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Abstract. We define a set of ‘cell modules’ for the extended affine Hecke algebra of type 4
which are parametrised by SL,(C)-conjugacy classes of pairs (s, N), where s € SL,(C) is semi-
simple and N is a nilpotent element of the Lie algebra which has at most two Jordan blocks
and satisfies Ad(s) - N = ¢>N. When ¢> # —1, each of these has irreducible head, and the irre-
ducible representations of the affine Hecke algebra so obtained are precisely those which fac-
tor through its Temperley—Lieb quotient. When ¢> = —1, the above remarks apply to a subset
of the cell modules. Using our work on the cellular nature of those quotients, we are able to
obtain complete information on the decomposition of the cell modules in all cases, even when
q is a root of unity. They turn out to be multiplicity free, and the composition factors may be
precisely described in terms of a partial order on the pairs (s, N). These results give explicit
formulae for the dimensions of the irreducibles. Assuming our modules are identified with
the ‘standard modules’ earlier defined by Bernstein—Zelevinski, Kazhdan—Lusztig and others,
our results may be interpreted as the determination of certain Kazhdan—Lusztig polynomials.
[This has now been proved and will appear in a subsequent work of the authors.]
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Introduction

The extended affine Hecke algebra I-AI;’(q) of type 4 has a quotient which is analogous
to the Temperley—Lieb algebra, in that it is obtained from ﬁz(q) by taking the quo-
tient by the principal ideal generated by the central idempotent in any Hecke
subalgebra of type A, (which is 6-dimensional) which corresponds to the trivial
representation of that subalgebra. Denote this quotient by TAL/;;(q) (the ‘extended
affine Temperley—Lieb algebra’). The results of [GL2] may be applied to classify all
irreducible representations of T'L%(q) for arbitrary values of the parameter ¢, includ-
ing arbitrary roots of unity. This provides a class of irreducible representations
for ﬁg(q), and for these, we are able to give explicit dimension formulae, as well as
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decomposition numbers for the ‘cell modules’ which are involved in their construc-
tion. Although it is not proved here, there is strong evidence that our cell modules
coincide with the ‘standard modules’ defined earlier by several authors (see below).

Our parametrisation of both the cell modules and the irreducibles may be stated
(see Theorem (5.5) below) in terms of semisimple-nilpotent pairs (s, N) associated
with SL,(C), just as in the general ‘standard module’ theory of Lusztig, Ginzburg
and Kazhdan and Lusztig (see [CG], [KL] or [X]) or of Bernstein—Zelevinsky (cf.
[R], [BZ], [Z2]), except that we deal only with the case where N is a two-step nilpotent
matrix (i.e. it has just 1 or 2 Jordan blocks). If we assume that our cell modules coin-
cide with either of the standard modules above, then given the results of [Z2] and [R]
or [G], our results also give explicit computations of some Kazhdan—Lusztig
polynomials.

One of the results we prove in this work is that in the Grothendieck ring of finite
dimensional representations of the algebras 7%(n) of [GL2], each irreducible repre-
sentation is a linear combination of the ‘cell modules’ (analogous to Weyl modules),
in which the nonzero coefficients are 1, extending the results of [GL, §5]. We also dis-
cuss consequences of this result for the algebras ﬁi’(q).

1. Dramatis Personae; Various Algebras of ‘Type A’

Let R be a commutative ring and let ¢ be an invertible element of R. The affine
Hecke algebra of type 4,_; over R, denoted H(q), has generators T7, ..., T,, which
generate HY(g) as associative algebra subject to the relations
ITy=T;T; ifli—jl=2 and ({ij}#{l, n},
TiTi T = Ty TiTip (1.1
and
(Ti—g)(Ti+q7") =0, (1.2)
where in (1.1) the indices are taken mod 7.
The algebra H{(q) corresponds to the affine Weyl group W* of type A4,_;, which is
a Coxeter group; it has an R-basis consisting of elements {7, w € W*}, where if
w=rj,..., ", 1s a reduced expression for w € W* (the simple reflections in W* being
denoted ri,...,1), Ty =Ty, ..., T,
The extended affine Hecke algebra (cf. [X]), which we denote H%(g) may be def-
ined by
H(q) = RIQ) ©x Hi(9). (1.3)
where Q is the cyclic group of order n, thought of as the group of automorphisms of
H{(q) which permute the 7; cyclically, and the tensor product is ‘twisted’ in the sense
that if w;, w, € Q and hy, h, € H(gq), we have
0wl Q@h-wyQ hy :(1)1602®(U2_1(/’11)h2. (1.4)

The algebra ﬁg(q) corresponds to the extension of the finite Weyl group by the lattice
of weights in the same sense that H((q) corresponds to W< Clearly, Hi(q) is
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a subalgebra of Iilv,;‘(q). Let W(i) be the subgroup of W* which is generated by the sim-
ple reflections r; and riyy (i=1,2,..., n).NThen W(i) = Sym; (the symmetric group
of degree 3, which has order 6), and in H%(g) we have elements

E = Z g1, (=1,...,n—1), (1.5)
weW(i)

where £(w) is the length function in the Coxeter group W*. These satisfy
E =0+ +¢ +q)E:.
As in [GL2], we define the Temperley—Lieb quotient of H(q) as
TL,(q) = H,(@)/1,(9), (1.6)

where [1/(g) is the ideal of H!(g) generated by E\, ..., E, (of course only one E; is nee-
ded, since they are conjugate in H%(q)).

We refer to the extended analogue vag(q) of TLi(q) as the extended affine
Temperley—Lieb algebra of type A,_1. Tt is defined as

TLy(q) = Hi(q)/Ti(q). (17)
where fg(q) is the ideal of ﬁ:‘;(q) generated by Ey, ..., E,.

(1.8) LEMMA. We have
TLi(q) = RIQ) ®r TLYq).

Proof. First, observe that since /(g) is stable under Q (it is generated by an
Q-stable set), it follows that INg(q) = R[Q] ®r I4(q). Since the right side is an ideal, it
contains /!(¢g) and it is clearly the smallest ideal satisfying this condition. The lemma
follows. ]

It follows from (L§) thatif wewritec =0 Q® 1 € m(q), where o is a (fixed) gen-
erator of Q, then T'L%(q) is generated by TL{(q) together with . But TL}(q) has the
following presentation described in [GL2, (2.9)]:

(fio-- o Tulfify = fifi = 1if |k —jI = 2 and (i, )) # (1, n),

TL(q) =\ Jifirrfi—fi=finn —fin =0 (=1,....n), (1.9)
f7 =0,
where 6 = —(¢ + ¢~ ') and the indices in the second relation are taken modulo 7.
The element ¢ above defies an automorphism of TL{(g):
afic ' =fiy (i=1,...,n), (1.10)

where the index 7 is again taken mod n.

It follows that f@(q) is generated by {o, f1, ..., f,} subject to the relations (1.9),
(1.10) and ¢" = 1.

Now in addition to the algebras fLVZ(q) and TLi(q), we shall require the
algebraT“(n) which was defined in [GL2, (2.7)] and referred to there (loc. cit.) as
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‘the affine Temperley—Lieb algebra’. This is defined as an algebra of diagrams or,
more accurately, as the algebra of morphisms: n—> n in the category T (see
[GL2, (2.5)]) and TL!(qg) is identified [GL2, (2.9)] as the subalgebra of T“(n) spanned
by the ‘nonmonic diagrams: n —> n of even rank’, together with the identity. It also
occurs independently in the work of Green [Gr] and Fan and Green [FG]. We shall
need to make some use of the diagrammatic description in this work; details may be
found in [GL2], but a good approximation to the picture is obtained if one thinks of
affine diagrams as arcs drawn on the surface of a cylinder joining 2n marked points,
n on each circle component of the boundary, in pairs. The arcs must not intersect,
and diagrams are multiplied by concatenation in the usual way. These diagrams
are represented by periodic diagrams drawn between two horizontal lines, each dia-
gram being determined by the ‘fundamental rectangle’, from which the cylinder is
obtained by identifying vertical edges. In this interpretation, the generators f; of
TLi(q) are represented by the diagrams shown in Figure 1.

