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Abstract. We define a set of ‘cell modules’ for the extended affine Hecke algebra of type A
which are parametrised by SLnðCÞ-conjugacy classes of pairs ðs;NÞ, where s 2 SLnðCÞ is semi-

simple and N is a nilpotent element of the Lie algebra which has at most two Jordan blocks
and satisfies AdðsÞ �N ¼ q2N. When q2 6¼ �1, each of these has irreducible head, and the irre-
ducible representations of the affine Hecke algebra so obtained are precisely those which fac-

tor through its Temperley–Lieb quotient. When q2 ¼ �1, the above remarks apply to a subset
of the cell modules. Using our work on the cellular nature of those quotients, we are able to
obtain complete information on the decomposition of the cell modules in all cases, even when
q is a root of unity. They turn out to be multiplicity free, and the composition factors may be

precisely described in terms of a partial order on the pairs ðs;NÞ. These results give explicit
formulae for the dimensions of the irreducibles. Assuming our modules are identified with
the ‘standard modules’ earlier defined by Bernstein–Zelevinski, Kazhdan–Lusztig and others,

our results may be interpreted as the determination of certain Kazhdan–Lusztig polynomials.
[This has now been proved and will appear in a subsequent work of the authors.]
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Introduction

The extended affine Hecke algebra fHa
nðqÞ of type A has a quotient which is analogous

to the Temperley–Lieb algebra, in that it is obtained from fHa
nðqÞ by taking the quo-

tient by the principal ideal generated by the central idempotent in any Hecke

subalgebra of type A2 (which is 6-dimensional) which corresponds to the trivial

representation of that subalgebra. Denote this quotient by gTLa
nðqÞ (the ‘extended

affine Temperley–Lieb algebra’). The results of [GL2] may be applied to classify all

irreducible representations of gTLa
nðqÞ for arbitrary values of the parameter q, includ-

ing arbitrary roots of unity. This provides a class of irreducible representations

for fHa
nðqÞ, and for these, we are able to give explicit dimension formulae, as well as
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decomposition numbers for the ‘cell modules’ which are involved in their construc-

tion. Although it is not proved here, there is strong evidence that our cell modules

coincide with the ‘standard modules’ defined earlier by several authors (see below).

Our parametrisation of both the cell modules and the irreducibles may be stated

(see Theorem (5.5) below) in terms of semisimple-nilpotent pairs ðs;NÞ associated

with SLnðCÞ, just as in the general ‘standard module’ theory of Lusztig, Ginzburg

and Kazhdan and Lusztig (see [CG], [KL] or [X]) or of Bernstein–Zelevinsky (cf.

[R], [BZ], [Z2]), except that we deal only with the case where N is a two-step nilpotent

matrix (i.e. it has just 1 or 2 Jordan blocks). If we assume that our cell modules coin-

cide with either of the standard modules above, then given the results of [Z2] and [R]

or [G], our results also give explicit computations of some Kazhdan–Lusztig

polynomials.

One of the results we prove in this work is that in the Grothendieck ring of finite

dimensional representations of the algebras TaðnÞ of [GL2], each irreducible repre-

sentation is a linear combination of the ‘cell modules’ (analogous to Weyl modules),

in which the nonzero coefficients are 1, extending the results of [GL, x5]. We also dis-

cuss consequences of this result for the algebras fHa
nðqÞ.

1. Dramatis Personae; Various Algebras of ‘Type A’

Let R be a commutative ring and let q be an invertible element of R. The affine

Hecke algebra of type An�1 over R, denoted Ha
nðqÞ, has generators T1; . . . ;Tn, which

generate Ha
nðqÞ as associative algebra subject to the relations

TiTj ¼ TjTi if ji� jj5 2 and fi; jg 6¼ f1; ng;

TiTiþ1Ti ¼ Tiþ1TiTiþ1 ð1:1Þ

and

ðTi � qÞðTi þ q�1Þ ¼ 0; ð1:2Þ

where in (1.1) the indices are taken mod n.

The algebra Ha
nðqÞ corresponds to the affine Weyl groupW

a of type ~An�1, which is

a Coxeter group; it has an R-basis consisting of elements fTw;w 2Wag, where if

w ¼ ri1 ; . . . ; ri‘ is a reduced expression for w 2Wa (the simple reflections inWa being

denoted r1; . . . ; rnÞ;Tw ¼ Ti1 ; . . . ;Ti‘ .

