processing during normal reading
requires understanding the role of word meaning in lexical processing. Currently, little is understood
about whether and how the meaning of an individual word is extracted during early stages of word
identification. This article primarily focuses on how word meaning contributes to the process of word
identification.

Keywords: lexical processing; semantic neighborhood density; word identification

To understand the overall meaning of the sentence, individual words must be first
identified, a process known as lexical identification. The process of identifying a
word involves accessing its (symbolic) representations that are stored in memory.
The stored representations can include its orthographic form (i.e., its spelling),
its phonological form (i.e., its sounds), and its semantic representation (i.e., its
meaning). This process of accessing the representations of the perceived word in
our memory is remarkably quick and occurs with few errors. A normal reader can
identify and understand words at a rate of three or four per second (Rayner &
Pollatsek, 1989).

Many models have been proposed to account for how these representations
are accessed in some systematic way consistent with human word identification.
The models of lexical identification often differ in the way the representations are
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accessed. Some models posit that a perceived word is searched for among other
words in a serial manner (serial search models; e.g., Forster, 1976), while other
models posit that the perceived word is accessed by activating some possible word
candidates in parallel during the course of lexical processing (activation models;
e.g., McClelland & Rumelhart, 1981; Seidenberg & McClelland, 1989). The mod-
els also differ in their assumptions about whether semantic information associated
with a word can influence the recognition of its orthographic (or phonological)
form. Some models assume that a word’s meaning is activated only after its form
has been uniquely identified (e.g., Forster, 1976), while other models assume that
a word’s meaning can be activated before the competition between orthographic
representations (those of the actual word and its orthographic neighbors) is re-
solved (e.g., McClelland & Rumelhart, 1981; Stolz & Besner’s, 1996, embellished
interactive-activation model).

Much research has explored orthographic, morphological, and phonological
variables effect on word identification. How much semantic characteristics of a
word affect its recognition received relatively less attention. The purpose of the
present article is to argue that accounts of word recognition in which access to
the semantic properties of a word was gained via unique lexical identification of a
word were inadequate. These so-called magic moment accounts of word identifica-
tion provided no opportunity for sources of semantic information to constrain the
identification process. The present review will show that semantic characteristics
of a word that will be identified constrain the process of lexical access before the
point in time at which that word has actually been identified, as Balota argues that
realistic accounts of lexical identification should “bring meaning back into word
recognition” (1990, p. 27). As such, the present review will inform the development
of a comprehensive model of word identification during reading. In particular, the
focus of this article will be on the role of words that co-occur in similar contexts
(i.e., co-occurrence-based semantic neighbors) in unique word identification. We
begin by briefly giving background information on the theoretical context concern-
ing the effects of semantic neighborhood density. In so doing, we will describe
the two major views of the nature of semantic representations: the object-based
view and the language-based view. Next, we focus on one of the language-based
theories, in particular, the co-occurrence-based theory of semantic representations,
and will describe the theoretical foundation of co-occurrence-based semantic rep-
resentations and how computational models are used to capture word meaning.
Then we review the empirical studies that have been conducted on the effects of
semantic neighborhoods, focusing on the studies that used co-occurrence-based
definitions of semantic neighborhoods. We handle the theoretical implications of
this review for current theories of word identification. Finally, a conclusion will
be stated at the end of this review.

VIEWS OF SEMANTIC REPRESENTATIONS

Our daily lives, as humans, are full of tasks that require exploiting world knowl-
edge that we have accumulated throughout our lifetime. This world knowledge
includes, for example, information about how to perform some functions in our
daily lives such as driving cars, eating fruit and vegetables, and information about
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the behavior of some creatures such as the barking of dogs. Based on our cu-
mulative experiences, we are able to extract and store such knowledge about the
world in semantic memory. Semantic memory refers to human memory of word
meaning and includes many types of information about concepts (McRae, 2004).
For example, from our past encounters with the concept cat, we know that it is an
animal, it has whiskers, and it is related to other concepts such as kitten and tiger.
We also know from our experiences that the meaning of the word test, for example,
is related to the meaning of experiment, trial, quiz, and exam. These meanings we
know about the words from our past experiences are what can be referred to as the
semantic representations of the words.

There have been many different views and models explaining the nature of
semantic representations and how they are stored and retrieved. Virtually, all de-
velopers of semantic memory models to a great extent agree that the humans’
semantic system exhibits a general structure and some regularity that is assumed
to be shared by individual humans; they also acknowledge that individual differ-
ences to a lesser extent may influence the semantic structure (Buchanan, Westbury,
& Burgess, 2001). The models of semantic representations attempt to capture the
structural regularities in either the objects found in the world or the structural reg-
ularities in the relationships between words found in language. Accordingly, these
models represent two major views based on the type of information they stipu-
late about word meaning, object-based theories and language-based theories. The
object-based view represents word meaning in terms of some observable prop-
erties or features (e.g., color, taste, smell, etc.) or categories (e.g., animal, plant,
bird, etc.). The language-based view defines the meaning of a word in relation
to other words in language (i.e., how a word is used in language); words can be
related to each other by means of associations (i.e., words that are semantically
associated with each other, e.g., hair and brush) or by means of co-occurring in
similar contexts in text (e.g., movie and game both appear in the contexts of enter-
tainment and enjoyment). What follows is a brief description of the object-based
view, highlighting the issues related to the feature-based view, which is considered
a representative view of the object-based theories. Then, this description will be
followed by a brief comparison to the language-based theories.

The feature-based view of semantics postulates that the meaning of a word
(especially concrete words) comprises multiple types of knowledge, including
visual knowledge (e.g., shape, size, color, and characteristic motion), knowledge
associated with sounds that the objects/entities produce (e.g., loud, etc.), how they
smell (e.g., smelly, smells nice, is scented, etc.), taste (e.g., musty, sweet, sour,
etc.), and feel (e.g., hard, damp, cold, etc.). In addition, the meaning of a word
includes knowledge about the typical behavior of creatures (e.g., meows, barks,
etc.), situational/event-based knowledge (e.g., what the objects are used for, such
as cutting; where they can typically be found, such as in the kitchen; and who
typically used them, such as farmers).

The above-mentioned types of conceptual representations of words are called se-
mantic features (McRae, Cree, Seidenberg, & McNorgan, 2005; Rosch & Mervis,
1975). The feature-based conceptual representations are empirically derived from
feature production norms using feature-listing tasks. In such tasks, human par-
ticipants are asked to list the semantic features of some basic-level concepts
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(e.g., orange or cat). Recently, McRae et al. (2005) developed feature produc-
tion norms for 541 basic-level concepts of living and nonliving things over 3
years. In their norms, each subject enlisted the features of 20 or 24 concepts, and
each concept was presented to 30 participants. For each concept in their feature
production norms, information is provided about the number of features, number
of distinguishing features (e.g., barks or meows), ratings of the distinctiveness of
the features, the likelihood that a feature would appear in a certain concept, and
distributional statistics about feature correlations (i.e., the tendency of two features
to occur in the same basic-level concepts). Under the feature-based view, words
are considered semantically similar (i.e., semantic neighbors) if they have several
overlapping semantic features. In this sense, robin and canary are thought of as
semantic neighbors because they share some features in common such as bird, can
fly, small, can sing, etc.; Cree & McRae, 2003).

Featural representations were hypothesized to underlie our implicit statisti-
cal knowledge of feature correlations and our explicit theory-based knowledge
(Holyoak & Spellman, 1993; Lin & Murphy, 1997). To explain, both humans and
connectionist networks were found to naturally encode the extent to which cer-
tain pairs of features co-occur across concepts (Cree, McRae, & McNorgan, 1999;
McRae, Cree, Westmacott, & de Sa, 1999; McRae, de Sa, & Seidenberg, 1997),
suggesting that our brain’s neurons (and those of the connectionist network) learn
correlations (Saffran, Aslin, & Newport, 1996; Jusczyk, Cutler, & Redanz, 1993).
For example, people tend to list feature pairs such as <has wings> and <has
feathers> when they are asked to list the features associated with some concepts
such as robin, pigeon, and canary (McRae, 2004). In addition, people sometimes
have an explicit theory about why two features co-occur based on the relationship
between features. To illustrate, people reported that <has wings> was causally
related to <flies> (Ahn, Marsh, Luhmann, & Lee, 2002; Murphy & Medin, 1985).

The conceptual representations derived from the feature production norms could
account for some experimental phenomena such as semantic similarity priming
(Cree et al., 1999; McRae et al., 1997), feature verification (McRae et al., 1999;
Solmon & Barsalou, 2001), categorization (Smith, Shoben, & Rips, 1974), and
conceptual combination (Smith, Osherson, Rips, & Keane, 1988). As such, the
feature production norms have been argued to provide some insight into important
aspects of word meaning (McRae, 2004; Medin, 1989).