The rank of such a diagram is the smallest number of intersections of arcs with the
left vertical edge.

Now T“(n) contains the ‘twist’ T = 1, which has rank 1, and 7%(n) is generated by
{TLi(g), t}; however it is not true that 7%(n) = R[(r)] ® TL!(g). Instead we have

(1.11) LEMMA. Let A be the augmentation ideal (i.e. the ideal generated by
SisSas oo fu) of TLY(q) € T4(n), so that TLi(q) = R1 @ A. Then 1*A = At*> = A and
we have T%(n) = R[(t)] ® A & Ar.

Proof. This may be found in [Gr, §2]. We sketch it here for the sake of our
exposition. Since 7“(n) is generated as associative algebra by T'L%(g) and 7, the result
follows easily if we know that At> = 1>4 = A. To see this latter fact, observe that

AT =T =fifse fum € A
Conjugating this relation by 7, we see that fjr> and 7°f; are both in 4 for any i,
whence 41> € 4,1°A C A. Similarly, 724 € 4 and At=>A (use the mirror image
of the above relation: 12f] = f,_ 1172 = fo_1fu2 - - -f1).
Thus 4 = (1724)t> C A1?, whence we have equality in each case. ]

1 2 n-1 n 1 1+1
—® +— r . ¢ » ]
1
: | N\ .
| I
1 ] I I
| i
T\ [’. . :
| | ] [-\ 1
1 2 n-1 n i i+l
fun —n fin —n, 1<i<n-1

Figure 1.
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(1.12) COROLLARY. We have T%(n) = TL%(q) & I, where I = @R’ & At.

This is immediate from (1.10).

The algebra Tf]\:jz(q) is not a quotient of 7%(n), but the representation theory of
m(q) may be discussed via that of 7'L{(g), which in turn comes from that of
T%(n), whose representations are completely described in [GL2]. Note also that there
is an obvious surjective homomorphism ¢: vag(q) — TLi(g), defined by o ® u—
T, (for o € Q and u € TLi(q)).

2. Representations

We shall determine all irreducible representations of f\g(q) using the classification
of those of TL{(q) determined in [GL2]. In this section, we assume that R is an alge-
braically closed field.

To discuss the representations of fig(q) >~ C[Q] ® TLi(g), let us first recall the
description given in [GL2, (2.9.1)] of the representations of TL!(g). As was recalled
above, TL(q) may be realised as an algebra spanned by diagrams on the surface of a
cylinder or ‘affine diagrams o: n —> n’ (see [GL2, (1.3), (1.4), (2.5)]). In general an
affine diagram o: t —> n(z, n € Z.>) is depicted by its restriction to the fundamental
rectangle, which has ¢ marked points on the bottom edge, n on the top, and distinct
points joined in pairs by non-intersecting arcs (after the vertical edges are identified).
If « has no ‘through arcs’, i.e. if top (resp. bottom) vertices are joined to top (resp.
bottom) vertices, then o may also have a certain number, y() say, of arcs which wrap
around the cylinder. This description of TL{(q) realises TLi(q) as a subalgebra of
T%(n), whose representation theory is discussed in [GL2]. The irreducible representa-
tions of T'L}(q) turn out to be largely restrictions of those of T“(n).

We recall the definition of the cell modules for 7°“(n), which by restriction are also
modules for TL{(q) (cf. [GL2, (2.6)]). Let t € 7>, 0 < t < n, with t = n (mod 2) and
let z be any invertible element of R. Let W/ _(n) be the R-module with basis all monic
diagrams (see [GL2, (1.6)]; this means all 7 arcs from the bottom vertices are through
arcs), then W, .(n) = W', (n)/V, where V'is the subspace generated by elements of the
form at, — za (¢ > 0) or at; — (z + z~ o (1 = 0), where 7, is the ‘z-twist’ depicted in
Figure 2.

The module W, .(n) has an R-basis consisting of ‘standard diagrams’ (see [GL2,
Definition (1.7)]), which are monic diagrams whose through strings all lie inside
the fundamental rectangle. It is easily seen, by counting these, that

dim W,..(n) = ( L) (2.1)
2

The space W, .(n) is a T“(n)-module, with the algebra acting by concatenating dia-
grams t —>n (€ W, .(n)) with a: n— n (€ TLi(g)) according to the description in
[GL2, (2.1), (2.6)]. We write ax* u for this action. There is a bilinear map
¢, .t Wi-(n) x W, -1(n)— R which ([GL2, (2.7)]) is invariant in the sense
that ¢, (o u,v) = ¢, (1, o* xv), (u,v € W, .(n), o« € T%(n)) where o* denotes the
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Figure 2.

reflection of o in a horizontal line. Note that o+ o* is an anti-automorphism of
T“(n), which preserves TL!(g). If R is a field, the irreducible 7“(n)-modules have a
simple description ([GL2, (2.8)]). In order to give it, we shall require a certain set
of parameters. For convenience, we collect its definition, as well as some others
which we shall require, here.

(2.2) DEFINITION. Let A%(n)" be the set
ANt ={(t,2) | teZso, 0<t<n n—teZ; ze R*}.
Define A“(n)* by
A(n)Tif ¢ £ —1,
Ay = | N e F 2.2.1)
A\, £9)) if ¢* = —1.

Define the equivalence relation ~ on A%(n)" as that which identifies (0, z) and (0, z~!)
for all z € R*, and write

A" = AY(n)* )~ and A%n)°’ = A(n)/ ~ . (2.2.2)
Next, let A%(n) be the set

Ay = ({2 €A | 27 =1 i 0= 0L, 0" (0.0)7) if ¢ # —1.
Tl eAN )| £ -1 ift=0} ifg>=-1,

where i denotes a fixed element of R such that > = —1. Define the equivalence rela-
tion ~ on A“(n) by (t,z) ~(¢,2Z), ifand only if t=¢ =nort=1¢ and 2 = £z or
(t,2) ~ (¢, 2. Define

A%(n) = A“(n) ] ~ . (2.2.3)

Let = be the equivalence relation on A%(n) which is given by (¢, z) = (¢, ), if and
only if (¢,z) ~ ({,Z)ort=¢ =nort=1 and 2z = +z. Define

A%(n) = A(n)/= . (2.2.4)
We denote the elements of this set by (;,Vz), where (¢, z) € A%(n).
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It is clear that A/"(vn) is in natural bijection with the quotient of A%(n) obtained by
identifying (0, i)t and (0, /)~.

(2.2A) Remark. We shall see shortly that the sets A%n)° and A%n), respectively,
parametrise the isomorphism classes of irreducible modules for the algebras 7%(n)
and TL%(q). We often abuse notation by lifting the parameters to A“(n), assuming the
appropriate identifications.

THEOREM ([GL2, (2.8)]). Let R be an algebraically closed field and maintain the
above notation. For (t,z) € A°(n)°, L,-(n):= W, .(n)/rad ¢, . is an irreducible T"(n)
module. All irreducible T“(n) modules are realised thus, and if (t|, z1) % (2, z2), then
Ltl:Zl(n) ;,’f-’ sz,Zz(n)~

The main facts concerning the restrictions of the above modules to TL{(q) are as
follows.

(2.3) THEOREM. Assume that R is an algebraically closed field.

(i) As TLi(q)-modules, W, .(n) = W, (n) if t =n (any y,z) or if y+z =0 (any 1).
(i) If't#0, the module L,.(n) := W,.(n)/rad ¢, . is an irreducible TL;(q)-module.
(iii) If t =0 and 2> # —1, then Ly _.(n) (defined as above) is irreducible as a TL!(q)-
module.

