
VON NEUMANN'S MANUSCRIPT ON INDUCTIVE 
LIMITS OF REGULAR RINGS 

ISRAEL HALPERIN 

1. Introduction. It is now known (3) that if 9Î is a regular rank ring, 
then the rank function can be extended to the matrix ring $ln in such a way that 
R(a) = R(a 0 n) ; here, a is an arbitrary element of 9î, a ® n is the n X n 
diagonal matrix with a for each entry on the diagonal, and R denotes rank in 3Î 
and also in 9îw. It is also known (2) that every regular rank ring has a rank-
metric completion which is again a regular rank ring. Thus von Neumann's 
procedure of forming inductive limits applies to an arbitrary regular rank ring 
9Î ; one begins with an arbitrary factor sequence \L = (tit) and constructs first 
the matrix ring $tt for each t £ M, then the inductive limit 9îM, then the com
pletion (9îM)". 

In a manuscript written in 1936-37, J. von Neumann proved the following 
two theorems for the case when 9î is a division ring {skew-field) : 

THEOREM 1. Jf JU and y are factor sequences, then the rings (9îM)* and (9?7)
A are 

isomorphic. 

THEOREM 2. If \± is a factor sequence and e T* Ois an idempotent in (9ÎM) *, then 
the rings e((9îM) *)e and (9îM)A are isomorphic. 

Throughout this note, isomorphism means ring isomorphism. 
Von Neumann's proof of Theorems 1 and 2 (for the case of a division ring) 

has not been published previously although an abstract appeared in (5). The 
present note will give a detailed exposition of von Neumann's proof ; however, 
the writer has freely changed the arrangement and notation, has made minor 
alterations in the argument, and has inserted the Lemmas 3 and 4 and the 
Remarks 1 and 2 below. Theorems 1 and 2 will be proved here for every 
regular rank ring dt with unit for which 9Î* is irreducible (then necessarily 9Î* is 
an irreducible, discrete or continuous rank ring). 

2. Preliminaries. An infinite sequence of integers \x = (nt) will be called a 
factor sequence if 

(i) »i > 1, 
(ii) for each i > 1: ni+i = kt nt for some integer kt > 1, 

(iii) fit —» °° when i —» œ . 
/x will be called complete if also every integer m > 1 is a divisor of some member 
of [i. 

Received August 15, 1966. 

477 

https://doi.org/10.4153/CJM-1968-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-045-0


478 ISRAEL HALPERIN 

If 9î is an arbitrary (associative) ring, then the matrix ring 3?w, the product 
A <g> q, the mapping <j)kn,n- 9î« —* 9î/fcW and the inductive limit 

dtn = H m (9îWt-, <t>kini,m) 

—> 

are defined as in (1 ). If n is a member of a factor sequence M and A 6 $Rn, we 
shall write A(ix) to denote the element in 9îM determined by A (that is, the 
equivalence class of A). 

If M is a subsequence of a factor sequence 7, the rule A(n) —» -4 (7) clearly 
determines an isomorphism of 9îM onto 9î7. Thus 9?M and 8î7 are isomorphic 
whenever /z and 7 possess a common infinite subsequence, hence, whenever: 
each member of ju is a divisor of some member of 7 and conversely each member 
of 7 is a divisor of some member of /*, in particular, whenever both /x and 7 are 
complete. 

If 9Î is a regular rank ring, as defined in (4), then each 9îw is a regular rank 
ring with a rank function which is an extension to $tn of the rank function of 9î 
(see 3) ; with respect to this rank function, each <t>kn,n is rank preserving and 9îM 

is a regular rank ring. As shown in (2), 9îM has a metric completion, denoted 
(9îM) "I which is a complete regular rank ring. If 8Î has a unit element, then so do 
all dln, 9Î/*» a n d (9W\ and we may suppose that all rank functions are normal
ized by the condition R(l) = 1. We shall, without fear of ambiguity, use the 
same le t ter^ to denote the different rank functions. 