Some major challenging questions, however, were raised against the feature-
based view of semantic memory. One challenging question is how the various
semantic features that represent the meaning of a concept bind together as a coher-
ent unified whole, so that the features are effortlessly perceived as being aspects of
a single concept (Roskies, 1999; von der Malsburg, 1999). Consider, for example,
how the shape feature of an object binds with the feature of the location of that
object so that both shape and location features provide a unified representation of
the object. To solve this binding problem, a number of hypotheses were proposed
including von der Malsburg’s (1999) temporal synchrony of neuronal firing rate
(i.e., temporally synchronizing the activity of different neurons), Simmons and
Barsalou’s (2003) hierarchy of convergence zones (i.e., a set of processing units
that encode activity among multiple input units; Damasio, 1989), and Patterson,
Nestor, and Rogers’s (2007) single convergence zones. It is beyond the scope of
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this article to review these hypotheses. To date, it is not clear which solution is
most viable (McRae & Jones, 2013).

Another question that was raised against the feature-based view is how words
that have no observable or physical properties such as abstract words and sophisti-
cated verbs are represented in terms of semantic features. The feature-based view
is mainly based on research that has been carried out on concrete words and observ-
able actions (verbs; McRae & Jones, 2013). The feature-based representation view
cannot sufficiently capture the meaning of abstract concepts (Shallice & Cooper,
2013), particularly as abstract words do not have sensory referents in the world
(Paivio, 1986). In an attempt to provide a resolution to this issue, some researchers
suggested that the cognitive organization of abstract concepts might be partially
different from the cognitive organization of concrete concepts (Plaut & Shallice,
1993). Thus, Plaut and Shallice along with other researchers proposed some mod-
els that instantiated the meaning of abstract words and sophisticated verbs using a
mechanism that was different from the mechanism used to instantiate the meaning
of concrete words (McRae & Jones, 2013). To date, however, there have not been
any feature-based models that specify one common mechanism for constructing
the semantic representations for all types of words.

Another limitation of the feature-based view is that the feature production norms
were collected for a few hundred words that were mostly concrete nouns and
observable actions. This is due to the hand-coding (and laborious) nature of the
feature-listing tasks that were used to develop the norms. This seems to be an
obstacle for the feature-based view that provides the semantic representations
for a limited number of words and limited topics. All these issues are resolved
when considering the language-based models, especially those that derive semantic
representations from large-scale text corpora instead of embodied experiences
collected from participants.

In contrast to the object-based view, the language-based view postulates that
word meaning does not have to be represented in terms of structural regularities
of the semantic features of words themselves. Instead, the language-based view
captures word meaning by the patterns of word usage in language (i.e., how a word
is used in relation to other words in language). As such, the history of a word’s
usage in language is what gives the word its meaning. The history of word usage
can be derived either from tasks whereby participants are asked to write the first
related word that came into mind when they saw another word (association-based
semantics) or from recording the systematic patterns of the words that co-occurred
around a given word (co-occurrence-based semantics). Two words are considered
semantically similar (or semantic neighbors) under this view if they are semanti-
cally associated with each other (association norms; Nelson, McEvoy, & Schreiber,
1998) or if they appear in similar contexts in large samples of text (i.e., their
distributions in text or their global co-occurrence; Lund & Burgess, 1996). The
associational-based semantic representations, just like in the object-based view,
were developed using tasks to elicit associations from human participants. In such
tasks, the number of distinct responses that two or more participants enlisted is tal-
lied (e.g., the association norms developed by Nelson et al., 1998). Because of the
(hand-coding) nature of the tasks from which associations were developed, asso-
ciates were collected for a limited number of words (5,019 words in Nelson et al.’s,
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1998, association norms), which is one of the limitations of the associational-based
semantic representations. For this reason, the global co-occurrence-based seman-
tic (distributional-based view) can be argued to be more successful in terms of
deriving semantic representations for millions of words from large corpora of text.
This review will focus on co-occurrence-based semantic representations.

DISTRIBUTIONAL SEMANTIC VIEW

The distributional semantic view stipulates that the representation of the meaning of
a given word can be derived from the other words that tend to co-occur within large
samples of text (i.e., its distribution in text). These other words that co-occur with
a given word are called the semantic neighbors of the word. Precisely, semantic
neighbors under the distributional semantic view can be defined as words that are
situated in close proximity to each other in texts (first-order co-occurrences) as
well as different words that have in common the same words that co-occur with
them, regardless of whether they appear in close proximity to each other in a
text (second-order co-occurrences; Lund & Burgess, 1996; Shaoul & Westbury,
2012). To illustrate, consider the phrase in the previous sentence, “situated in close
proximity to ….” Situated and proximity appear close to each other in this phrase,
and as such they are thought of as first-order co-occurring words. Now consider
another phrase, “situated in a close location to …,” for the sake of argument.
You will notice that both proximity in the former phrase and location in the latter
phrase appear in similar linguistic contexts (i.e., share some co-occurring words),
and therefore they are considered second-order co-occurring words. To understand
the rest of this review, the remainder of this section will specify the theoretical
grounding of this view and how distributional semantic models are built.

Distributional semantic view: Theoretical foundation

The distributional semantic view is theoretically originated in structural linguistics
and is motivated by distributional methodology (Harris, 1954) that postulates that
if two linguistic units (e.g., unit A and unit B) both occur with a third linguistic
unit C (i.e., A and B have similar distributional properties), then A and B are
considered related. This distributional methodology was later extended to theorize
about semantic representations so that the meaning of a given word depends on the
aspects of meaning shared between the given word and the words that comprise
the contexts in which it appears. According to the distributional hypothesis, two
words are similar in meaning if they appear in the same contexts (i.e., appear with
the same neighboring words). That is, the degree of semantic similarity between
two words can be seen as a function of the overlap among their linguistic contexts
(i.e., words that co-occur within a language). In this way, semantic similarity is
linked to co-occurrence (or distributional) similarity as Harris stated.

The degree of semantic similarity between two linguistic expressions A and B is a
function of the similarity of the linguistic contexts in which A and B can appear.
(Harris, 1954, pp. 2–3)
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If we consider words or morphemes A and B to be more different in meaning than
A and C, then we will often find that the distributions of A and B are more different
than the distributions of A and C. In other words, difference in meaning correlates
with difference in distribution. (Harris, 1954, pp. 2–3).

To explain these quotes, the similarity or difference in the meanings of words is
reflected in the words’ distributions (i.e., the words that co-occur) in a large text.
As such, if two words occur frequently in similar contexts, it is more likely that
these two words are similar in their meanings (Firth, 1968/1957). For example, the
word movie may appear in the context of (i.e., co-occur with) enjoy and watch. It is,
therefore, argued that it can be inferred that these words are semantically similar:
at some level, they share some aspect of meaning. It also can be inferred that movie
is similar to other words such as game, itself a word that appears in the context of
words like enjoy and watch, even though game may not co-occur with movie.

To summarize, the distributional semantic view relies on the co-occurrences
found in a text corpus to construct semantic representations. Under the co-
occurrence-based view, words such as movie and game are related, although they
may not directly co-occur, via sharing similar contexts. That is, two words are
considered semantic neighbors based on their co-occurrences in similar contexts
in a large-scale text corpus; the contexts in which a word appears entail some
important aspects of its meaning.

Distributional semantic view: Modeling

Some distributional semantic models are used to derive semantic representations
by analyzing a text corpus. Before explaining how the models of distributional
semantics were built to do this, it is important to lay down some basic terminologies
used in the literature of distributional semantic models.

Distributional semantic modeling: Terminologies. Semantic space is a space that is
used to spatially represent word meaning as presented in Figure 1. As can be seen
from this figure, words are represented as points in this space. The distance between
one point (i.e., a word) and another reflects the degree of semantic similarity
between the two words. Words that are close to one another in this space are
considered semantically similar. Therefore, what is actually being modeled in
semantic space is the semantic similarity between words as a function of their
proximity from one another in an n-dimensional space where n can reflects the
number of dimensions (i.e., the number of co-occurrence words). In Figure 1, only
a two-dimensional space is visualized for simplification.