(iv) Ift=0andz* = —1, then Wy .(n) is the direct sum of two submodules Wot_(n) and
Wy..(n) which are spanned respectively by diagrams of even and odd rank.

V) Ift=0,z> = —1 and ¢* # —1 then Woi,z(n) have nonisomorphic irreducible heads
Ly .(n).

(Vi) The set A%(n) defined in (2.2.3) parametrises the irreducible TL%(q)-modules, with
each one occurring once.

Proof. First observe that W, .(n) is one-dimensional, spanned by the identity
diagram n — n. Its structure as 7“%(n) module is therefore clearly independent of n
(all f; act trivially). Next, since T'L!(g) is spanned by certain diagrams of even rank, it
follows that for any diagram o € T'L(¢g) and standard diagram u: t — n, we have
(by [GL2, (1.5) (4)])

rank (oo pu) = rank () (mod?2).

Consider the linear transformation U: W, .(n) — W, .(n) defined by U(n) =
(=D)k Wy for any standard diagram u: r—> n. We shall show that for « e
TLi(q), we have

2 U = Ul (o ). (232)

where () denotes the action of o on the module W, ,(n) (any y € R*). This will show
that U intertwines the actions of TL%(g) on W,.(n) and W, _.(n). Assume first that

t#0.
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To prove (2.3.2), observe that both sides are 0 unless « o u is monic, in which case
copu=y orﬁ" for some k € 7. It follows that the left side of (2.3.2) is equal to
(=1)"™&#zk - The right side is U(—z2)F i) = (—2)F(=1)™™* ¥ /. But by (2.3.1) we
have rank (¢') + k =2 rank p(mod 2), whence the result.

If t = 0, the proof is the same, with z replaced by z + z~!. Notice that the proof is
valid even if z 4+ z7! =0 (i.e. z2 = —1). This proves (i).

The proofs of (ii) and (iii) follow the arguments of [GL1, (2.6)]. For (iv) note that
if =0 and z> = —1 the splitting of W, . takes place because z +z~! =0, so that
nonstandard monic diagrams u: 0 — n are all zero. Hence, operation by TL{(q)
never effects a parity change in the rank. The rest of the proof is a straightforward
adaptation of [GL2, (2.8), (2.9.1)]. O

(2.4) PROPOSITION. Let o be the automorphism of TLi(q) defined by
o(f)) =fin (i=1,2,...,n), where the index i is taken mod n. For any representation p
of TL!(q) define the representation p® by p® = p o w. Then for any pair (t, z) € A%(n),
we have an isomorphism of TL%(q) modules W, .(n)” = W, .(n).

Proof. The vector space W, .(n) is a module for the algebra 7(n) D TLi(q). But
t, € T%n) satisfies 7,/;t,; ! = fir1 (all i(mod n)). Hence, the linear transformation of
W, -(n) which is defined by the action of 7, on the 7%(n) module W, .(n) intertwines
the TL%(g) modules W, .(n) and W, .(n)”. O

We henceforth take R to be an algebraically closed field.

(2.5) COROLLARY. (i) All irreducible TL(q)-modules M satisfy M® = M, except if
¢ #—1 and M = L(fi(n).

(i1) The automorphism o interchanges the irreducible modules L(j)f[(n).

Proof. (i) In this case M = L, .(n) for some (¢, z) € A“(n)/{(0, +i)}. Since W, .(n) is
invariant (up to isomorphism) under w and L, .(n) is its head, the result is immediate.

(i) The map pu+> 1, o u clearly interchanges the modules W(fi, and hence inter-
changes their heads, which are the irreducible modules Lgfi(n). O

The next result is required to complete the classification of the irreducible TAL/g(q)
modules. The authors wish to thank R.B. Howlett for discussions concerning its proof.

(2.6) THEOREM. Let B be an associative algebra with identity over the algebraically
closed field R. Suppose a is an automorphism of B of finite order n, assume that n is not
divisible by the characteristic of R, and let A be the associative algebra A = R[{c)] ® B,
where (o) is the cyclic group generated by & and the tensor product is ‘twisted’ in
the sense of (1.4). Let M be a finite-dimensional irreducible A module and let My C M be
an irreducible (B-) submodule of the restriction of M from A to B. Let r be the smallest
positive integer such that the twist MS = My as B module; clearly r divides n. Then

M2M &M, & - ®c'M,

where o is identified with the element c ® 1 € A.
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Proof. Write p: A — Endg(M) and p;: B — EndR(M‘{H) (i=1,2,...,r) for the
representations associated with the corresponding modules. We shall soon identify
these with matrix representations. Observe first that there is a positive integer k such
that

MM &M, @ ®c M. (2.6.1)

This is because if the sum M| 4+ oM, + --- 4+ ¢’ M, is direct (this is trivial for i = 0)
then ¢™*'M, N (M| + oM, + ---+6'M;) is either 0 or ¢'+' M, since ¢'t' M, is an
irreducible B module. In the latter case, (2.6.1) follows immediately, while in the for-
mer, we repeat the argument replacing i by i 4+ 1, proving (2.6.1) by induction.

Clearly, since M{,cMy, ..., d 'Miisa complete list of nonisomorphic o-twists of
the B module M, and M is invariant under o, r divides k, so that we may write
k= hr (2.6.2)

for some positive integer 4. It follows that
MM &M - OM &M, - SoM, ®--- &' M, (2.6.3)

where the multiplicity of each summand ¢'~' M| is .
We shall consider the matrix representation of 4 on M with respect to a basis
adapted to the decomposition (2.6.3). Note first that one obtains a basis of ¢'M,

by applying ¢ to a basis of ¢/~ !M, for i=1,2,...,r — 1. Hence, we may assume
that for any element b € B, we have
pi1(b) = piaba™") (be B,i=1,2,....r—1). (2.6.4)

Moreover since M‘l’" =~ M, as B module, there is an element U € Endz(M ), unique
up to multiplication by a scalar, such that

p(6"ba™" YU = Up,(b) forall b e B. (2.6.5)
It follows that p(b) acts on M with matrix of block diagonal form as depicted
below
[ p1(b) |
p1(b)
p(b) = p1(b) : (2.6.6)

pa(D)

p.(0) |

where the number of blocks p;(b), each of which is square of size m =dim My, is h
(foreachj=1,...,r).

We now consider the shape of the block matrix p(a) = [p;(0)] (1 <i,j <k = hr).
In view of the decomposition (2.6.3), we shall consider larger submatrices, consisting
of h? of the blocks p;i(0) of size m. These will generally be denoted Dy, (1 < p, g < 1);
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they are square of size im. In order to describe them, for any positive integer i such
that 1 < i<k, write

i=q@h+r@), where 0 <r(i)) <h, 0<qg(i)<r—1. (2.6.7)

Since p(cha=") = p(a)p(b)p(c") for any element b € B, we may use (2.6.6), (2.6.4)
and (2.6.5) to deduce the shape of p(o). In terms of the block decomposition of
p(0) as explained above, the result is, in the notation of (2.6.7)

Poiy+2(D)pif(0) = pi(0)pyjy1(D) for 1 <ij<k, (2.6.7)
where
pr41(b) = p(aba~") = Up,(b)U™",

U being the intertwining matrix of (2.6.5).
It follows by Schur’s Lemma that p;(¢) = 0 unless either

@ ¢ +2=¢q()+1,or
(b) ¢()=0and g()) =r—1.