The extended affine Hecke algebra (cf. [X]), which we denote fHa
nðqÞ may be def-

ined byfHa
nðqÞ ¼ R½O� �R Ha

nðqÞ; ð1:3Þ

where O is the cyclic group of order n, thought of as the group of automorphisms of
Ha

nðqÞ which permute the Ti cyclically, and the tensor product is ‘twisted’ in the sense

that if o1;o2 2 O and h1; h2 2 Ha
nðqÞ, we have

o1 � h1 � o2 � h2 ¼ o1o2 � o�12 ðh1Þh2: ð1:4Þ

The algebra fHa
nðqÞ corresponds to the extension of the finite Weyl group by the lattice

of weights in the same sense that Ha
nðqÞ corresponds to Wa. Clearly, Ha

nðqÞ is
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a subalgebra of fHa
nðqÞ. LetWðiÞ be the subgroup ofW

a which is generated by the sim-

ple reflections ri and riþ1 ði ¼ 1; 2; . . . ; nÞ. Then WðiÞ ffi Sym3 (the symmetric group

of degree 3, which has order 6), and in fHa
nðqÞ we have elements

Ei ¼
X

w2WðiÞ

q‘ðwÞTw ði ¼ 1; . . . ; n� 1Þ; ð1:5Þ

where ‘ðwÞ is the length function in the Coxeter group Wa. These satisfy

E2i ¼ ð1þ q2Þð1þ q2 þ q4ÞEi:

As in [GL2], we define the Temperley–Lieb quotient of Ha
nðqÞ as

TLa
nðqÞ :¼ Ha

nðqÞ=I
a
nðqÞ; ð1:6Þ

where IanðqÞ is the ideal ofH
a
nðqÞ generated by E1; . . . ;En (of course only one Ei is nee-

ded, since they are conjugate in Ha
nðqÞ).

We refer to the extended analogue gTLa
nðqÞ of TLa

nðqÞ as the extended affine

Temperley–Lieb algebra of type ~An�1. It is defined asgTLa
nðqÞ ¼

fHa
nðqÞ=

eIanðqÞ; ð1:7Þ

where eIanðqÞ is the ideal of fHa
nðqÞ generated by E1; . . . ;En.

(1.8) LEMMA. We havegTLa
nðqÞ ffi R½O� �R TLa

nðqÞ:

Proof. First, observe that since IanðqÞ is stable under O (it is generated by an

O-stable set), it follows that eIanðqÞ ¼ R½O� �R IanðqÞ. Since the right side is an ideal, it

contains IanðqÞ and it is clearly the smallest ideal satisfying this condition. The lemma

follows. &

It follows from (1.8) that if we write s ¼ o� 1 2 gTLa
nðqÞ, where o is a (fixed) gen-

erator of O, then gTLa
nðqÞ is generated by TL

a
nðqÞ together with s. But TLa

nðqÞ has the

following presentation described in [GL2, (2.9)]:

TLa
nðqÞ ¼

h f1; . . . ; fnj fifj ¼ fj fi ¼ if jk� jj5 2 and ði; jÞ 6¼ ð1; nÞ;

fi fiþ1 fi � fi ¼ fiþ1 � fiþ1 ¼ 0 ði ¼ 1; . . . ; nÞ;

f 2i ¼ dfii;

8><>: ð1:9Þ

where d ¼ �ðqþ q�1Þ and the indices in the second relation are taken modulo n.

The element s above defies an automorphism of TLa
nðqÞ:

sfis�1 ¼ fiþ1 ði ¼ 1; . . . ; nÞ; ð1:10Þ

where the index i is again taken mod n.