To arrive at the geometric representations of semantic space (as illustrated in
Figure 1), distributional semantic models are used to first collect distributional in-
formation (profiles) for words in a matrix of co-occurrence counts (see Tables 1
and 2), and then transform such distributional data to geometric representations.
The distributional information of a word refers to the sum of all its environments
(Harris, 1970, p. 775). The environments of a given word can be the words that sur-
round the given word in a line, sentence, or phrase (i.e., neighboring words), or they
can be the documents in which the word appears. Thus, the distributional semantic
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(100,10)
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Figure 1. A geometric representation of a hypothetical two-dimensional space. The words
(refinery, tanker, crew, and sea) are represented as points in two dimensions (i.e., co-occurring
words) of load and ship. The spatial proximity between words reflects how the words are close
or similar in their meanings. For instance, in this space tanker is close to refinery while it is
relatively distant from sea. Therefore, one can infer that the meaning of tanker is more similar
to the meaning of refinery than to the meaning of sea.

Table 1. A one-word ahead and one-word behind (raw)
co-occurrence matrix

Co-occurring Words

WORDS tankers offload oil to refineries

tankers 0 1 0 0 0
offload 1 0 1 0 0
oil 0 1 0 1 0
to 0 0 1 0 1
refineries 0 0 0 1 0

models are used to populate a word-by-word matrix or word-by-document matrix.
A word-by-document matrix is used to assess the relationships between words and
the number of documents in which they appear (i.e., the similarity between doc-
uments) while a word-by-word matrix is used to directly measure co-occurrences
between different words (i.e., the similarity between words). Since the focus of
this article is on the effect of the degree of similarity between a word and the other
words that co-occur with it in language, distributional semantic models that are
used to produce word-by-word matrices (i.e., that define the context/environment
in which a word appears as its neighboring words in text) will be central to this
article and will be further discussed in the remainder of this article.

To give a simple example of a word-by-word matrix, consider the example of,
Tankers offload oil to refineries. If we consider the context of a target word as one
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Table 2. A (hypothetical) co-occurrence matrix

Co-occurring Words

carry load ship ….

crew 54 58 150 ….
oil 61 58 85 ….
refinery 50 80 80 ….
sea 4 10 100 ….
tanker 67 62 83 ….

Note: In this matrix, “tanker” co-occurs 83 times with
“ship” and 62 times with “load.” Also, “tanker,” “oil”
and “refinery” have similar co-occurrence counts in
each of the three dimensions (“ship,” “load,” and
“carry”).

word ahead and one word behind the target word, then the context of offload will
be tankers and oil. Producing a co-occurrence matrix for the previous sentence
according to a one-word ahead and one-word behind criterion should look like the
co-occurrence matrix presented in Table 1.

A distributional semantic model is used to build a co-occurrence matrix based
on large samples of text from a large-scale corpus of hundreds of millions or
billions of words. Thus, after summing the co-occurrence counts for each word
in the corpus and after applying some mathematical and statistical techniques that
will be discussed later in this article, the resultant co-occurrence matrix will be
somewhat similar to the simplified co-occurrence matrix presented in Table 2. This
table shows that the word tanker, in this hypothetical example, co-occurs 83 times
with the word ship. The rows in this matrix represent target words and the columns
represent contexts (i.e., dimensions) or words that co-occur with the target word
in text.

A co-occurrence matrix consists of distributional vectors containing the values
found in the cells of a row. For example, the distributional vector of tanker in
the co-occurrence matrix presented in Table 2 is Xtanker = (67, 62, 83, …). Each
value in the vector is called a dimension or feature. To reiterate, the values in
the matrix represent co-occurrence counts (frequencies; e.g., the number of times
tanker co-occurs with ship). Thus, each value in a vector specifies one attribute or
characteristic of the word in the space. The vector of a word specifies the location
of the word in an n-dimensional space. However, knowing that the location of
the word tanker is (67, 62, 83) in a three-dimensional space, for example, is not
informative of anything, except its location in semantic space. As such, knowing
the location itself is meaningless. When we consider the location of a word (e.g.,
tanker) in relation to its proximity to the locations of other words (e.g., refinery,
oil, sea, etc.) in semantic space, then these locations become meaningful with
respect to specifying which words are closer and therefore semantically similar to
a given word than other words. The ultimate goal of a word-by-word distributional
semantic model is to represent semantic similarity between words, by spatially
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lo
ad

(100,10)

(83,62)

(80,80)

Figure 2. (Color online) A (hypothetical) two-dimensional semantic space; in this space, the
vectors of three words (tanker, refinery, and sea) are geometrically represented in terms of
their co-occurrences with two dimensions (ship and load). In this hypothetical example, sea
co-occurs 100 times with ship and 10 times with load. The illustration of this space also shows
that words that have similar values in the same dimensions are located close together in the
space. For example, both tanker and refinery have similar values of 80 and 85, respectively, in
the dimension of ship and 62 and 80, respectively, in the dimension of load. Thus, the vectors
of tanker and refinery are much closer to each other in this space compared to sea, which has
very different values in these two dimensions. The Euclidean distance between sea and tanker
(the dashed line) is larger than the distance between refinery and tanker. In addition, the cosine
angular distance (the angle) between sea and tanker is larger than the cosine angular distance
between refinery and tanker.

modeling word meaning, in terms of the proximity between words in a high-
dimensional semantic space.

To measure how similar or different the meanings of words are in a high-
dimensional semantic space, similarity or distance measures are used. Similarity
measures indicate how similar two vectors are and give high scores for similar
vectors. Distance measures, in contrast, indicate how different two vectors are,
and give low scores for similar vectors. One example of the similarity measures is
cosine similarity, which is the angle between two arrows/vectors (see the angles
between the vectors in Figure 2). In Figure 2, the angle between tanker and sea
is larger than the angle between tanker and refinery. As such, the cosine angular
distances indicate that vectors of tanker and refinery are more similar than the
vectors of tanker and sea. Cosine similarity measures how similar two vectors in a
scale of [0,1], where 0 indicates no similarity and 1 indicates maximal similarity.
An example of the distance measures is the Euclidean distance, which measures
the straight distance between two points (see the dashed lines between the vectors
in Figure 2). In Figure 2, the Euclidean distance between tanker and sea is larger
than the distance between tanker and refinery. As such, the vectors of tanker and
sea are more different than the vectors between tanker and refinery. It is worth
mentioning that the results of applying similarity and distance measures are equiv-
alent if the vectors are normalized (as will be explained below); both distance and
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similarity measures give similar accounts of how close two words are in semantic
space (Evert & Lenci, 2009).

As can be seen from Figure 2, the angle and the distance between refinery and
tanker is less than the angle and the distance between sea and either refinery or
tanker. Therefore, it can be seen that the distributional profiles of refinery and
tanker are similar in this semantic space and, hence, the words refinery and tanker
are semantically similar while sea is less related to any of these words. Thus, the
distance between two vectors indicates how similar the contexts of usage of the
two words represented by the vectors are.

Distributional semantic modeling: Building steps. Building a word-by-word distri-
butional model generally involves three main steps. The first step involves selecting
the corpus from which co-occurrence information is extracted. In the second step,
the corpus is linguistically processed so that it can be used by the model. This step
involves detecting and eliminating unwanted text (e.g., removing non-English doc-
uments from the corpus), converting all words in the corpus to uppercase letters
so that the differences in capitalization is eliminated (e.g., Door and door are con-
verted to DOOR), adding a space to separate the possessives (’s) from the words,
and replacing the hyphens in the hyphenated words with a space (e.g., first-class is
converted to FIRST CLASS). In this way, the linguistic processing helps the model
to detect identical words (e.g., Door: door; first-class: first class), and treat them
as equivalent.

In the third step, mathematical and statistical processing for the linguistically
processed corpus takes place. The mathematical and statistical processing involves
building a matrix of co-occurrence frequencies, weighting the co-occurrence fre-
quencies, smoothing the matrix by reducing its dimensionality, and measuring
the similarity or distance between vectors. The basic mathematical and statistical
processing is explained below.

To build a co-occurrence matrix, the number of times another word co-occurs
with a target word is counted (e.g., how often does tanker occur in the context
of load?). Words are considered to have co-occurred with a target word if they
appear immediately adjacent to the target word as well as if they are separated
from the target word by a number of intervening words in a line of a written text.
The maximum number of intervening words that are considered to co-occur with a
target word is called window size. The frequencies of co-occurrences are populated
one window at a time in a way that the window slides forward one word at a time
until all words in the corpus are processed (see Figure 3). Distributional models
differ in the type of window (e.g., windows of words, sentences, paragraphs, or
whole documents); the discussion in this article will be limited to only word-based
distributional models as mentioned before. The models also differ in the size of
the window (i.e., how many words fall in the window) and its extension (i.e., how
many words to the left and to the right of the target word).