In case (a), i.e. ¢(i) + 1 = q()), we have p;(0) = A;l,,, where Z; € R and I, is the
identity matrix of size m. In case (b), i.e. when ¢(j) =0 and ¢(i) = r — 1, we have
pi(0) = 2;U. Hence the block decomposition of p(g) is of the form

0 D
0 0 D,
plo) = , (2.6.8)
0 Dr—l
UD, 0 0

where D; is a block matrix each of whose blocks is of the form A7, (A € R) fori <r,
and is the block diagonal matrix each of whose (diagonal) blocks is equal to U.
We next show that there is a matrix

T,
T,
T— , (2.6.9)
Trfl
T,

such that the submatrices T; are block matrices whose blocks are of the form A7,
(2 € R) and such that fori=1,2,...,r—1, T,'D,Tijrl1 is diagonal, as is T,.D,Tl_l.

To see that such a matrix exists, observe that by taking powers of the matrix
(2.6.8), one sees that (D1D2...D,)% = I},,, whence, since the characteristic of R does
not divide n, D1D, ... D, is diagonalisable by a matrix T, of the required form. Then
take T, = T\Dy, T3 = T,D», ..., T, = T,_;D,_,. It is then easily verified that T satis-
fies the stated conditions.
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Now the linear transformation T of M commutes with p(b) for each b € B and
Tp(c)T~! is of the form (2.6.8) with each block D; diagonal. It follows that if M’
is the subspace of M consisting of the sum of the first, (&+ 1)st,
(2h + Dst, ..., ((r — Dh + 1)st summands of the decomposition (2.6.3) of M, then
the subspace T - M’ is invariant under p(B) and p(o). Since A is generated by B
and o, T- M is invariant under p(A), whence by irreducibility, M = M’, which
proves (2.6). O

(2.7) COROLLARY. Suppose B, A, o and M are as in the statement of (2.6). If the
restriction of M from A to B contains a -invariant irreducible B submodule M, then
M = M. Conversely, every a-invariant irreducible B module M| extends to an irre-
ducible A module.

Proof. The first statement is just the case r = 1 of (2.6). For the converse, observe
that since M{ = M), there is a transformation t € Endz(M)) such that for all ele-
ments b € B, p,(cha™") = tp,(b)r~', where p, is the representation of B on M. If we
take p(g) = At where 4 € R is such that (11)" =idy,,, this defines a representation p
of A on M, which extends p,. O

Using (2.6), the classification of the distinct irreducible Y:ng(q) modules is now
straightforward.

(2.8) THEOREM. Assume that R is an algebraically closed field of characteristic not
dividing n. The distinct irreducible TL%(q)-modules are classified as follows. For each
element (t, z) € A%(n) (see (2.2.4)) and each element { € R such that " = z7" there is an
irreducible TL4(q)-module L -((). As a space, L, »({) is L, -(n); the subalgebra TL:(q)
acts asin (2.3), while a = o ® 1 (see (1.8)) acts as t,{. The only isomorphisms among the
simple vaf;(q) modules L, () are as follows: L, () 2 L) ((zy™!) for any z, y € R*,
L5(0) = L, —(=0) for any (t,2) € A%(n), L)) = L .\(() for any z € R*, and
when ¢* # —1, L.y({) 2 Lo.i)(=O(=2 Lo,—(—0)) for all { € R satisfying {" = 1.
Proof. Let M be an irreducible TL%(q) module. Theorem (2.6) clearly applies,
with 4 = TL”(q) and B = TL}(q). Suppose first that the restriction of M to T'L}(q)
contains an irreducible TL!(g)-module M, = L, .(n) with (¢, z) # (0, i) as a sub-
module. Then by (2.5)(1), M{ = M, and we may apply (2.7) to deduce that M is an
extension of M to 4. By Schur’s Lemma, ¢ = @ ® 1 must act on L, as a scalar
multiple {1, of 7,. But 7 acts on W, . as the scalar z/, since for any diagram p: t — n
we have t/ut;" = pu by periodicity. Since ¢” = 1, we must have {"z' =1 as stated.
Thus M is the m(q) module L - ({) of the statement.
To determine the coincidences among these modules, note that the restriction of
~(g) to TL;(q) is the irreducible TL;(¢)-module L,.(n). By (2.3)(vi), this implies
that the equivalence class (¢, z) of (¢, z) in A%(n) is determined by M. If 6 is an inter-
twining map for L -)({) and L »({’), then since 6 intertwines the TL(g) actions, we
have (¢, z) = (¢, z'). Moreover, by irreducibility, @ must be a scalar multiple of the
map U described in the proof of (2.3). Hence, we may assume, without loss of
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generality, that 0 = U. If t = n, 1, acts on L, -)(n) as multiplication by z. Hence, the
equation 0(¢ - u) = ¢ - O(u) shows that {z={Z. If t <n, then t=0 or t=¢ and

7z = —z. Consider the latter case first. Then

0 1) = 0ty ) = L=D" gy =0 0 = (=)™,

whence (' = —{. If t =0, Wy -(n) = Wy _-1(n), so Lo -(0) = Ly .-1(0).

The remaining case is when M contains a TL%(q) submodule L* isomorphic to
L y+» which occurs only when ¢> # —1. In this case, M also has a TL¢(g) submodule
isomorphic to L -, viz. ¢ - L, and o2 . LT =~ L*. Hence we are in the situation of
(2.6) with r = 2. Application of (2.6) yields that ¢ acts on M = L, ,+ @ L ;- via the
matrix

0 /11‘[,,
;QT,, 0

for some scalars 41, 1, € R.
The condition ¢" = 1 implies that (/1112)% = 1. Write M = L (41, 42) for this
module. We shall show

(2.8.1). The modules L (41, A2) and L ;(2y, 25) are isomorphic as ﬁ%(q) modules if
and only if 12, = A} 5.

To see how the theorem follows from (2.8.1), observe that each isomorphism class
of modules L (41, A2) contains a module L ;({, {), with {" = 1, because since R is
algebraically closed, there is an element { € R such that Zz = A145. In the notation of
the statement, L ({, {) = L,({), and by (2.8.1), L ({) = L,5(—={) and there are
no other coincidences among the L ;({).

It therefore remains only to prove (2.8.1). First suppose that 0: L (41, 42) —
L.)(4;,75) is an intertwining map. Then as above, since 0(a> - 1) = o° - O(u) for
1t € L,(n) and since 6> acts on L (41, 42) as 414212, we have Aj 4, = A} 15. Conver-
sely, suppose this condition holds. Write x = 41/4] = 25/4. Let 0: L y(n) —
Lo.5(n) have matrix description analogous to those above given by

I 0
0_|:O KI]’

where I denotes the identity matrix. It is then easily checked that 0 intertwines
L.»(21, 22) and L (4}, 45). This proves (2.8.1) and completes the proof of the
theorem. O

(2.9) DEFINITION. Define the sets A%(n)* and A%(n) by

At ={l(1,2), J e A'n)" x R* | " =271},
A‘n) ={[(1,2),J € A“n) x R* | (" = ="'},

Let ~ be the equivalence relation on A%(n)* defined by
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() [0, 2), = [(n, ), C2y7'],
i) [(r.2). Q=1 —2). =],

(iii) [0, 2), I~ [0, 27, ],
@iv) [0, 5, J~[(0, i), —=].

Define the quotient sets A‘(n)™® and A‘n)’ by A%nm)™ = A"/~ and
An)° = A(n)/ =

Notice that in (2.9), the relation (iv) is a consequence of (ii) and (iii), since if z = i,
27l = —z. Also, if t = n, (ii) follows from (i). We shall write (¢, z, {) for the ~ class of
[(z, 2), C].

It is clear that in analogy with the irreducible modules L, .({) defined in the state-
ment of (2.8), we may define, for any triple [(z, 2), {] € A(n)", the cell module (or
‘standard module’) W, .({) for the algebra TAL/g(q) by stipulating that as space
W, .(() = W,_., the cell module for T%(n), while ¢ acts as (z,,.