It follows that gTLa
nðqÞ is generated by fs; f1; . . . ; fng subject to the relations (1.9),

(1.10) and sn ¼ 1.
Now in addition to the algebras gTLa

nðqÞ and TLa
nðqÞ, we shall require the

algebraTaðnÞ which was defined in [GL2, (2.7)] and referred to there (loc. cit.) as
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‘the affine Temperley–Lieb algebra’. This is defined as an algebra of diagrams or,

more accurately, as the algebra of morphisms: n�! n in the category Ta (see

[GL2, (2.5)]) and TLa
nðqÞ is identified [GL2, (2.9)] as the subalgebra of T

aðnÞ spanned

by the ‘nonmonic diagrams: n�! n of even rank’, together with the identity. It also

occurs independently in the work of Green [Gr] and Fan and Green [FG]. We shall

need to make some use of the diagrammatic description in this work; details may be

found in [GL2], but a good approximation to the picture is obtained if one thinks of

affine diagrams as arcs drawn on the surface of a cylinder joining 2n marked points,

n on each circle component of the boundary, in pairs. The arcs must not intersect,

and diagrams are multiplied by concatenation in the usual way. These diagrams

are represented by periodic diagrams drawn between two horizontal lines, each dia-

gram being determined by the ‘fundamental rectangle’, from which the cylinder is

obtained by identifying vertical edges. In this interpretation, the generators fi of

TLa
nðqÞ are represented by the diagrams shown in Figure 1.

The rank of such a diagram is the smallest number of intersections of arcs with the

left vertical edge.

Now TaðnÞ contains the ‘twist’ t ¼ tn, which has rank 1, and TaðnÞ is generated by

fTLa
nðqÞ; tg; however it is not true that T

aðnÞ ffi R½hti� � TLa
nðqÞ: Instead we have

(1.11) LEMMA. Let A be the augmentation ideal ði.e. the ideal generated by

f1; f2; . . . ; fnÞ of TL
a
nðqÞ � TaðnÞ, so that TLa

nðqÞ ¼ R1� A. Then t2A ¼ At2 ¼ A and

we have TaðnÞ ¼ R½hti� � A� At.
Proof. This may be found in [Gr, x2]. We sketch it here for the sake of our

exposition. Since TaðnÞ is generated as associative algebra by TLa
nðqÞ and t, the result

follows easily if we know that At2 ¼ t2A ¼ A. To see this latter fact, observe that

f1t2 ¼ t2fn�1 ¼ f1f2 � � � fn�1 2 A:

Conjugating this relation by t, we see that fit2 and t2fi are both in A for any i,

whence At2 � A; t2A � A. Similarly, t�2A � A and At�2A (use the mirror image
of the above relation: t�2f1 ¼ fn�1t�2 ¼ fn�1fn�2 � � � f1).

Thus A ¼ ðt�2AÞt2 � At2, whence we have equality in each case. &

Figure 1.
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(1.12) COROLLARY. We have TaðnÞ ffi TLa
nðqÞ � I, where I ¼ �i 6¼0Rti � At.

This is immediate from (1.10).

The algebra gTLa
nðqÞ is not a quotient of T

aðnÞ, but the representation theory of
gTLa

nðqÞ may be discussed via that of TL
a
nðqÞ, which in turn comes from that of

TaðnÞ, whose representations are completely described in [GL2]. Note also that there

is an obvious surjective homomorphism f: gTLa
nðqÞ ! TLa

nðqÞ, defined by o� m 7!
tnm (for o 2 O and m 2 TLa

nðqÞ).

2. Representations

We shall determine all irreducible representations of gTLa
nðqÞ using the classification

of those of TLa
nðqÞ determined in [GL2]. In this section, we assume that R is an alge-

braically closed field.

To discuss the representations of gTLa
nðqÞ ffi C½O� � TLa

nðqÞ, let us first recall the

description given in [GL2, (2.9.1)] of the representations of TLa
nðqÞ. As was recalled

above, TLa
nðqÞ may be realised as an algebra spanned by diagrams on the surface of a

cylinder or ‘affine diagrams a: n�! n’ (see [GL2, (1.3), (1.4), (2.5)]). In general an

affine diagram a: t�! nðt; n 2 Z50Þ is depicted by its restriction to the fundamental

rectangle, which has t marked points on the bottom edge, n on the top, and distinct

points joined in pairs by non-intersecting arcs (after the vertical edges are identified).