By recording every window movement, the co-occurrence matrix is compiled.
For every target word in this matrix, there is a row and some columns as presented
in Tables 1 and 2. If the window is used to count co-occurrences symmetrically
in both directions (to the left and right of the target word) within the window,
then the resultant word-by-word co-occurrence matrix is symmetric in the sense
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and criticism are obvious parts of any interactive teaching materials but the balance must 

 
AHEAD are obvious parts of any interactive teaching materials but the balance must 
interactive 0 0 0 0 0 0 5 4 3 2 1 0 
teaching 0 0 0 0 0 0 0 5 4 3 2 1 

BEHIND are obvious parts of any interactive teaching materials but the balance must 
interactive 1 2 3 4 5 0 0 0 0 0 0 0 
teaching 0 1 2 3 4 5 0 0 0 0 0 0 

Figure 3. A visualization of a sliding window (five words ahead and five words behind the
target word) with inverse linear ramp weighting. In this example, the first target word is the
word interactive, and the second target word is the word teaching. The tables below show
the vectors that appear ahead and behind the target words; these vectors would be contained
in the co-occurrence matrix after weighting the counts from the sliding window (but before
normalizing the rows; based on Shaoul & Westbury, 2012).

that the rows and columns for a target word both contain the same co-occurrence
counts. If the window is used to count co-occurrences in only one direction (to the
left or right words from the target word), then the resultant matrix is directional
in the sense that the rows and columns contain co-occurrence counts in different
directions. To explain, a left-directional co-occurrence matrix gives co-occurrence
counts with the preceding (left in English) words within the window; the values
in a row are co-occurrence counts of the target word with the left words in the
window while the values in a column are the co-occurrence counts with the right
words in the window. A right-directional co-occurrence matrix populates counts of
co-occurrences with the succeeding (right in English) words within the window; a
row contains co-occurrence counts of the target word with the right words within
the window while a column contains counts of co-occurrence counts with the left
words within the window.

It should be noted that the above-described directional information is discarded
in the final stages of applying an algorithm to concatenate the row and column vec-
tors (Sahlgren, 2006). Thus, it does not matter whether a directional or symmetric
word-by-word matrix is used, as it will be the case that words that have occurred
with the same other words in a particular corpus being analyzed will have similar
representations when comparing their vectors (Sahlgren, 2006).

Once the co-occurrence matrix is populated from the whole corpus, the co-
occurrence counts in the cells are weighted using a weighting scheme that assigns
weights to the context words based on their distances from the target word in the
window. Applying a weighting function involves multiplying co-occurrence fre-
quencies by a number reflecting the distance of the context word from the target
word in the window. One of the weighting functions used in some distributional
models is called linear ramp, which gives more weight to the co-occurrence neigh-
bors that are located closely to the target word. To illustrate, consider that we have
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a five-word window (i.e., five words to the left and five words to the right of the
target word). If a linear ramp function is applied as a weighting scheme to the co-
occurrence counts, then the co-occurrence frequency of the neighboring word that
appears directly adjacent to the target word in either direction will be multiplied by
five in this five-word window. The co-occurrence frequency of the next neighbor-
ing word out in either direction will be multiplied by four, while the co-occurrence
frequency of the word that appears at the edge of the window in either direction
will be multiplied by one. Another type of weighting functions that is used in other
models is the inverse linear ramp, which gives more weight to the co-occurrence
neighbors that are located far away from the target words. Implementing the in-
verse linear ramp as a weighting scheme gives less weight to the closer words
that often tend to be function words, and therefore, high-frequency words. Since
function words convey little semantic information, the raw co-occurrence statis-
tics could simply reflect frequencies that are correlated with syntactic functions
along semantic relationships between words (Durda & Buchanan, 2008; Rhode,
Gonnerman, & Plaut, 2005). Through the application of this type of inverse weight-
ing schemes, the effect of function words is minimized (for a brief review of other
types of weighting functions, see Shaoul & Westbury, 2010a).

The weighted co-occurrences are then stored in a raw co-occurrence matrix
that contains the weighted frequencies of co-occurrences for all possible com-
binations of words in all possible positions in the window (before and after the
target word in the window). At this point, due to passing the sliding window over
a large corpus, the consequent weighted (raw) co-occurrence matrix is very large,
which can be computationally laborious and impossible, and also very sparse at
the same time since most words rarely co-occur with each other in a corpus (i.e.,
most of the cells in the co-occurrence matrix will contain co-occurrence counts of
zeros).

To solve the issues of the high-dimensionality and the sparseness of the vectors
of the data, the sparse (raw) co-occurrence matrix is compressed by reducing its
dimensions (columns). Dimensionality reduction is achieved by filtering out some
words in the matrix based on linguistic or statistical criteria. Filtering out words
based on linguistic criteria involves removing the words that belong to a closed
grammatical class (e.g., function words) as these words are assumed to have lit-
tle semantic information. These closed class words, constituting a small number
of words in language, have orthographic frequencies (i.e., how often the words
appear in a corpus) much higher than the orthographic frequencies of the rest
of open class words (Zipf, 1949). Accordingly, the closed class words have very
high co-occurrence frequencies with almost all words in the corpus. Therefore,
the vectors of closed class words are very dense with large values, making them
much closer to all other words than low-frequency words. The problem with the
linguistic criterion as a form of dimensionality reduction is that it removes only a
few words from the data because the majority of words in language belong to open
grammatical classes. Statistical criteria involve removing words with some unde-
sired statistical characteristics, for example, very high and very low frequency.
Removing very high- and very low-frequency words, thus, to some extent resem-
bles linguistic filtering since very high-frequency words tend to belong to closed
grammatical classes. The statistical filtering not only removes closed class words
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but also succeeds in removing words belonging to open grammatical classes. The
result of reducing the dimensionality of the matrix is a low-dimensional space with
denser information.

Finally, similarity between words (vectors) is compared using similarity or dis-
tance measures. The similarity measures give the mean distance between a target
word and all its co-occurrence neighbors. Thus, semantic similarity indexes how
near or similar the target word’s neighbors are to the target word in terms of simi-
larity of their contextual usage in language. An example of a similarity metric that
is implemented in many models is the cosine similarity that measures the angle
between two vectors. It was suggested that semantic similarity measures (both
similarity and distance metrics) should be normalized for (or take out the effect of)
vector length (i.e., the number of dimensions contained in each vector) because
similarity measures result in making the words with many and large co-occurrence
counts too similar to most other words while distance measures result in making
words with many co-occurrence counts too far from other words (Widdows, 2004).
This problem can be avoided by directly using cosine similarity since it normalizes
vectors for their respective length; thus, cosine similarity is a popular technique to
compute normalized vector similarity (Sahlgren, 2006).

Readers interested in some examples of distributional semantic models can re-
view Hyperspace Analogue to Language (HAL; Lund & Burgess, 1996), latent
semantic analysis (a document-based model developed by Landauer & Dumais,
1997), and High Dimensional Explorer (HiDEx; Shaoul & Westbury, 2006, 2010a).
The reminder of this section will be devoted to discuss the how semantic neigh-
borhood (size and density) has been calculated using HiDEx as it was empirically
tested to provide empirical justifications for the optimal parameters that should be
considered when building up distributional semantic models.

Shaoul and Westbury (2006, 2010a) developed a model called HiDEx, that
itself was based on a previous model, HAL (Lund & Burgess, 1996). HiDEx was
developed to better explain the variance due to semantic similarity in response
latency data for lexical decision and semantic decision tasks. In HiDEx, statistical
and mathematical techniques are applied to establish first-order co-occurrences that
are obtained from a large corpus, and these are then used to derive second-order
co-occurrences. Shaoul and Westbury (2010a) obtained first-order co-occurrences
through the use of a sliding window, within which the co-occurrence frequencies
of a particular word, referred to as the target word, with other words in the window
were recorded. They found that a window size of 10 words behind, and 0 or 5
words ahead of the target word, best captured variance in lexical and semantic
decision responses to that target word. Next in their procedure, the first-order
co-occurrence values for the corpus were “weighted” such that more weight was
apportioned to a word’s co-occurrence neighbors located further away from the
target word in this window. This inverse ramp-weighting scheme gives less weight
to the closer words that tend to be high-frequency function words. Since function
words convey little semantic information, if these words were weighted more
heavily, then first-order co-occurrence statistics might reflect more the frequencies
that are correlated with syntactic function among semantic relationships between
words (Durda & Buchanan, 2008; Rhode, Gonnerman, & Plaut, 2005). Through
the application of inverse ramp weighting, the contribution of function words
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Figure 4. A (hypothetical) two-dimensional space; in this space, the vectors of three words
(research, study, and culture) are geometrically represented in terms of their co-occurrences
with two dimensions (conduct and answer). For example, in this hypothetical example, culture
co-occurred 10 times with conduct and 5 times with answer. The illustration of this space also
shows that words that have similar values in the same dimensions are located close together in
the space. For example, both study and research have similar values of 100 and 80, respectively,
in the dimension of conduct and 100 and 85, respectively, with the dimension of answer. Thus,
the vectors of study and research are much close to each other in this space compared to culture
that have very different values in these two dimensions.

to the semantic neighborhood index is minimized. The consequent weighted co-
occurrence matrix is very sparse because most words rarely co-occur with each
other.