(2.10) COROLLARY. The set A%n)° defined in (2.9) parametrises the isomorphism
classes of those cell modules for TLi(q) on which the canonical invariant bilinear form
(cf. [GL2, Definition (2.6) (2), p.188.]) does not vanish and, hence, parametrises the
irreducible modules. Moreover, for elements [(t, z), (] and [(¢, ), ('] € A*(n)*,

Wt,:(:) = Wt’,z’(é/) — Ltz(C) = Lt’,z’(c/) — [(Zv Z)’ C] ~ [(l/v Z/)v C/]

Proof. For [(t, 2), {] € A%(n), W, -({) is the TL4(g) module which is the extension
of the TLi(q) module W,.(n) to TALJg(q), on which ¢ acts as {1,. This is the ‘cell
module’ corresponding to [(z, z), {], and the top quotient L, .({) is the corresponding
irreducible. It is nonzero if and only if [(¢, z), {] € A’(n). All the statements of the
corollary follow from (2.8). O

3. Multiplicities and Decomposition Numbers

The irreducible m(q)-modules classified in (2.8) are all quotients of the spaces
W, .(n) by the radical of the form ¢, ., with ¢ = w ® 1 acting as a scalar multiple
of 7,. In this section we begin our discussion of the composition factors of the cell
modules.

As in (2.10), Denote by W, .({) the m(q) module in which ¢ acts as described in
(2.8) (for the irreducibles), i.e. as {t,. These are the ‘cell modules’ for fii(q). We
remark that for convenience, we shall take the triples [(7, z), {] to be in A%(n)™ rather
than in the quotient set A°(n)*°. This means that there are isomorphisms among the
modules W, .({) which induce the isomorphisms among the irreducible vag(q) mod-
ules which are referred to in the statement (2.8). In particular, we have isomorphisms
for each of the cases of the equivalence relation defined in (2.9).

W)= W,_.(={) forallzeR",
Wy, -(0) = Wn,y(CZy_l) for all y, z € R*,
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Wo(0) = Wy 1(() forall z e R,
Wo.(0) = Wo(=() for any { with {" =1,

and similarly for the irreducible heads of these modules.
_As above, for any pair 7,z € A‘(n)t we denote by (7, z) its equivalence class in
A(n).

The dimensions of the W, .(n) are known (see (2.1) above), so the problem of
determining the dimensions of the irreducible modules is equivalent to that of deter-
mining the multiplicities of the irreducibles in the ‘cell modules’ W, .({). We address
this question now. In rough terms, we shall show that with few exceptions, the
expression for L, .({) as a linear combination of cell modules in the Grothendieck
group I'(TL4(qg)) is similar to that for L,.(n) as a linear combination of the
Wi, (n) in T(T*(n).

As in [GL2], the key is the existence of certain homomorphisms between cell
modules.

(3.1) PROPOSITION. Let (t,z) and (s,y) be elements of A“(n) which satisfy the
conditions of [GL2, 3.4)]; ie. s=t+20— ({£=>0), 22=¢', y=zq7" (s0 that
2 =q'). Assume that (t,z) # (0, %i). Let 0: Wi ,(n) — W, .(n) be the T“(n)-homo-
morphism defined in [GL2, loc. cit.]. Then 0 is a homomorphism of vag(q) modules.
W (0) = W, -(0) for any { which satisfies (" = z~" [note that the assumptions imply
that z7' = y™].

Proof. By the construction in [GL2, (3.5)], 6 intertwines the 7%(n) actions on
Wi ,(n) and W, .(n). Hence for u € W, ,(n), we have

0(ty - 1) = o - O().

Multiplying both sides by {, we see that 0 intertwines the action of o on W; ,(0)
and on W, .({). Since TL%(q) is generated by ¢ and TLi(g), the result follows. [

(3.2) THEOREM. Let (t, z) €. Suppose that in the Grothendieck group T'(T“(n)), we
have

Wimy= Y myiL,(n). (3.2.1)
(s.0)er ()’

Then for any { satisfying " = z7', we have, in F(TALJZ(q))
Wi =Y myLip(©. (3.2.2)

(s.0)er )

Proof. Given (3.2.1), there is a composition series of W, .(n) as T%(n)-module, with
the irreducible 7%(n) module L ,(n) occurring m,’} times. But by (2.8), the enveloping
algebra of ﬁé(q) acting on W, .({) is precisely that of the T“(n)-action. It follows from
this and (3.1) that the composition series of W, .(n) as a T“(n)-module is also a com-
position series for W, .({) as a ﬁé(q)—module, for any { with {" = z=; moreover the

subquotient Ly ,(n)isisomorphicto L, ,({) asa TL4(q)-module. The result follows. [
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We shall discuss the multiplicities #7277 in the next section, but to make use of our
knowledge of these, we prove

(3.3) LEMMA. Let [(t,2),{] € A%(n)*. Then [(¢,2), (] € A%(n)" satisfies [(t, z), {] ~
[(7,2),Q) if and only if (t,z)~(¢,Z) in An)*. That is, for any (appropriate) {,
[(t,2), (1 = [(¢, 2), (] in A%(n)* if and only if (t,z) = (¢, 2) in An)*.

Proof. Suppose [(t,z), {] = [(?, Z), {]. Then clearly t = ¢. If t = n, then using the
relation (2.9)(i), we see immediately that z=2z. If 0 < ¢ < n, then z/ = +z. But if

7 = —z, then { = —(, i.e. R has characteristic 2. But in that case, z/ = z. If t = 0 and
22 # —1, then 2/ = z*!, so that (¢, 2) ~ (¢, Z). Finally, if t = 0 and z = =+i, we again
have z/ = +i, which completes the proof. O

4. Multiplicities, Dimension Formulae and Combinatorics

In this section we take R to be an algebraically closed field of characteristic zero, with
¢ an invertible element of R. We begin by reviewing the results of [GL2] concerning
the multiplicities of irreducible 7“(n)-modules in the cell modules.

Recall (2.2.1) that A%n)*® = A%n)"/ ~ where (1,z) ~ (¢, Z/) if and only if =0
and 2/ = z*!', and similarly for A"(n)o. Then A%n)*® parametrises the cell modules
W, .(n) and A“(n)0 parametrises the distinct (isomorphism classes of) irreducible
T“(n) modules L, .(n), which correspond to those cell modules on which the canoni-
cal form does not vanish.

Let < be the partial order on A“(n) which is generated by the preorder < which
stipulates that (z, z) < (s, y) if

0<t<s<n s=t+20 (LeZ, £>0) 4.1a)
and

2= q‘(“"‘—)“' and y= zq"(“"")e for e(s, z) = £1. (4.1b)
Note that (4.1) implies that

92 =g and o=y (4.2a)
and

(t2)<(/,2)==(). (4.2b)

It suffices to verify (4.2b) when (¢, z) < (¢, '), in which case it follows easily from (4.1).
We note also that

(4.3) LEMMA. The partial order < on A%(n) induces a partial order, also denoted <,
on the set A(n)° = A(n)/ ~.

Proof. We must show that if (¢,z) ~ (7,z) in A’(n) and (¢,z) <(s,y), then
(,2) (s, »). It clearly suffices to take (7,z) =(0,z) and (¢,z) = (0,z7"). Then
(s, ¥) = (2¢, £1) in the notation of (4.1a and 4.1b) and an easy calculation using (4.1a
and 4.1b) shows that e(s, z7!) = —¢(s, z) yields a solution of the equations (4.1). []J
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The following result is proved in [GL2, Theorem 5.1].