If a has no ‘through arcs’, i.e. if top (resp. bottom) vertices are joined to top (resp.
bottom) vertices, then amay also have a certain number, yðaÞ say, of arcs which wrap
around the cylinder. This description of TLa

nðqÞ realises TL
a
nðqÞ as a subalgebra of

TaðnÞ, whose representation theory is discussed in [GL2]. The irreducible representa-

tions of TLa
nðqÞ turn out to be largely restrictions of those of T

aðnÞ.

We recall the definition of the cell modules for TaðnÞ, which by restriction are also

modules for TLa
nðqÞ (cf. [GL2, (2.6)]). Let t 2 Z50; 04 t4 n, with t � n (mod 2) and

let z be any invertible element of R. LetW 0
t;zðnÞ be the R-module with basis all monic

diagrams (see [GL2, (1.6)]; this means all t arcs from the bottom vertices are through

arcs), thenWt;zðnÞ ¼W0
t;zðnÞ=V, where V is the subspace generated by elements of the

form att � za ðt > 0Þ or att � ðzþ z�1Þa ðt ¼ 0Þ, where tt is the ‘t-twist’ depicted in
Figure 2.

The module Wt;zðnÞ has an R-basis consisting of ‘standard diagrams’ (see [GL2,

Definition (1.7)]), which are monic diagrams whose through strings all lie inside

the fundamental rectangle. It is easily seen, by counting these, that

dimWt;zðnÞ ¼
n
n�t
2

	 

: ð2:1Þ

The spaceWt;zðnÞ is a T
aðnÞ-module, with the algebra acting by concatenating dia-

grams t�! n ð2Wt;zðnÞÞ with a : n�! n ð2 TLa
nðqÞÞ according to the description in

[GL2, (2.1), (2.6)]. We write a � m for this action. There is a bilinear map

ft;z : Wt;zðnÞ �Wt;z�1ðnÞ �!R which ([GL2, (2.7)]) is invariant in the sense

that ft;zða � m; nÞ ¼ ft;zðm; a
� � nÞ; ðm; n 2Wt;zðnÞ; a 2 TaðnÞÞ where a� denotes the
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reflection of a in a horizontal line. Note that a 7! a� is an anti-automorphism of

TaðnÞ, which preserves TLa
nðqÞ. If R is a field, the irreducible T

aðnÞ-modules have a

simple description ([GL2, (2.8)]). In order to give it, we shall require a certain set

of parameters. For convenience, we collect its definition, as well as some others

which we shall require, here.

(2.2) DEFINITION. Let La
ðnÞþ be the set

La
ðnÞþ ¼ fðt; zÞ j t 2 Z50; 04 t4 n; n� t 2 2Z; z 2 R�g:

Define La
ðnÞþ by

La
ðnÞ ¼

La
ðnÞþ if q2 6¼ �1;

La
ðnÞþn fð0;�qÞg if q2 ¼ �1:

(
ð2:2:1Þ

Define the equivalence relation � on La
ðnÞþ as that which identifies ð0; zÞ and ð0; z�1Þ

for all z 2 R�, and write

La
ðnÞþ0 ¼ La

ðnÞþ=� and La
ðnÞ0 ¼ La

ðnÞ= � : ð2:2:2Þ

Next, let La
ðnÞ0 be the set

La
ðnÞ0 ¼

fðt; zÞ 2 La
ðnÞ j z2 6¼ �1 if t ¼ 0g

‘
fð0; iÞþ; ð0; iÞ�g if q2 6¼ �1;

fðt; zÞ 2 La
ðnÞ j z2 6¼ �1 if t ¼ 0g if q2 ¼ �1;



where i denotes a fixed element of R such that i2 ¼ �1. Define the equivalence rela-

tion � on La
ðnÞ0 by ðt; zÞ � ðt0; z0Þ, if and only if t ¼ t0 ¼ n or t ¼ t0 and z0 ¼ �z or

ðt; zÞ � ðt0; z0Þ. Define

La
ðnÞ ¼ La

ðnÞ0= � : ð2:2:3Þ

Let � be the equivalence relation on La
ðnÞ which is given by ðt; zÞ � ðt0; z0Þ, if and

only if ðt; zÞ � ðt0; z0Þ or t ¼ t0 ¼ n or t ¼ t0 and z0 ¼ �z. DefinegLa
ðnÞ ¼ La

ðnÞ=� : ð2:2:4Þ

We denote the elements of this set by gðt; zÞ, where ðt; zÞ 2 La
ðnÞ.