3. Outline of the proof. In §4, we shall prove the following four lemmas 
(9? will denote a regular rank ring with unit and 0 will denote an arbitrary real 
number satisfying 0 < 0 < 1): 

LEMMA 1. Suppose that /z = (n%) and p = (pi) are factor sequences satisfying 

n\ n2 n{ ni+\ 

lim & = 0, 

then there exists an idempotent e € (9£M)~ with R(e) = 0 and an isomorphism of 

LEMMA 2. If /* = (w*) is a factor sequence, there exists a subsequence 7 of \x, 
say 7 = (Wj), and a complete sequence p — (pf) such that 

mi m2 mt mi+i 

and lim — - — 0. 
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LEMMA 3. 

(i) If 9î is irreducible and complete in the rank metric, then 9î is an irreducible, 
discrete or continuous rank ring, 

(ii) dl" is irreducible if and only if 9? has the property: 
(P) iffis an idempotent inland R(f) < R(l — f),then 

supxmR(fx(l -f)) = R(f). 

(iii) IfWis irreducible (in particular, if 9î is any division ring, more generally 
any irreducible, discrete or continuous rank ring) and fi is a factor sequence, then 
(9îM) " is an irreducible continuous rank ring. 

LEMMA 4. Suppose that dt is an irreducible, discrete or continuous rank ring. Then 
(i) If f is an idempotent in dt with R(f) = J, then 9î is isomorphic to (/W)2 

(this is the ring of 2 X 2 matrices with entries infdtf). 
(ii) If fi and f2 are idempotents of equal rank, then h dlfi and / 2 9t/*2 are 

isomorphic. 

Assuming that these four lemmas have been established, we consider a 
factor sequence JJL and an arbitrary regular rank ring 9? with unit for which 9t* 
is an irreducible ring (hence, by Lemma 3(iii), (9îM)A is an irreducible continuous 
ring) and we argue as follows: 

1. For some idempotent / in (9îM)A with R(J) = J, the ring /((3îM)A)/ is 
isomorphic to (dtp)* for some (and hence every) complete factor sequence p 
(use Lemma 2 and Lemma 1 with 6 — \). 

2. Since (9îM)" is an irreducible continuous ring, and R(f) = §, (9îM)~ is 
isomorphic to (/((9î/,)A)/)2 (use Lemma 4(i)) and hence to ((9î^)")2. This 
implies that Theorem 1 holds for such 9Î. 

3. lie 9^ 0, 1, then (dip)" is isomorphic to/((9?M)")/for some idempotent/in 
(SRM)A with R(f) = R(e) (use Lemma 2 and Lemma 1 with 6 = R(e)). Then 
e((dl^)")e is isomorphic to/((9îM)")/ (use Lemma 4(ii)), hence to (dip)", hence to 
(din)" (use Theorem 1). This proves Theorem 2 for the case e 9e 1 (when e = 1, 
Theorem 2 holds trivially). 

4. Proofs of Lemmas 1, 2, 3, 4. We shall prove these lemmas in reverse 
order. 

Proof of Lemma 4(i). The principal right ideals /9? and (1 —/)9î form a 
homogeneous basis of order 2 in the lattice of all principal right ideals of 9?. 
The conclusion of Lemma 4(i) now follows from (4, Part II, Lemma 3.6). 

Proof of Lemma 4(ii). The principal right ideals / i 9Î and / 2 9Î have equal 
dimension, and hence are perspective. The proof of (4, Part II, Theorem 
15.3(a) ) now shows that there exist idempotents e,f'm 9? such that 

eVl = h SR, m = f* SR, and ef = e,fe= f. 
Then 

(eh)(fh) = e(f2f)fi = efh = eh = / i , 
Cf/l) (*/2) = /</l «)/2 = /*/« = / /2 = / l . 
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Hence/i 9î/i and/2 &Î/2 are isomorphic by (4, Part II, Lemma 15.8 ). 

Proof of Lemma 3(i). This is shown in (4, Part II, Theorem 18.1). 

Proof of Lemma 3(ii). Suppose first that property (P) holds in dt. If 9?^ is not 
irreducible, then in 9î~ there exists some central idempotent e 9^ 0, 1. By (2, 
Proof of Theorem 3.7(h) ) there exists an idempotent / G 9Î such that 
R(f — e) < R(e)/5. Then there exists an x in 9î such that at least one of the 
following relations holds: 

R(fx(l-f)) >|i?(f) or R((l-f)xf)>iR(l-f). 