(4.4) THEOREM. We have, in the Grothendieck ring T'(T%(n)), for any (t,z) €
Aa(l’l)+,
Wi(my= Y L. (4.4.1)

(5.0)eA(m)°
(1,2)=(s.7)

Thus the matrix expressing the cell modules in terms of the irreducibles in I'(7“(n))
is upper unitriangular, and has entries 0 or 1. Now if (¢, z) is confined to A%(n), the
relation (4.4.1) can clearly be inverted. The next result is a statement about the
inverse of the matrix of the partial order on A%n)’. It asserts that the inverse has
all entries equal to 0 or 1. We thank D. Kazhdan for the suggestion that Theorem
(4.5) might hold in general.

(4.5) THEOREM. We have, in the notation of (4.4),

Lt,z(n) = Z ”tv,’i Ws,y(n)
(5,0)eA(n)°
(#,2)=(s,)
where ny? =0 or £1.
Proof. If L,.(n) = W, .(n) there is nothing to prove. If not, then by [GL2, The-
orem (3.4)], there is a homomorphism of TL}(g)-modules

0: W ,(n) — W, .(n)
for some (s, y) such that (z,z) < (s, y) and we may assume (s, y) is minimal with
respect to this property, i.e. that (¢, z) < (s, y). Then 0 is injective (cf. [GL2, p. 214])
and the quotient Q = W, .(n)/im 0 has head L, .(n). By the argument given in [GL2,
pp214-215], the radical of Q (which is the radical of the form induced by ¢, ., on Q) is

either 0 or equal to Ly ,/(n), where (s', )') is the unique element of A"(n)0 such that
(t,z) < (s, ) and (s, ) # (s, ). Then in the Grothendieck ring I'(7%(n)), we have

Lt,z(n) = Wt,z(n) - W\',y(n) - LA",_V’(”)' (451)

Now arguing by (downward) induction in A“(n)o, the result follows for L, .(n)
from the corresponding equation for Ly ,(n), together with the properties of
(s.)) € A(n). O
(4.6) COROLLARY. (i) Every maximal chain between two elements of the poset
A“(n)o has the same number of elements.

(ii) In the notation of (4.5), we have n;} = (—=1)", where i is the number of links in a

maximal chain between (t, z) and (s, y) € A%(n).

This is proved by an easy refinement of the argument in the proof of (4.5) above.
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(4.7) DEFINITION. We say that (¢,z) and (¢, Z) € A“(n)o are in the same block if
L, ~(n) is a composition factor of W,.(n), or vice versa. Define blocks of A%(n)°
similarly.

Let us now interpret these results as they apply to the representation theory of the

algebra TLi(q).

(4.8) THEOREM. Let ﬁ%(q) be the Temperley-Lieb quotient of the affine Hecke
algebra of type A,_, (see (1.8)). For any element (1,z, ) € A*n)° (see (2.9)) we have

W)= Y, Ly© (4.8.1)

(s.)eN ()’
(t,2)=(s.y)

in the Grothendieck ring I'(TL%(q)) (see (2.8) and (2.10) for the definitions of these
modules).

The irreducibles Ly () occurring on the right side of (4.8.1) are all distinct (i.e. pair-
wise nonisomorphic). Thus the multiplicity of any irreducible module in a cell module is
0 or 1.

Proof. Equation (4.8.1) follows immediately from (3.2) and (4.4). If L, ,({) =
Ly »(0) then by (2.8), [(s, ), {]~[(s", ), {]. But by (3.3), this implies that (s, y) =
(s, ) in A%(n)°, which proves the statement. O

(4.9) COROLLARY. Two elements [(s, y), (] and [(s', V'), ('] of A%(n)° are in the same
block if and only if there is a triple [(t, z), {] such that [(s', y"), '] ~ [(t, 2), (], and (¢, z) is
connected to (s, y) in the partial order < on A“(n)o.

Proof. To say that two elements & = [(s, y), {] and &' = [(s/, ), {'] of A%(n)° are in
the same block is to say that there is a chain 8; =, J, ..., 6, = &' such that for each
i, the irreducible module Ls, is a composition factor of the cell module W, or vice
versa (cf. [GL1, (3.9)]). By Theorems (3.2) and (4.8), the implied equivalence relation
on triples is generated by a relation which preserves the third factor {. The result
follows. O

Combining (4.5) and (4.6), we also have
(4.10) THEOREM. Maintain the notation of (4.8). For any element [(t, z), (] € A%(n)°
(see (2.9)) we have
L= Y w0 (4.10.1)

(s.0)eA ()’
(1,2)=(s.y)

in the Grothendieck ring T’ (TAL/Z(q)), where ny? = (—1)" if i is the length of a maximal
chain in A(n)° from (t, ) to (s, p).
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The last three results may also be formulated in terms of the order relation which
< induces on A%n)".

(4.11) THEOREM. Let < be the partial order on Aa(n)o induced by the preorder <
defined by

(1,2,0)<((,2,0) & (t,2) <({,Z) in A‘n)".

If (t,z,0) < (¢,2,(), then there is an injective homomorphism of fZi(q) modules
Wy () —> W, (). The multiplicity of the irreducible module L, .({') in the cell
module W, .({) is one if (t,z,{) < (¢, 2, () and zero otherwise.

This is simply a restatement of (4.8). Of course this and the preceding statements
may be rephrased in terms of the representations of the extended affine Hecke alge-
bra, but we leave this to the next section.

5. Description in Terms of Semisimple-Nilpotent Pairs

Let G be the group SLy(C) and let & be the Lie algebra of G. When R = C, the
affine Hecke algebra may be realised as a convolution algebra (cf. [KL], [L1], [L2],
[Gi], [CG] or [X]), and there is consequently a theory of ‘standard modules’ for
the algebra T'L4(g) which classifies them by G-conjugacy classes of pairs (s, N) such
that Ad(g) - N = ¢°N, where s is a semisimple element of G and N is a nilpotent ele-
ment of & (notice that our algebra is a quotient of the affine Hecke algebra which
corresponds to the parameter ¢ in the usual notation). These modules ‘generically’
have top quotients which constitute a complete set of irreducible modules for ]/"Z%(q).
When ¢ is a root of unity, the picture is not so well understood (see, however [G]
and [A]). We show how our results may be expressed in these terms; in particular
our results give complete information on the irreducible modules and decomposition
numbers of the standard modules, for pairs (s, N), where N has at most two Jordan
blocks. Write Pt for the set of G-conjugacy classes of pairs (s, N) such that
Ad(g) - N = ¢*N as above.

(5.1) PROPOSITION. There is a natural bijection between the set A°(n)*™° of (2.9) and
the set P* of semisimple-nilpotent pairs described above, in which N has at most two
Jordan blocks.

Proof. Let t be any integer satisfying n = 2k + ¢, where k € Z and 0 < k < n/2.
Let J; denote the k x k (Jordan) matrix with zeros everywhere except on the super-
diagonal, where all entries are 1. Then each pair (s, N) such that Ad(g) - N = ¢*N and
N has at most two Jordan blocks is G-conjugate to one where

N:Nkz[J”k JJ (5.1.1)

and
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ap
ajqg™?
arqg™*
—2(n—k—1)
s = “g
ap
aq~?
aq™
i arg~2k=D |
(5.1.2)
where, since det s = 1, ay, ap € C satisfy

a’f*’ a12c = PR+ D) =) =2K—} (5.1.3)

Denote the element s of (5.1.2) by s(ay, az). It is easily verified that the ordered pair
(a1, ay) 1s uniquely determined by the G conjugacy class of the pair (s, V), except if
n = 2k, in which case a; and a; may be reversed; i.e. (s(a;, a2), Ng) is G conjugate
to (s(az, a1), N§). Hence

(5.1A). The set P of the statement is in bijection with the set of pairs {(s(ay, az), Ny)},
where 0 <2k <n, and ay,a; € C satisfy (5.1.3), modulo the equivalence of
(s(ay, az), N%) and (s(az, ay), N%).