Figure 2.
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It is clear that gLa
ðnÞ is in natural bijection with the quotient of La

ðnÞ obtained by

identifying ð0; iÞþ and ð0; iÞ�.

ð2:2AÞ Remark. We shall see shortly that the sets La
ðnÞ0 and La

ðnÞ, respectively,

parametrise the isomorphism classes of irreducible modules for the algebras TaðnÞ

and TLa
nðqÞ. We often abuse notation by lifting the parameters to L

a
ðnÞ, assuming the

appropriate identifications.

THEOREM ([GL2, (2.8)]). Let R be an algebraically closed field and maintain the

above notation. For ðt; zÞ 2 La
ðnÞ0, Lt;zðnÞ :¼Wt;zðnÞ=rad ft;z is an irreducible TaðnÞ

module. All irreducible TaðnÞ modules are realised thus, and if ðt1; z1Þ 6� ðt2; z2Þ, then

Lt1;z1 ðnÞ 6ffi Lt2;z2 ðnÞ.

The main facts concerning the restrictions of the above modules to TLa
nðqÞ are as

follows.

(2.3) THEOREM. Assume that R is an algebraically closed field.

ðiÞ As TLa
nðqÞ-modules, Wt;zðnÞ ffiWt;yðnÞ if t ¼ n ðany y; zÞ or if yþ z ¼ 0 ðany tÞ.

ðiiÞ If t 6¼ 0, the module Lt;zðnÞ :¼Wt;zðnÞ=radft;z is an irreducible TLa
nðqÞ-module.

ðiiiÞ If t ¼ 0 and z2 6¼ �1, then L0;zðnÞ ðdefined as aboveÞ is irreducible as a TLa
nðqÞ-

module.

ðivÞ If t ¼ 0 and z2 ¼ �1, then W0;zðnÞ is the direct sum of two submodules Wþ
0;zðnÞ and

W�
0;zðnÞ which are spanned respectively by diagrams of even and odd rank.

ðvÞ If t ¼ 0; z2 ¼ �1 and q2 6¼ �1 then W�
0;zðnÞ have nonisomorphic irreducible heads

L�0;zðnÞ.

ðviÞ The set La
ðnÞ defined in ð2:2:3Þ parametrises the irreducible TLa

nðqÞ-modules, with

each one occurring once.

Proof. First observe that Wn;zðnÞ is one-dimensional, spanned by the identity

diagram n! n. Its structure as TaðnÞ module is therefore clearly independent of n

(all fi act trivially). Next, since TL
a
nðqÞ is spanned by certain diagrams of even rank, it

follows that for any diagram a 2 TLa
nðqÞ and standard diagram m: t�! n, we have

(by [GL2, (1.5) (4)])

rank ða � mÞ � rank ðmÞ ðmod 2Þ:

Consider the linear transformation U: Wt;zðnÞ �!Wt;zðnÞ defined by UðmÞ ¼
ð�1Þrank ðmÞm for any standard diagram m: t�! n. We shall show that for a 2
TLa

nðqÞ, we have

a �ðzÞ UðmÞ ¼ Uða �ð�zÞ mÞ; ð2:3:2Þ

where �ðyÞ denotes the action of a on the moduleWt;yðnÞ (any y 2 R�Þ. This will show

that U intertwines the actions of TLa
nðqÞ on Wt;zðnÞ and Wt;�zðnÞ. Assume first that

t 6¼ 0.
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To prove (2.3.2), observe that both sides are 0 unless a � m is monic, in which case
a � m ¼ m0 � tkt for some k 2 Z. It follows that the left side of (2.3.2) is equal to

ð�1Þrank mzkm0. The right side is Uðð�zÞkm0Þ ¼ ð�zÞkð�1Þrank m0m0. But by (2.3.1) we
have rank ðm0Þ þ k ffi rank mðmod 2Þ, whence the result.
If t ¼ 0, the proof is the same, with z replaced by zþ z�1. Notice that the proof is

valid even if zþ z�1 ¼ 0 (i.e. z2 ¼ �1). This proves (i).