To decrease the sparseness of the matrix, Shaoul and Westbury summed the
weighted co-occurrence frequencies in the window and used these to create a
second-order co-occurrence matrix. Each word in this matrix is represented by
a vector containing the summed co-occurrence frequencies (often referred to as
elements, or features) of the target word with the other words falling in the window.
This resulted in a large matrix, which they then reduced through selection of
the most frequent element in each vector. Words with similar vectors, to use a
hypothetical example, say, research and study, may have vectors such as Xresearch =
(69, 35, 80…), Xstudy = (60, 29, 90…), specifying that these words would be located
close to each other in semantic space. In contrast, words with less similar vectors,
for example, research and culture, Xresearch = (69, 35, 80…), Xculture = (34, 59,
10…), would be more distant from each other (see Figure 4). Very high-frequency
words (mostly function words) usually will have very high co-occurrence values
with all the words in the corpus, and therefore, to reduce their influence, Shaoul
and Westbury normalized each vector by dividing its elements by the orthographic
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frequency of the target word. Thus, the index of semantic neighborhood for a word
that is produced in HiDEx does not covary with orthographic frequency.

Finally, Shaoul and Westbury used the word vectors themselves to compute
contextual similarity. To do this, they computed the mean distance between the
vectors of a word and the words comprising its semantic neighborhood. To do this,
Shaoul and Westbury used a multiple of the standard deviation of the distances
between a word’s vector and vectors for each of its semantic neighbors to compute
a threshold, and then they used this threshold as a cutoff, with the number of
semantic neighbors that fell within this threshold determining the word’s semantic
neighborhood size (NCount).

To briefly explain this final aspect of the semantic neighborhood definition pro-
cedure, Shaoul and Westbury then identified a set of word pairs that co-occurred at
least once in the corpus. Then, 5%–10% of the total number of pairs (constituting
billions of word pairs) were randomly selected, and the distances between each
selected word pair (usually represented as the cosines of the angles between the
vectors representing the words) were then calculated to obtain a representative
measure of the standard deviation of all distances, and in turn, Shaol and Westbury
used this to define a threshold of neighborhood membership (i.e., which words are,
and which words are not, considered semantic neighbors of the target word in ques-
tion). The neighborhood membership threshold was set at 1.5 SD below the mean
distance (approximately 6.7% of the average distance between any two words).
Since most words have a weak or no relationship, this cutoff point ensures that a
neighbor is counted as part of a word’s neighborhood only if it is one of the closest
6.7% of the large number of the randomly selected pairs. Due to the thresholded
nature of the neighborhood specification, some proportion of a word’s co- occur-
rence neighbors will not be categorized as semantic neighbors, and in this way, the
number of semantic neighbors a particular word has will vary, with some words
having more semantic neighbors than others, and some words even having none.

After obtaining a measure of a word’s semantic neighborhood in HiDEx, a
measure can then be obtained called the average radius of co-occurrence (ARC),
which is the average cosine or distance between a target word and all its semantic
neighbors within the threshold (see Figure 5). Since ARC is an average distance
measure, it reflects how close (or distant) a word’s semantic neighbors are, and to
this extent, ARC indexes semantic neighborhood density (SND). A word that has
more close semantic neighbors is more similar to its neighbors in terms of contex-
tual usage (i.e., they appear quite frequently in similar contexts). A word that has
more distant neighbors indicates that this word has a less frequent contextual usage
to its neighbors. In this way, ARC captures and represents the average similarity of
a word to its co-occurrence neighbors that fall inside its neighborhood threshold.
The resulting ARC value ranges from 0 to 1, where 0 indicates no similarity and
1 indicates maximal similarity (with no negative values since frequencies of co-
occurrence cannot be negative). Words that have neighbors that are more similar to
them have higher ARC values. When a word has no neighbors (as a consequence
of the thresholded neighborhood), the word is assigned an ARC value that reflects
the distance between the word and its closest neighbor (the first co-occurrence
neighbor outside the threshold). In sum, in line with Shaol and Westbury (2006,
2010a), the ARC values are an index of a word’s SND, and the influence of SND
on word identification during normal reading is our focus in this paper.
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Figure 5. A two-dimensional visualization of the neighborhood membership threshold. The
words tanker and winch in this example have three semantic neighbors (based on Shaoul &
Westbury, 2010a). The semantic neighbors are close to tanker, whereas the semantic neighbors
are distant from winch. Thus, tanker has a higher average radius of co-occurrence value than
winch.

Summary

To summarize, the distributional-based view of semantics assumes that a word’s
meaning can be captured from its distribution in large samples of text by analyzing
the context (e.g., neighboring words) in which the word occurs. Words that share
a set of words with which they commonly co-occur are also assumed to have
similar meaning. Many distributional semantic models were developed to represent
semantic similarity between words in terms of spatial proximity of the words in
a spatial representation of meaning (i.e., sematic space). Semantic space has a
large number of dimensions with points (vectors) that represent the location of
the words in the space. The position of a word vector in relation to the positions
of other word vectors in the space indicates the extent to which some aspects
of meaning are shared among the words. Particularly, it was discussed that the
distance between the vectors reflects how similar their meanings are. Words that
are more related in their meanings tend to cluster closer together in semantic
space, whereas words that are semantically less related are more distant from each
other in this space. It was also discussed that some mathematical and statistical
techniques are implemented in the distributional semantic models such as HAL and
HiDEx to arrive at semantic representations and the semantic similarity between
words. The next section will be devoted to discussing some empirical findings of
the effect of co-occurrence-based semantic neighborhoods and semantic SND in
lexical processing.

EMPIRICAL STUDIES ON THE EFFECTS OF SND

Several studies have been conducted to examine the language-based SND effects
in lexical processing; these studies varied in terms of the specific SND measures
used to define semantic neighborhoods and the type of behavioral tasks used in
their experiments. To reiterate, the current article will use the term dense semantic
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neighborhood words to refer to words whose semantic neighbors are close and,
thus, semantically similar to them in semantic space, and will use the term sparse
semantic neighborhood words to refer to words whose semantic neighbors are dis-
tant and, thus, semantically different from them in semantic space. Generally, the
findings from many studies produced convergent evidence that denser semantic
neighborhood words were responded to faster than sparser semantic neighbor-
hood words in tasks that rely on the familiarity of the presented words to make
responses such as lexical decision tasks1 (e.g., Buchanan et al., 2001; Shaoul &
Westbury, 2010a). On the contrary, the findings about the SND effects in tasks that
require excessive processing of the meaning2 of the presented words are mixed,
with some findings indicating a facilitatory effect (Siakaluk, Buchanan, & West-
bury, 2003) while other findings showing an inhibitory effect (Shaoul & Westbury,
2010a), and still other findings demonstrating a null effect of SND (Yap, Pexman,
Wellsby, Hargreaves, & Huff, 2012; Yap, Tan, Pexman, & Hargreaves, 2011). An
example of such tasks is the semantic categorization task whereby participants are
asked to make responses as to whether some presented visual words are concrete
or nonconcrete (living or nonliving; or animal or nonanimal), as quickly and as
accurately as they can.

In this section, some of these studies will be reviewed; the review will focus
on the studies that used a co-occurrence-based definition of semantic neighbor-
hoods, with limited reference to the findings of the associational-based SND ef-
fects. This section will discuss the findings of the earlier studies conducted on the
co-occurrence-based SND effects, and then the review will turn to describing the
findings of the most recent studies that explored the SND effects. This will be
followed by a discussion of Shaoul and Westbury’s (2010a) study in which they
used the SND measures derived from their model (HiDEx). In so doing, the consis-
tencies and inconsistencies between the findings of the studies will be highlighted,
mentioning the differences in the methodologies of the reviewed studies. Finally,
the section will discuss how the SND effects were interpreted in the context of
visual word recognition models.