Therefore, either 

R(ex(l - e)) > R(fx(l - / ) ) - R((J - e)x(l - / ) ) - R(ex((l - / ) - (1 - e))) 

> |i?(f) - 2i?(f -e)> h{R(e) -5R(f-e)}> 0, 

or (similar calculation) R((l — e)xe) > 0. This contradicts the fact that 
ex(l — e) = 0 = (1 — e)xe (since e is in the centre of 9?A). This shows that 9îA 

must be irreducible. 
Next suppose that 9Î~ is irreducible, and t h a t / is an idempotent in 9? such 

that R(f) < R(l — / ) . T h e n / is an idempotent in the irreducible, discrete or 
continuous rank ring 9?^. I t follows from (4, Part I, Theorem 6.9(iii)) that 
R(f) = R(g) for some idempotent g such that g = (1 — /)g( l — / ) . Then, as in 
the proof of Lemma 4(ii) above, there exist idempotents p, a in 9T such that 

pdt = /5R, g$R = g% and £g = p, qp = q. 

Thenfp(l - f)gq = fpgq = fpq = £. Therefore 

R(D > R(fPd - / ) ) > * ( # ( ! -f)g<L) = R(P) = R(j)-

Hence R{fx{\ — / ) ) = R(J) if x = p £ 9Î". Since x = lim xw for suitable 
xw G 9?, it follows that 

supxedtR(fx(l - / ) ) = J^(/). 

Proof of Lemma 3(iii). If (9îM)" is irreducible, then by Lemma 3(i) above, it is 
an irreducible, discrete or continuous rank ring. The first alternative (discrete) 
cannot hold since (9îM)* contains an infinite sequence of orthogonal non-zero 
idempotents. 

To show that (9îM)" is irreducible, it is sufficient, by Lemma 3(h), to show 
that 9?M has property (P). Hence it is sufficient to show that for each integer n, 
dtn has property (P). 

Since (9ÎJ" is isomorphic to (9î*)n, it is sufficient to show that (9î*)w is 
irreducible; but it is easy to see that @n is irreducible whenever © is an 
irreducible regular ring. This completes the proof of Lemma 3(hi). 
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Proof of Lemma 2. Set o-(l) = 1, mi = na(i) = nh and £i = 1. To prove 
Lemma 2 it is clearly sufficient to define <r(i), mt = wa«) and pu for i > 1, to 
satisfy the conditions: 

cr(i) > v(i — 1), 

ipi-i is a divisor of pu 

l(h^_e)>Ê±_e>o. 
2 W<_i / w< 

For this purpose we use induction on i. First we choose a(i) so large that 

a(i) > a(i - 1) and — < ^ ~ ( ^ 1 - - 0] . 

Then we choose w^ = w^), and &i to be the smallest integer for which 
ipi-ihi/nii — 6 > Oand£* = ipt^iht. This completes the proof of Lemma 2. 

Proof of Lemma 1. We define the symbol [g, k], for positive integers g < k, to 
denote the k X k matrix which has 1 for (t, /)-entry (1 < / < g) and 0 for all 
other entries. 

We set go = pu k0 = nu and for i > 1: g{ = pi+i/pu kf = ni+i/ni. We 
remark that every integer £ > 1 has a unique representation of the form 

t = 1 + a0 + « i£ i + . . . + at pi + . . . with 0 < at < gt for i > 0 

and we define \f/(t) to be the integer 

\f/(t) = 1 + a0 + ai ni + . . . + oLiUi + 

I t is clear that for each i > 1, \f/ maps the set of integers 1 < / < pt injec-
tively onto a certain subset of the set ! . < / < » * . 

If now yl G 9îpt- for some i > 1, we define \p(A) to be the following nt X w* 
matrix: if 1 < s, t < £*, then ^(^4) shall have the (s, t)-entry of A for its 
(\[/(s), ^(O)-entry and $(A) shall have 0 for all other entries. 