The proofs of (ii) and (iii) follow the arguments of [GL1, (2.6)]. For (iv) note that

if t ¼ 0 and z2 ¼ �1 the splitting of W0;z takes place because zþ z�1 ¼ 0, so that

nonstandard monic diagrams m: 0�! n are all zero. Hence, operation by TLa
nðqÞ

never effects a parity change in the rank. The rest of the proof is a straightforward

adaptation of [GL2, (2.8), (2.9.1)]. &

(2.4) PROPOSITION. Let o be the automorphism of TLa
nðqÞ defined by

oðfiÞ ¼ fiþ1 ði ¼ 1; 2; . . . ; nÞ, where the index i is taken mod n. For any representation r
of TLa

nðqÞ define the representation ro by ro ¼ r � o. Then for any pair ðt; zÞ 2 La
ðnÞ,

we have an isomorphism of TLa
nðqÞ modules Wt;zðnÞ

o
ffiWt;zðnÞ.

Proof. The vector space Wt;zðnÞ is a module for the algebra T
aðnÞ  TLa

nðqÞ. But

tn 2 TaðnÞ satisfies tnfit�1n ¼ fiþ1 (all i(mod n)). Hence, the linear transformation of

Wt;zðnÞ which is defined by the action of tn on the TaðnÞ module Wt;zðnÞ intertwines

the TLa
nðqÞ modules Wt;zðnÞ and Wt;zðnÞ

o. &

We henceforth take R to be an algebraically closed field.

(2.5) COROLLARY. ðiÞ All irreducible TLa
nðqÞ-modules M satisfy Mo ffiM, except if

q2 6¼ �1 and M ffi L�0;iðnÞ.

ðiiÞ The automorphism o interchanges the irreducible modules L�0;iðnÞ.

Proof. (i) In this caseM ffi Lt;zðnÞ for some ðt; zÞ 2 La
ðnÞ=fð0;�iÞg. SinceWt;zðnÞ is

invariant (up to isomorphism) under o and Lt;zðnÞ is its head, the result is immediate.

(ii) The map m 7! tn � m clearly interchanges the modules W�
0;i, and hence inter-

changes their heads, which are the irreducible modules L�0;iðnÞ. &

The next result is required to complete the classification of the irreducible gTLa
nðqÞ

modules. The authors wish to thankR.B. Howlett for discussions concerning its proof.

(2.6) THEOREM. Let B be an associative algebra with identity over the algebraically

closed field R. Suppose s is an automorphism of B of finite order n, assume that n is not

divisible by the characteristic of R, and let A be the associative algebra A ¼ R½hsi� � B,

where hsi is the cyclic group generated by s and the tensor product is ‘twisted’ in

the sense of ð1:4Þ. LetM be a finite-dimensional irreducible A module and let M1 !Mbe

an irreducible ðB-Þ submodule of the restriction of M from A to B. Let r be the smallest

positive integer such that the twist Msr
1 ffiM1 as B module; clearly r divides n. Then

M ffiM1 � sM1 � � � � � sr�1M1

where s is identified with the element s� 1 2 A.
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Proof. Write r: A! EndRðMÞ and ri: B! EndRðM
si�1
1 Þ (i ¼ 1; 2; . . . ; r) for the

representations associated with the corresponding modules. We shall soon identify

these with matrix representations. Observe first that there is a positive integer k such

that

M ffiM1 � sM1 � � � � � sk�1M1: ð2:6:1Þ

This is because if the sum M1 þ sM1 þ � � � þ siM1 is direct (this is trivial for i ¼ 0)

then siþ1M1 \ ðM1 þ sM1 þ � � � þ siM1Þ is either 0 or siþ1M1, since siþ1M1 is an

irreducible B module. In the latter case, (2.6.1) follows immediately, while in the for-

mer, we repeat the argument replacing i by iþ 1, proving (2.6.1) by induction.

Clearly, sinceM1; sM1; . . . ; sr�1M1 is a complete list of nonisomorphic s-twists of
the B module M1, and M is invariant under s; r divides k, so that we may write

k ¼ hr ð2:6:2Þ

for some positive integer h. It follows that

M ffiM1 �M1 � � � � �M1 � sM1 � � � � � sM1 � � � � � sr�1M1; ð2:6:3Þ

where the multiplicity of each summand si�1M1 is h.