Define variables A;, A, by
A = alazq*(”*z), Ay = alq*(”*k”). (5.1.4)
With this change of variables, Equation (5.1.3) becomes
A4l =1. (5.1.5)

We now have the following parametrisation of the relevant G-conjugacy classes of
pairs (s, V) in terms of solutions of Equation (5.1.5).

(5.1.6) LEMMA. For any t = n— 2k # 0, n, the G-conjugacy classes of pairs (s, N)
where N has Jordan blocks of size n — k, k, are in natural bijection with the solutions
(A1, A2) of Equation (5.1.5). If t = n, the classes are in bijection with the solutions A,
of equation A5 = 1, while if t = 0, the classes are in bijection with the solutions (A, Az)
of the Equation (5.1.5), modulo the equivalence relation =, which stipulates that
(41, A2) =~ (Ay, A1471).

Proof. Given a solution (A, 4;) of (5.1.5), Equations (5.1.4) determine unique
values of a;, a, which satisfy (5.1.3) and hence determine a class (s, N) of the required
type. Conversely, the class of (s, N) determines (a;, a;) uniquely unless =0, in
which case, (s, N) corresponds to both (a;, @3) and (a2, a;). Hence if ¢ # 0, both the
class of (s, N) and (a;, ay) are determined by (A4, 42) which is arbitrary, subject to

https://doi.org/10.1023/A:1019693505291 Published online by Cambridge University Press


https://doi.org/10.1023/A:1019693505291

192 J.J. GRAHAM AND G. I. LEHRER

(5.1.5). If t # 0, n, then distinct (a;, ap) determine distinct classes, proving the first
statement. If 1 = n, a, is irrelevant to the class, which is determined by a;, proving
the second statement.

An easy calculation shows that in the bijective correspondence which is defined by
(5.1.4) between solutions (aj, a;) of (5.1.3) and (4, A;) of (5.1.5), if (a1, ay) corre-
sponds to (4, 42), then (az, a;) corresponds to (41, A;45'q™"). Hence, if 1 =0,
the G-conjugacy of the pairs (s, N) corresponding to (a;, ay) and (a3, a;) is reflected
in the equivalence (41, 42) &~ (41, 41457 "). O

We shall next give an analogous description of A”(n)+0. Recall (2.9) that A"(n)+0 is
a quotient of the set A%(n)" of triples (7, z, {), where 1 = n — 2k for some integer k
such that 0 < k < 4 and z, { € R are such that {"z' = 1. Equivalently, if we write

B, =, B, =(z, (5.1.7)
then

BB, =1. (5.1.8)
In analogy with (5.1.6) we shall prove

(5.1.9) LEMMA. If't #0,n, the set A”(n)+0 of equivalence classes under ~ of triples
(t, z,0) are in bijection with the solutions (B, By) of (5.1.8). If t = n the equivalence
classes are in bijection with the solutions By of By = 1. If t = 0, the equivalence classes
of triples are in bijection with the solutions (B, B,) of Equations (5.1.7), modulo the
equivalence relation ~, which stipulates that (B, By) ~ (B, B1 By l).

Proof of (5.1.8). If t # 0, n, the only relation among the relevant triples is (2.9)(ii).
It follows that the ~ class of (7, z, {) is uniquely determined by (¢, {z), which may be
arbitrary, subject to (5.1.8). The first statement follows. If ¢t = n, the ~ class of (n, z, {)
depends only on B, = (z, which satisfies B = 1, which is the second statement.

If t = 0, the equivalence class of (0, z, {) consists of the four triples

{(07 z, ()v (07 2711 ()v (Ov -z, _é)v (Ov _Zils C)}

These all have the same value for B;, while the (two) possible values for B, are
By = {z and B, = z7!{ = B|B;!. This proves the third statement. ]

The proof of (5.1) is now complete, since Lemmas (5.1.6) and (5.1.9) show that P+
and A“(n)JrO have the same parameter set.

(5.1B) COROLLARY. The above correspondence between the set P+ of G-classes of
pairs and the set A“(n)+0 of = classes of triples is realized as follows. The class of the
pair (s(ay, az), Ni) (see (5.1.1)) corresponds to the class of the triple (¢, z, {) (see (2.9)) if

t=n-—2k, 2 =ajang "2, (z=ayqg "D, (5.1.10)
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Note that the relations (5.1.10) imply
?=aay'q! (5.1.11)

Using the identification (5.1B), we may describe the partial order < in terms of the
pairs (s, N). First, let us agree to write M, y = M, .({) for the cell module of T’fg(q) if
(s, N) and (z, z, {) correspond under the map defined in (5.1) or (5.1B). The irreduci-
ble fl:g(q) modules are parametrised by the subset A%n)" of A%(n)™ (the two sets are
equal unless ¢> = —1). The next result describes the corresponding subset of P+.

(5.1C) PROPOSITION. The subset P of P which corresponds to A"(n)0 under the
bijection (5.1B) is given by

P _ PJr lfq2 # _11
T PGE —(=1)28), Ny | & = (=1)}  if ¢* = —1 and n is even.

Proof. The subset P is obtained from P* by excluding the pairs (s, N) which
correspond under (5.1B) to the triples (0, ¢, {) when ¢> = —1 and n is even (see (2.2)
and (2.2A)). Thus the excluded triples are {(0, &, () | {" = 1}. It now remains only to
express these triples as pairs (s, N), using the relations in (5.1B). O

If (s, N)eP correspogdvs to (¢,z,0) € A”(n)+0, we write Ly y = L, -({) for the cor-
responding irreducible TL¢(g) module.

(5.2) PROPOSITION. Suppose (s(ay, az), Ni) is the semisimple-nilpotent pair defined
in (5.1) (€ P*). The corresponding cell module, My, ay) , , is irreducible unless there is
a solution (¢, t') of the equations

aja;! = ¢+, €==+l, 1<t <n, t = {(mod2) (5.2.1)
If Equations (5.2.1) have a solution, then there is an injective homomorphism

MS((I/I ,u’z),Nkr — Mv(ul ,a2), Ny

where

| " T
K= Z(n —7), a/l — alq““)(k‘“, a’2 — azq‘("‘)("_k). (5.2.2)

Proof. The statement is a translation into the language of semisimple-nilpotent
pairs of the fact (cf. (4.11) above) thatif (¢, z,{) < (7,2, {')in A“(n)o, then there is an
injective homomorphism between the corresponding cell modules of m(q), while if
(¢, z,{) is maximal, then the corresponding cell module is irreducible. But (5.1B)
shows that in the above correspondence between pairs and triples,

2 =aja;'q". (5.2.3)

By (4.1), (1, z,{) is maximal unless there is a solution to the equation z*> = ¢¢ with
¢, ! asin (5.2.1). If (¢, z, {) is a triple corresponding to (s(a;, a2), Ny), then translating
this using (5.2.3) yields the first statement.
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Given a solution (¢, ¢') of (5.2.1) one uses (4.1) to determine the corresponding tri-
ple (7, z,{) such that (¢,z,{) < (¢, 2, (). The corresponding semisimple-nilpotent
pair (s(a}, d5), Nv) may then be determined using Equations (5.1.10) and the
Equations (5.2.2) are the result. O

The partial order < may now be expressed in terms of the set P of semisimple-
nilpotent pairs.

(5.3) DEFINITION. Let P" = {(s(a1, a2), Ni)} be the set of semisimple-nilpotent
pairs as described in (5.1). Define the partial order < on P* as that which is gen-
erated by the preorder < which asserts that (s(ai, a2), Ni) < (s(a}, d5), Ny) if there
exists ¢ = +1 such that if t =n -2k, ¢ =n— 2k,

(t+et') (1—e)(k—k') —(1—e)(k—k)

kK <k, alagl =q ay = aiq ay = arq
We may now express (4.11) in the language of pairs. As well as doing this, the next
result gives some properties of the ordered set P*. The statement (iv) of Proposi-

tion (5.4) is related to a result of Zelevinsky [Z1].