I t is easy to see that if A G9îp i , then 

R(HA)) = %tR(A), HA ® gi) = HA) ® \g„ k,], 

and if j > h > i, then 

and 

R((($(A ®gi®...® ^ - I ) ) ( M ) - (HA ® ^ ® . . . ® ^ - I ) ) ( M ) ) 

https://doi.org/10.4153/CJM-1968-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-045-0


482 ISRAEL HALPERIN 

Hence, when j —> » , ($(A ® g< ® . . . ® gj-i))(ii) converges to a limit in 

($RMr> t o b e denoted by ^ ( 4 ) . 
I t is clear that R(4<(A)) = 6R(A). I t is also clear that $(A) = ^(5) if 

A(p) = B{p). Hence we may define a mapping <j>\ $lp —> (9îM)A by the rule 
4>{x) = ^(A) if A(p) = x G SRp. Since J preserves differences and products, it 
follows that 0 is a ring homomorphism. SinceR(<j)(x)) = 0R(x) and 6 < oo , it 
follows that the mapping <j> has a unique extension (to be denoted again by 0) 
which is a ring isomorphism of (dtp) " onto a subring © of (9tM) ". 

To complete the proof of Lemma 1 we need only show that © = e((9îM)*)e 
for some idempotent e in (9îM) " satisfying i?(e) = 0. 

We define ei to be the matrix [g0, k0] and for i > 1 we define ei+\ by induction 
to satisfy 

el+i = et ® [gfJ fej. 

It is easy to see that each et is an indempotent, R(el) = pi/nu and if j > i» 
then 

i?(ei(M)-e,(M)) = ^ - J . 
71 i 71 j 

Hence e*(/i) is convergent in (9îM)A to some idempotent e such that 
eei(fi) = ei(n)e = e for alH, i£(e) = l i m ^ ^ i ? ^ ) = 6, e = \j/(A) if /I is the unit 
matrix in 9?p., 

<p(x) = e(f>(x) = <j>{x)e for all x G (9?p)^. 

Thus © C £((9ÎM) ")̂ > a n d ^ is sufficient to show that 0(9îp) is dense in e(($RM) ")e. 
Suppose that y G (9îM)"- For any e > 0 we can choose i so large that 

R(y — A(n)) < e/4 for some A G 9în,-. We can also suppose that i is so large 
that-RfoOz) - e) < e/4. Then 

jR(eye - ( ^ , 4 ^ ) 0 ) ) < R(eye - e^ye^)) 

+ R(et(n)yei(n) - (et Aet)(v)) 
< 2R(ei(v) - e) + R(y - A{p)) < fe + Je = fe. 

On the other hand, et Aet is of the form $(B) for some B G 9?Pî and 

i?((e,^)0") - 4>(B(p))) < ( ^ - A R ( B ) < ^ - 6 
\7li / Tli 

= 22( * , (M) - e) < e/4. 

Thus i^(^e — 4>(B(p))) < e. This shows that 4>(dtp) is dense in £((9îM)*)e and 
completes the proof of Lemma 1. 

5. Remarks. 

Remark 1. Each 9îw, 9îM, and (9?M)~ is a left 9?-module and a right 3î-module. 
In Lemma 1 above, the ring e((9W)e is also a left and right 9?-module and the 
ring isomorphism of (9îp)" onto ^((9îM)")e is also an isomorphism of left and 
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right 3î-modules. But it is not known whether in Theorem 1 the ring iso
morphism can be chosen to be an isomorphism of left and right 3£-modules. 

Remark 2. Suppose that 9î is a finite or countably infinite direct sum of 
regular rank rings with unit, say 9î = 2* © 9Î*. Suppose that i£(l) = 1 for the 
unit in each dtt and let 0 < dt < 1 be such that 2* dt = 1. For each x = 2 , 0 xt 

in dt let R(x) = 2tdtR(xt). Then 9î is a regular rank ring with unit, 
8T = 2 , 0 (9ltyt and (%y = 2 , © ((&,)„)*. It follows that Theorem 1 holds 
for this ring 9î if each (9î<)A is irreducible. It is not known whether Theorem 1 
holds for every regular rank ring with unit. 

Added in proof (February 8, 1968). Theorems 1 and 2 for the case 9Î is a 
division ring are treated in the paper by B. Chernishov, CR-rings and their 
isomorphisms, Siberian Math. J., 7 (1966), 1168-1193. 
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