We shall consider the matrix representation of A on M with respect to a basis

adapted to the decomposition (2.6.3). Note first that one obtains a basis of siM1

by applying s to a basis of si�1M1, for i ¼ 1; 2; . . . ; r� 1. Hence, we may assume

that for any element b 2 B, we have

riþ1ðbÞ ¼ riðsbs
�1Þ ðb 2 B; i ¼ 1; 2; . . . ; r� 1Þ: ð2:6:4Þ

Moreover since Msr
1 ffiM1 as B module, there is an element U 2 EndRðM1Þ, unique

up to multiplication by a scalar, such that

r1ðs
rbs�rÞU ¼ Ur1ðbÞ for all b 2 B: ð2:6:5Þ

It follows that rðbÞ acts on M with matrix of block diagonal form as depicted

below

rðbÞ ¼

r1ðbÞ
r1ðbÞ

. .
.

r1ðbÞ
r2ðbÞ

. .
.

rrðbÞ

266666666664

377777777775
; ð2:6:6Þ

where the number of blocks rjðbÞ, each of which is square of size m ¼dim M1, is h

(for each j ¼ 1; . . . ; r).

We now consider the shape of the block matrix rðsÞ ¼ ½rijðsÞ� (14 i; j4 k ¼ hr).

In view of the decomposition (2.6.3), we shall consider larger submatrices, consisting

of h2 of the blocks rijðsÞ of size m. These will generally be denoted Dpq (14 p; q4 r);
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they are square of size hm. In order to describe them, for any positive integer i such

that 14 i4 k, write

i ¼ qðiÞhþ rðiÞ; where 04 rðiÞ < h; 04 qðiÞ4 r� 1: ð2:6:7Þ

Since rðsbs�1Þ ¼ rðsÞrðbÞrðs�1Þ for any element b 2 B, we may use (2.6.6), (2.6.4)

and (2.6.5) to deduce the shape of rðsÞ. In terms of the block decomposition of
rðsÞ as explained above, the result is, in the notation of (2.6.7)

rqðiÞþ2ðbÞrijðsÞ ¼ rijðsÞrqð jÞþ1ðbÞ for 14 i; j4 k; ð2:6:7Þ

where

rrþ1ðbÞ ¼ rrðsbs
�1Þ ¼ Ur1ðbÞU

�1;

U being the intertwining matrix of (2.6.5).

It follows by Schur’s Lemma that rijðsÞ ¼ 0 unless either

(a) qðiÞ þ 2 ¼ qð jÞ þ 1, or

(b) qð jÞ ¼ 0 and qðiÞ ¼ r� 1.

In case (a), i.e. qðiÞ þ 1 ¼ qð jÞ, we have rijðsÞ ¼ lijIm, where lij 2 R and Im is the

identity matrix of size m. In case (b), i.e. when qð jÞ ¼ 0 and qðiÞ ¼ r� 1, we have

rijðsÞ ¼ lijU. Hence the block decomposition of rðsÞ is of the form

rðsÞ ¼

0 D1
0 0 D2

. .
.

0 Dr�1

UDr 0 � � � 0

266664
377775; ð2:6:8Þ

where Di is a block matrix each of whose blocks is of the form lIm (l 2 R) for i # r,

and is the block diagonal matrix each of whose (diagonal) blocks is equal to U.

We next show that there is a matrix

T ¼

T1
T2

. .
.

Tr�1

Tr

266664
377775; ð2:6:9Þ

such that the submatrices Ti are block matrices whose blocks are of the form lIm
(l 2 R) and such that for i ¼ 1; 2; . . . ; r� 1, TiDiT

�1
iþ1 is diagonal, as is TrDrT

�1
1 .