One of the earliest and most influential studies that explored the SND effects
was conducted by Buchanan et al. (2001). Buchanan et al. conducted a series of
experiments in which they examined the effects of semantic neighborhood size (i.e.,
the number of semantic neighbors) in lexical processing using lexical decision tasks
and naming tasks. One of the measures of semantic neighborhood size they used
was HAL’s semantic distance, which they defined as the mean distance between
the target word and its 10 closest semantic neighbors in semantic space. Using
hierarchal regression analyses, Buchanan et al. tested whether HAL’s semantic
distance could predict the speed with which words were recognized in lexical
decision tasks and naming tasks. They removed the role of other lexical variables
by entering them first before HAL’s semantic distance in the regression analyses in
the following order: log frequency, number of orthographic neighbors, word length,
number of semantic associates, and semantic distance. They found that HAL’s
semantic distance predicted lexical decision latencies and, to some extent, naming
latencies. The findings also showed that there was a positive partial correlation
(and a semi-partial correlation) between lexical decision latencies and semantic
distance, reflecting that as semantic distance decreased, the response latencies
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decreased as well. Thus, their finding in the first experiment clearly showed that
words with denser semantic neighborhoods (decreased semantic distance between
words and their respective closest semantic neighbors) resulted in quicker lexical
decision latencies compared to words with sparser semantic neighborhoods.

To assess whether the facilitatory SND effects were not due to a confounding
effect of a traditional semantic variable (imageability ratings), Buchanan et al.
(2001) included imageability in a hierarchal regression analysis. Their findings in-
dicated that semantic distance accounted for a unique variance in lexical decision
latencies even after partialing out the contribution of imageability. Then, Buchanan
et al. followed their regression analyses with some factorial experiments to further
examine the effects of semantic distance. They observed that words with large se-
mantic neighborhood size (i.e., words with low semantic distance) were responded
to faster than words with small semantic neighborhood size (i.e., words with high
semantic distance), even after partialing out the effect of imageability from their
analyses. They also found that the effect of semantic distance was larger for
low-frequency words as opposed to high-frequency words. That is, lexical de-
cision latencies for low-frequency words appeared to be influenced by semantic
distance more than those for high-frequency words. One limitation of Buchanan
et al.’s (2001) study as they themselves noted is that they used a cutoff point in
terms of a fixed number of the closest semantic neighbors (10 semantic neighbors
in their case) to define the semantic neighborhoods of the words they used in their
experiments. Instead, they recommended defining semantic neighborhoods by us-
ing a cutoff point in terms of distances and then counting the number of semantic ne
ighbors falling within the specified distance, which was how Shaoul and Westbury
(2006, 2010a) defined semantic neighborhoods in their HiDEx model.

To test whether the findings of Buchanan et al. (2001) could be extended to
other visual word recognition tasks, Siakaluk et al. (2003) used two types of se-
mantic categorization tasks that were assumed to be more sensitive to semantic
effects and that were thought to require accessing word meaning before making
responses to the presented stimuli (Forster & Shen, 1996). The two types of se-
mantic categorization tasks were a yes/no task in which participants were asked
to respond to both experimental words (nonanimals) and nonexperimental words
(animals) and a go/no-go task in which participants were asked to respond to only
experimental items. They also used Buchanan et al.’s (2001) definition of semantic
distance. Using a one-way analysis of variance to analyze the data of their first
experiment (a yes/no task), the results showed that the main effect of semantic
distance was just significant in the subject analysis and was not significant in the
item analysis. A post hoc analysis showed that the responses to low semantic dis-
tance (i.e., denser semantic neighborhood) words were 15 ms faster than responses
to matched high semantic distance (i.e., sparser semantic neighborhood) words.
To determine that the lack of effect of semantic distance was not due to another
semantic variable (subjective frequency, or familiarity), they entered subjective
frequency into a regression analysis, and found that semantic distance accounted
for only a modest amount of variance (3%) above and beyond subjective frequency.
Thus, the researchers concluded that this lack of semantic distance effect in their
first semantic categorization task was not due to a possible confounding variable
of subjective frequency.
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Instead, Siakaluk et al. hypothesized that this lack of semantic distance effect
in their first semantic categorization task might be due to the differences between
the responses made in lexical decision tasks and responses made in their yes/no
semantic categorization tasks. To explain, yes responses were expected to be made
to the experimental stimuli (words) in the case of lexical decision tasks, whereas no
responses were expected to be made to the experimental stimuli (animal-ness) in
the case of yes/no semantic categorization tasks. Thereby, Siakaluk et al. conducted
a second experiment in which they employed a go/no-go semantic categorization
task, which was assumed to require participants to make yes-like responses to only
the experimental stimuli similar to the responses made in lexical decision tasks
and, hence, increasing the chance of observing the effect of semantic distance. The
findings of their second experiment indicated that the effect of semantic distance
was significant; low semantic distance words (i.e., denser semantic neighborhood
words) were categorized 41 ms faster than words with high semantic distance (i.e.,
sparser semantic neighborhood words).

These two studies of Buchanan et al. (2001) and Siakaluk et al. (2003) so far
suggest that the effects of SND do appear in tasks that require making responses
based on the familiarity of the orthography of words (and accessing words’ mean-
ings to some extent) rather than in tasks that require deep semantic processing
that does not necessarily reflect processes taking place in lexical processing dur-
ing normal reading. This observation is supported by the findings of other more
recent studies that replicated Buchanan et al.’s (2001) facilitatory effect of SND
on lexical decision latencies using different measures of SND (Pexman, Harg-
reaves, Siakaluk, Bonder, & Pope, 2008; Shaoul & Westbury, 2010a; Yap et al.,
2011, 2012). However, the facilitatory SND effect on semantic decision latencies
found by Siakaluk et al. (2003) could not be replicated later. The findings of the
SND effects on semantic tasks are inconsistent, with some researchers observ-
ing an inhibitory effect (Shaoul & Westbury, 2010a) and others demonstrating a
nonsignificant effect (Pexman et al., 2008; Yap et al., 2011, 2012).

These above-cited studies used different measures of SND. For example, Pex-
man et al. (2008) found that the number of semantic neighbors derived from co-
occurrence information in a high dimensional semantic space (Durda, Buchanan,
& Caron, 2006) significantly predicted only the lexical decision latencies, but not
the semantic categorization latencies. This finding was later replicated by Yap et al.
(2011) and Yap et al. (2012) using different measures of co-occurrence-based se-
mantic neighborhoods. Yap et al. (2011) used the mean cosine similarity between
a target word and its closest 5,000 neighbors in a high dimensional space as a
measure of SND, and Yap et al. (2012) used the ARC metric described in this
article. All these studies found that the effects of semantic neighborhoods were
only present in lexical decision tasks, with denser semantic neighborhood words
(i.e., words with semantic neighbors that are more similar to them) responded to
faster than words with sparser semantic neighborhoods.

Another piece of recent empirical evidence that showed the consistency of the
findings of the facilitatory SND effects on lexical decision latencies and the incon-
sistencies of the SND effects on semantic decision latencies is the study carried
out by Shaoul and Westbury (2010a). In particular, Shaoul and Westbury tested
whether HiDEx’s indices of SND could explain differences in lexical and semantic
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decision data better than the original HAL’s parameters (window size and weight-
ing scheme). When using inverse ramp as a weighting function and a window size
of 10 words behind and 0 or 5 words ahead, they reported that SND predicted re-
sponse latencies better than using the original HAL’s parameters of a linear ramp
weighting scheme and a 10-word window. Specifically, they demonstrated that
words with higher SND produced shorter lexical decision responses, consistent
with the findings of the previous studies (Buchanan et al., 2001; Pexman et al.,
2008; Yap et al., 2011, 2012). Shaoul and Westbury also investigated the SND ef-
fect in other tasks that required more extensive semantic processing. Specifically,
Shaoul and Westbury used two semantic decision tasks in which they asked par-
ticipants to make explicit semantic judgments about whether two words in a pair
were or were not related (yes/no semantic decision task), and to make responses
only to word pairs that were semantically related (a go/no-go task). They observed
an inhibitory effect of increased SND (i.e., increased SND resulted in longer deci-
sion latencies in both tasks), contrary to the facilitatory SND findings observed by
Siakaluk et al. (2003) in their semantic tasks. Recall that Siakaluk et al.’s semantic
tasks are slightly different from those of Shaoul and Westbury.

The inconsistency between Shaoul and Westbury’s findings and those of
Siakaluk et al.’s results can probably be attributed to differences in the types of
semantic decision tasks used in the two studies. Shaoul and Westbury’s decision
tasks involved judgments as to the semantic relatedness of sequentially presented
word pairs while Siakaluk et al.’s decision tasks involved judgments about single
words. Although Shaoul and Westbury’s task was not, strictly speaking, a seman-
tic priming lexical decision task, the format of presenting a target word to which
a response was required immediately after a preceding word is certainly a close
approximation to a priming paradigm. It is at least possible that the response laten-
cies in their experiments may have reflected the influence of the preceding word on
processing of the subsequent target word (see Moss & Tyler, 1995, for a review of
semantic priming effects). In addition, as Shaoul and Westbury themselves noted,
their decision latencies were much longer than those found in the other studies
employing semantic categorization tasks in which participants made responses
to single words (e.g., Binder, Westbury, McKiernan, Possing, & Medler, 2005;
Siakaluk et al., 2003). It is therefore possible that decision times in this study re-
flected post-lexical processes associated with decision formation. In addition, the
inconsistency could be ascribed to differences in the operationalization of SND
in the two studies. While Siakaluk et al. used the N closest words to define SND,
Shaoul and Westbury used the distance between a target word and all its semantic
neighbors within the threshold to defined SND. It seems likely that methodological
and SND operationalization differences caused the differing patterns of effects.