(5.4) PROPOSITION. (i) Let (s, N) and (s', N') be two elements of Pt. The irre-
ducible module Ly y is a composition factor of multiplicity one in the cell module M y
if (s, N) < (', N') in P*. Otherwise its multiplicity is zero.

(ii) In Equations (5.3), if e = +1, then a} = a) and a), = a». If ¢ = —1, then a} = a,
and a, = ay. Thus in all cases, we have

a’l(a'z)71 — q([/+et) — (ala;l)[.

(i) If Equations (5.3) have a solution (¢, k'), then af = gDkl =m)
(iv) If q is not a root of unity, then each cell module has at most two composition
factors.

Proof. The statement (i) is clear from (4.11). The assertions in (ii) are obtained by
elementary manipulations of Equations in (5.3), while (iii) is a consequence of
Equations (5.3), together with (5.1.3).

Now suppose ¢ is not a root of unity, and that (s(ay, a2), Ni) < (s(d}, &5), Ni) as in
(5.3). Then by (ii) above, &, (a5)™" = ¢+ = (a1a;")". Therefore if (s(a}, @), Ny) <
(s(d/, ), Ni), we require k" < k' < k and d|(d})™" = ¢+, Since ¢ is not a root
of unity, this entails ¢ + ¢'t” = ¢’ + et, whence t" = t # ¢, so that no solution exists.
The result now follows from (i). O

We now summarise our results as they apply to the affine Hecke algebra.
(5.5) THEOREM. Let ;E,(q) be the extended affine Hecke algebra of type A,_,

(see (1.3)) over an algebraically closed field R of characteristic zero. Let G = SL,(R)
and let P be the set of G-conjugacy classes of pairs (s, N) with s € G semisimple,
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N € Lie(G) nilpotent with at most two Jordan blocks, and Ad(s)i\’: ¢’N. Let P
be the subset of Pt defined in Proposition (5.1C). Then H%q) has a set
(M, x| (s, N) € Pt} of ‘cell modules’ which have the following properties.

(i) For each cell module My, 4 N, there is a canonical Itlé(q) invariant bilinear
pairing

¢s(a1,az),Nk : MS(alyaz),Nk X Ms(allvaf_))st — R,

where d) = a7'¢*" %Y and d) = a5'¢**V, such that Py, n, 7 O if and only
if (s(ar, az), Ni) € P.

(1) If (s, N) € P, My y has a unique simple quotient Lg y. This is the quotient of M y
by the radical of the form ¢, .

(iii) The simple modules {L y | (s, N) € P} are pairwise non-isomorphic and form a
complete set of irreducible i[vg(q) modules which factor through the Temperley—
Lieb quotient fL/g(q) (see (1.7), (1.8) for the definition).

(iv) Each cell module has all its composition factors among the simple modules in (ii).

(v) Using the description of P in (5.1) and (5.1.6), the elements of P are represented
by pairs (s(a,a2), No). Then dim Mg, oy n, = (}) and the multiplicity
[Ma.a0).3; © Lsta.ap.n, ] is one if (s(ar, ax), Nk) < (s(d), @), Ny) in the partial
order defined in (5.3), and is zero otherwise.

(vi) In particular, My, 4) n, 1 irreducible unless a| and a5 are powers of q.

(vii) In the (unique) expression of the irreducible module Lg y as a linear combination of
the cell modules My y in the Grothendieck group T’ (I?;;(q)), the coefficients occur-
ring are all 0 or £1.

The statement (i) is a reformulation of the properties of the pairing ¢, :
W, .(n) x W, ~1(n)R described just before (2.2). The relationship between (ai, a)
and (a}, a,) follows from the relations (5.1.10) applied to the triples (¢, z, {) and
(¢, z7', ¢7Y). The last statement (vii) is a reformulation of Theorem (4.5) above. All
the other statements are clear from the foregoing discussion, and the results of
[GL2].

To illustrate our results, we give firstly an explicit description of the subregular
case (cf. [L2] for a K-theoretic description of this case for all classical groups) and
then two examples, one where ¢ is not a root of unity, but the cell module has
two composition factors, the other where ¢ is a root of unity and the cell module
has n/4 composition factors.

(5.6) EXAMPLE. Suppose N is subregular and that s corresponds to (a, @;). Then
t=n—2and k = 1 above, and if there were a solution to the equations in (5.3), we
would have k' = 0, so that ' = n. A short computation shows that M y is irreducible
unless

a111 — qn(n—Z-H) (5.6.1)
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for e = £1. If this equation has a solution, then M, y has a composition factor Ly
where N’ is regular nilpotent and s’ is semisimple with &, = a;¢"'~. Equation (5.6.1)
has a solution for both ¢ = 1 and ¢ = —1 if and only if ¢ = 1. Hence if ¢*" # 1, then
for the n values of a; which satisfy (5.6.1), M, y has two distinct composition factors,
of dimension 1,n — 1. If ¢? = 1, then M, y has three distinct composition factors, of
dimension 1, 1, n — 2, except if ¢ = 1 in which case there are again two.

(5.7 EXAMPLES. (i) Suppose that ¢ is not a root of unity. Take n = 2m to be even
with m > 4 and let a; be one of the 1 solutions of & = ¢ +107=16 et gy = a;q'2.
Then (s(ay, a2), Ny—2) € P and a short computation using Equations in (5.3) shows
that M, a,).n,_, has two composition factors, viz. Ly, a). N, a0 Ly, ar), Ny s -

Similarly, if @ is one of the n solutions of &= ¢*"~"*+1¢ and a, = a;q*,
then My, )N, , again has two composition factors, viz. Lgg a).n, , and
L, ¢*.ar44).N,,_, (this is the case ¢ = —1). In both cases, the dimension of the irredu-
cible module Ly, a).n,,_, 18

2m 12m+6
<m—4> (m—2)(m —3)’
and the second composition factor coincides with its cell module.
(i) Suppose that ¢> = —1 and that n = 4m is divisible by 4. Take a; = a, = a, with
a" = 1. Then the pair (s(a1, a2), Nx) lies in P. Consider the cell module M ) n,,- It is
straightforward to show that in this case, (s(a, @), Nop) < (s, N) if and only if

(s(a, @), Naw) < (s, N), and that the set of pairs (s, N) for which this is true is
{(s(a, a), Nom—2i)|i=0,1,2,...,m}. Thus My 4 n,, has m+ 1 composition factors.

We conclude with some remarks concerning the connection between our results
and the more general ones of Grojnowski [G]. According to [G], the irreducible mod-
ules Ly, as well as the ‘cell’ or standard modules M for f-Iv,‘j(q)) correspond (in our
case) to elements ¢ of a certain subset @ of the set of G-conjugacy classes of pairs
(s, N) with Ad(s)-N = ¢>N. It may be verified, using [G, Theorem 2], that our P is a
subset of ®@;.

Moreover, although it speaks only of dimensions, [G, Theorem 1] implies that the
multiplicity of the irreducible Ly (y ~ (s', N)) in the cell module My (¢ ~ (s, N)) is
given by a ‘Kazhdan—Lusztig’ type coefficient a4y, which is the multiplicity of the
constant local system on Zg(s) - N in the perverse extension of the corresponding
local system on Zg(s") - N’ to its closure in the Lie algebra of G. Assuming this result,
if we also assume* that our cell modules coincide with those in [G], our results show
that if N is a two-step (or regular) nilpotent element, the coefficients agy are 0 or 1.
Moreover, the coefficients ey, of the inverse matrix are 0, 1.

*Note added in Proof. This has now been proved and will appear in a subsequent work of the authors.
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Similar remarks apply to the connection between our results and those concerning
standard modules and their decomposition in [Z2] and [R].
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