Broadly, on the basis of the complete body of research discussed above, it
appears that consistent and pronounced facilitatory SND effects are obtained in
tasks that tap into simple word identification processes rather than those that re-
quire extensive processing of the meaning of words. In all of these studies, the
researchers interpreted the facilitatory effects of SND within an interactive model
of word recognition in which all the (orthographic, phonological, and semantic)
levels are connected by bidirectional activation links (i.e., an interactive activation
based framework as per McClelland & Rumelhart, 1981). Such models assume
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feedforward and feedback activation between their distinct units that are dedicated
to processing orthography, phonology, and semantic information. These models
also assume interactivity between the units of processing in the sense that activa-
tion from one unit (or more) can affect the processing of other units. These models
explain the SND effects as follows: a target word with a denser semantic neigh-
borhood (i.e., the average similarity between the word and its neighbors is high)
will receive more activation from its close co-occurrence neighbors at the semantic
level, and the increased semantic activation is fed back from the semantic level
to the orthographic (word) level. Consequently, the orthographic representation of
the target word will be facilitated. This in turn results in speeded lexical decision
responses (e.g., Buchanan et al., 2001).

At this point, it is fair to mention Mirman and Magnuson’s (2008) study that was
often cited as providing a contrast to the facilitatory effect of the increased SND in
lexical decision tasks found in the above-reviewed studies. However, the findings of
Mirman and Magnuson’s study should be read with a caveat as the SND measures
used in their study were defined in terms of a feature-based measure rather than
a co-occurrence-based measure. Specifically, in their second experiment, Mirman
and Magnuson (2008) showed that a facilitatory effect could arise as a consequence
of distant (i.e., less similar) semantic neighbors rather than close (i.e., more similar)
semantic neighbors. In their study, near semantic neighbors slowed semantic and
lexical decision times while distant semantic neighbors speeded decision times.
Training an attractor dynamic network, Mirman and Magnuson studied the effect
of near and distant neighbors by examining the correlation between the number of
near and distant neighbors with errors in settling into a correct activity pattern of
semantic units for a concept. Their findings showed a strong positive correlation
with number of near neighbors (i.e., high number of near neighbors was linked to
making more settling errors), indicating an inhibitory effect of near neighbors. The
findings also revealed that there was no reliable correlation with the number of dis-
tant neighbors, except for a dip to the negative side (i.e., more distant neighbors was
associated with fewer errors), indicating a facilitatory effect of distant neighbors.
Interpreting their findings in terms of attractor dynamics, the researchers suggested
that distant neighbors are far away from the target word, creating a gravitational
gradient for faster settling into attractor basins, while near neighbors slowed the
settling process because their basins of attraction are closer to the target word’s
basin of attraction.

However, it should be noted that Mirman and Magnuson, in their second ex-
periment, defined near versus distant neighbors in terms of the cosine or distance
between the target’s semantic features (e.g., taste, color, function, etc.) and the se-
mantic features of other words in the corpus they used, rather than in terms of the
distance between the co-occurrence neighbors and their respective target words. As
mentioned earlier, the feature-based view of semantics defines semantic similarity
(and presumably semantic neighbors) as a function of shared semantic features,
while the distributional-based view defines semantic similarity in terms of co-
occurrence within similar contexts. For instance, movie and play are considered
semantic neighbors under the distributional view because they tend to occur within
similar semantic contexts, while they are not considered semantic neighbors un-
der the feature-based view because they do not share semantic features. Thus, the

https://doi.org/10.1017/S0142716417000583 Published online by Cambridge University Press

https://doi.org/10.1017/S0142716417000583


Applied Psycholinguistics 39:5 801
Al Farsi: Semantic neighborhood density effects

feature-based semantic similarity (i.e., how much a target word shares semantic
features with other words) is based on a different theoretical account than the distri-
butional hypothesis, and is therefore not synonymous with the semantic similarity
of co-occurrence neighbors. As such, feature-based SND does not speak directly
to co-occurrence-based SND, and consequently, the effect of semantic similarity
of neighbors, defined in terms of shared semantic features, found in Mirman and
Magnuson’s (2008) study, may not apply to the effect of semantic similarity of
neighbors as defined in terms of shared co-occurrence neighbors. Since the focus
of this article is on co-occurrence-based SND, Mirman and Magnuson’s findings
of SND effects may not be comparable to those findings of the studies that used
co-occurrence-based semantic representations to define semantic neighborhoods.
In addition, the researchers used features norms (McRae et al., 2005) that were
developed for only concrete words (i.e., Mirman and Magnuson’s stimuli were
only concrete words). However, co-occurrence-based SND has been computed for
both concrete and abstract words. It has been shown that the lexical processing
of concrete versus abstract words is not necessarily similar. For example, Dan-
guecan and Buchanan (2016) found that the SND effect (operationalized using
WINDSOR; Macdonald, 2013) were consistent for abstract words in comparison
to inconsistent SND effect for concrete words across different processing tasks
(lexical decision, sentence relatedness, and progressive demasking). As such, the
findings of Mirman and Magnuson are only limited to concrete words that have
been shown to have inconsistent (or lack of) SND effect compared to abstract
words (see Reilly & Desai, 2017).

While the focus of this article is on the co-occurrence-based SND, a brief re-
view of the findings pertaining to the associational-based SND is necessary in
order to compare both language-based definitions of SND and, hence, provide an
overview of how the language-based SND in general influences lexical processing.
Buchanan et al. (2001) investigated the effect of semantic neighborhood size as
defined by number of associates (Nelson et al., 1998) along with HAL’s semantic
distance, and found that the effect of the associational-based semantic neighbor-
hood size was facilitatory, however, and was weaker than the effect of semantic
distance they derived from HAL. This finding of Buchanan et al. was replicated
later by Yap et al. (2011), who found that the number of associates did not predict
response latencies in lexical decision and naming tasks. Other researchers found
a robust effect of semantic neighborhood size as defined by the number of asso-
ciates on lexical decision latencies (e.g., Dunãbeitia, Avileś, & Carreiras, 2008;
Locker, Simpson, & Yates, 2003, Yates, Locker, & Simpson, 2003). Particularly,
these studies found that words with larger semantic neighborhoods (large number
of associates) were responded to faster than words with smaller semantic neighbor-
hoods in lexical decision tasks (Dunãbeitia et al., 2008; Locker et al., 2003; Yates
et al., 2003), naming, progressive demasking, and sentence reading in Spanish
(Dunãbeitia et al., 2008). The study of Dunãbeitia et al. (2008) clearly indicated
that Spanish words with a high number of associates were read for a shorter time
than matched words with low number of associates as evident in gaze duration
(21 ms shorter) and total reading time (23 ms shorter). Thus, their study sug-
gests that semantic neighborhood effects may appear in early measures of lexical
processing (such as gaze duration), indicating that semantic neighborhoods, as
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defined by at least the associational-based models, influence lexical processing
during normal reading in Spanish.

In sum, the visual word recognition studies and, to some extent, eye movement
studies produced convergent evidence that words with denser semantic neighbor-
hoods (i.e., words with more similar semantic neighbors) are recognized faster
than words with sparser semantic neighborhoods (i.e., words with fewer similar
semantic neighbors) in tasks that depend on the familiarity of words to make re-
sponses (e.g., lexical decision tasks). The SND effects are less clear and have
proved inconsistent across studies that used tasks that require participants to do
excessive processing of the meaning of words before making responses (e.g., se-
mantic categorization tasks) due to the nature of such tasks as discussed in this
section. The facilitatory effect was explained within interactive models that assume
strengthened feedback from the semantic level to the orthographic level.

THEORETICAL IMPLICATIONS

The review of the SND effects presented in this article indicates that word mean-
ing, defined by the degree of semantic similarity between a given word and all its
semantic neighbors, can constrain unique word identification. The present review
also offers a characterization of semantic involvement in lexical identification. The
findings reviewed in this article suggest that a word’s semantic neighbors are more,
or less, active during lexical identification. As such, these findings theoretically
imply that the assumptions about semantic processing are similar to the assump-
tions about orthographic and phonological processing during lexical identification
in reading. To explain, orthographically, phonologically, and semantically simi-
lar candidates are activated along with the perceived target word during lexical
identification. In the case of this article, the findings suggest that a word’s or-
thographic representation (e.g., MOVIE) can activate multiple semantic neighbors
(e.g., game, theatre, cinema, etc.) within the semantic system during word identi-
fication in normal reading. The activation of semantic neighbors feeds back to the
word level within the period that the candidate set is being reduced via processes of
between-level activation and within-level inhibition. Therefore, it appears that the
SND characteristics (i.e., semantic information) of a word can be accessed before
the full identification of the word, and thus, can constrain the unique identification
of a word’s orthographic form.

The conclusions drawn from the findings of the reviewed studies in this article
are inconsistent with word identification models that assume that word meaning
does not influence lexical processing. For example, serial search models of word
recognition (e.g., Forster, 1976) assume that the meaning of a word can be accessed
only after the processing of its orthographic (or phonological) representation has
been completed, and a unique word has been identified and selected for further pro-
cessing. To briefly reiterate, under these models, when a target word is perceived,
the word is searched for in the orthographic file until a word in the orthographic file
matches the perceptual properties of the perceived word. At this point, the search
is terminated and a pointer in the orthographic file is used to check the properties
of the word in the orthographic file against those in the master file. If the properties
of the word in the orthographic file match the properties of the word in the master
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file, the word is successfully identified. Once a unique word has been identified,
semantic information associated with the identified word can then be retrieved.

Thus, serial search models assume that the meaning of a word cannot influ-
ence the processing of its orthographic representation. That is, these models pre-
dict that SND will influence a stage that is independent of the stage influenced
by the word-level variables (e.g., orthographic neighborhood size and word fre-
quency) in lexical processing (as per Sternberg, 1969). However, there was no
evidence in the reviewed findings that this was the case. The findings showed that
SND interacted with word-level variables, suggesting that SND and word-level
variables influenced a common processing stage.

The reviewed findings, nevertheless, are consistent with the interactive models
of word identification (e.g., McClelland & Rumelhart, 1981) that assume that ac-
tivation feeds forward from lower levels to higher levels shortly after processing
at the lower levels has begun. Activation also feeds back from the higher levels to
the lower levels. According to Stolz and Besner’s (1996) embellished interactive-
activation (IA) model (McClelland & Rumelhart, 1981), the visual information of
a perceived word partially activates the word unit corresponding to the target word
and, to a lesser extent, the word units corresponding to orthographically similar
words. Shortly after a word’s orthographic representation is activated at the word
level, activation from the word level feeds forward to the semantic level, activating
its semantic representation. The activation of the word’s semantic representation
feeds back to the word level, contributing to resolving the competition between or-
thographic competitors (those of the actual word and its orthographic neighbors).
Therefore, the embellished IA model predicts that SND and word-level variables
can influence a common stage of lexical processing. That is, a word’s semantic rep-
resentation can be accessed and can influence lexical processing before processing
at the word level has been completed. The facilitatory effects of increasing SND
can be accounted for by the embellished IA model. According to the embellished
IA model, the closely packed semantic neighbors will provide a greater amount
of activation at the semantic level. Therefore, a great amount of activation will
feed back from the semantic level to the word level, contributing to resolving the
competition between the orthographic neighbors at the word level. As such, high
SND can facilitate word identification.

As such, the findings of the reviewed studies clearly support a word identifi-
cation model such as the embellished IA model that assumes that orthographic
processing and word meaning processing are cascaded in time. That is, these find-
ings ultimately imply that in order that a lexical identification model provides
a comprehensive account of word identification, the model needs to integrate a
mechanism by which it explains the influence of the semantic characteristics of
words before the completion of unique word identification. This is exactly what
the embellished IA model was developed for.

Another fundamental question that remains to be addressed here concerns the
credibility of the reviewed findings in terms of informing our understanding of
the influence of word meaning in lexical identification during normal reading.
Recall that semantic representations in the present article were defined in terms
of semantic distributional models. To remind the reader, distributional semantic
models are theoretically based on the distributional hypothesis that postulates that
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two words that occur in similar contexts are considered semantically similar. Dis-
tributional semantic models have been used to model the meanings of words by
analyzing and comparing their distributional profiles in large-scale corpora of text.
The statistical distributions of words in text delineate some important aspects of
their meaning. This section will give a general discussion on the capability of
distributional semantic models to capture informative aspects of word meaning.

Distributional semantic models can potentially extract semantic information
from linguistic contexts (i.e., text data). Humans also learn word meaning from
extralinguistic contexts based on their perception and interactions with the ob-
jects in the world (de Vega, Graesser, & Glenberg, 2008). In other words, many
words are learned from past perceptual experiences (or circumstances) in which
the words were uttered (McRae et al., 2005). Therefore, both linguistic informa-
tion and sensorimotor information constitute important aspects of words’ semantic
representations. The results of many studies suggest that language captures and
encodes much perceptual information and that linguistic contexts can be used to
extract referential word meaning (Connell & Ramscar, 2001; Durda & Buchanan,
2008; Kintsch, 2007, 2008; Louwerse & Zwaan, 2009; Riordan & Jones, 2010). For
example, Riordan and Jones found that though distributional and featural models
tended to emphasize different aspects of word meaning, these two types of semantic
models encoded much redundant information about word meaning. Their findings
also suggest that children rely on perceptual cues about the referents of the words at
the early stages of learning their first language. As they gain more perceptual infor-
mation, children tend to rely on statistical cues (i.e., the distribution of words in the
language) to develop and refine semantic similarity relations between words. Thus,
such findings clearly indicate that co-occurrence vectors obtained from distribu-
tional semantic models contain an amount of information about the words they rep-
resent, including perceptually grounded information (Shaoul & Westbury, 2012).

The notion of semantic similarity used in distributional semantic models, though
it may seem broad, has been shown to be psychologically plausible. To explain,
human subjects appear to understand the concept of semantic similarity when they
are instructed to make judgments about the semantic similarity of word pairs (e.g.,
Miller & Charles, 1991). Moreover, many researchers have demonstrated that the
participants’ agreement (intersubject agreement) about the semantic similarity of
word pairs is very high (e.g., Miller & Charles, 1991; Rubenstein & Goodenough,
1965). Given that researchers in the area of word identification are interested in
investigating the psychological phenomena occurring in word identification, the
notion of semantic similarity in its broad meaning does not need to be further
specified in terms of conventional semantic relations (e.g., synonyms, antonyms,
hyponyms, etc.).

It should be noted that most research investigating SND during word identifi-
cation operationalizes SND using only word-based semantic models (e.g., HAL,
HiDEx, and WINDSOR). If SND is to be established as a psychologically relevant
construct and not an idiosyncratic measurement of a specific family of distribu-
tional semantic models, then SND derived from word-based models should be
validated using other families of distributional semantic models (sentence-based
and document-based models). Until now, the focus of research using sentence-
based models is on the compositional meaning rather than word meaning. As
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such, future studies examining the effect of SND should use multiple classes of
models to demonstrate the psychological relevance of this construct.

To sum up, distributional semantic models were found to successfully handle a
variety of semantic tasks, which highlights the importance of considering distribu-
tional data in modeling word meaning and the capability of this research field. Of
more theoretical interest to this article, distributional semantic models can poten-
tially capture informative aspects of word meaning (both linguistic and referential
meanings), and the broad notion of semantic similarity adopted in these models
has been shown to be psychologically plausible.

CONCLUSION

The findings of the studies reported in this article demonstrate that SND (i.e., a
semantic variable), as at least defined by word-based distributional models, plays
a role in the lexical processing of the word. These findings give credence to the
assumption that a word’s semantic representation can be accessed and can influ-
ence lexical processing prior to the completion of unique word identification. The
findings can be simply explained by the notion of semantic feedback assumed in
Stolz and Besner’s (1996) embellished IA model of lexical identification (Mc-
Clelland & Rumelhart, 1981). In addition, the findings also provide evidence for
the psychological validity of the corpus-based distributional semantic similarity
measure as capturing some informative aspects of word meaning. Accordingly, a
comprehensive model of word identification should consider providing a mech-
anism by which it explains how the meaning of a word can influence the unique
identification of its orthographic (or phonological) form.
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NOTES
1. In a lexical decision task, human participants are asked to make yes/no responses as to

whether some presented visual stimuli constitute words or nonwords, as quickly and
as accurately as possible.

2. Excessive meaning processing in the sense that participants are asked to do some deep
analysis of the meaning of the presented words, an analysis that does not normally
take place in silent reading tasks in which the meanings of words are automatically
extracted without asking participants to make a deep analysis of the meanings of the
presented words.
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