To see that such a matrix exists, observe that by taking powers of the matrix

(2.6.8), one sees that ðD1D2:::DrÞ
n
r ¼ Ihm, whence, since the characteristic of R does

not divide n, D1D2 . . .Dr is diagonalisable by a matrix T1 of the required form. Then

take T2 ¼ T1D1, T3 ¼ T2D2; . . . ;Tr ¼ Tr�1Dr�1. It is then easily verified that T satis-

fies the stated conditions.
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Now the linear transformation T of M commutes with rðbÞ for each b 2 B and

TrðsÞT�1 is of the form (2.6.8) with each block Di diagonal. It follows that if M
0

is the subspace of M consisting of the sum of the first, ðhþ 1Þst,

ð2hþ 1Þst; . . . ; ððr� 1Þhþ 1Þst summands of the decomposition (2.6.3) of M, then

the subspace T �M0 is invariant under rðBÞ and rðsÞ. Since A is generated by B

and s, T �M0 is invariant under rðAÞ, whence by irreducibility, M ¼M0, which

proves (2.6). &

(2.7) COROLLARY. Suppose B; A; s and M are as in the statement of ð2:6Þ. If the

restriction of M from A to B contains a s-invariant irreducible B submodule M1, then

M ¼M1. Conversely, every s-invariant irreducible B module M1 extends to an irre-

ducible A module.

Proof. The first statement is just the case r ¼ 1 of (2.6). For the converse, observe

that since Ms
1 ffiM1, there is a transformation t 2 EndRðM1Þ such that for all ele-

ments b 2 B, r1ðsbs
�1Þ ¼ tr1ðbÞt

�1, where r1 is the representation of B onM1. If we

take rðsÞ ¼ lt where l 2 R is such that ðltÞn ¼ idM1
, this defines a representation r

of A on M1, which extends r1. &

Using (2.6), the classification of the distinct irreducible gTLa
nðqÞ modules is now

straightforward.

(2.8) THEOREM. Assume that R is an algebraically closed field of characteristic not

dividing n. The distinct irreducible gTLa
nðqÞ-modules are classified as follows. For each

element ðt; zÞ 2 gLa
ðnÞ ðsee ð2:2:4ÞÞ and each element z 2 R such that zn ¼ z�t there is an

irreducible gTLa
nðqÞ-module Lðt;zÞðzÞ. As a space, Lðt;zÞðzÞ is Lt;zðnÞ; the subalgebra TL

a
nðqÞ

acts as in ð2:3Þ, while s ¼ o� 1 ðsee ð1:8ÞÞ acts as tnz. The only isomorphisms among the

simple gTLa
nðqÞmodules Lðt;zÞðzÞ are as follows: Lðn;zÞðzÞ ffi Lðn;yÞðzzy�1Þ for any z; y 2 R�,

Lðt;zÞðzÞ ffi Lðt;�zÞð�zÞ for any ðt; zÞ 2 La
ðnÞ, Lð0;zÞðzÞ ffi Lð0;z�1ÞðzÞ for any z 2 R�, and

when q2 6¼ �1, Lð0;iÞðzÞ ffi Lð0;iÞð�zÞðffi Lð0;�iÞð�zÞÞ for all z 2 R satisfying zn ¼ 1.
Proof. Let M be an irreducible gTLa

nðqÞ module. Theorem (2.6) clearly applies,

with A ¼ gTLa
nðqÞ and B ¼ TLa

nðqÞ. Suppose first that the restriction of M to TLa
nðqÞ

contains an irreducible TLa
nðqÞ-module M1 ffi Lt;zðnÞ with ðt; zÞ 6¼ ð0;�iÞ as a sub-

module. Then by (2.5)(i), Ms
1 ffiM1 and we may apply (2.7) to deduce that M is an

extension of M1 to A. By Schur’s Lemma, s ¼ o� 1 must act on Lt;z as a scalar

multiple ztn of tn. But tnn acts onWt;z as the scalar z
t, since for any diagram m: t! n

we have tnnmt
�t
t ¼ m by periodicity. Since sn ¼ 1, we must have znzt ¼ 1 as stated.

Thus M is the gTLa
nðqÞ module Lðt;zÞðzÞ of the statement.

To determine the coincidences among these modules, note that the restriction of

Lfðt;zÞðzÞ to TLa
nðqÞ is the irreducible TL

a
nðqÞ-module Lt;zðnÞ. By (2.3)(vi), this implies

that the equivalence class ðt; zÞ of ðt; zÞ in gLa
ðnÞ is determined by M. If y is an inter-

twining map for Lðt;zÞðzÞ and Lðt0;z0Þðz
0
Þ, then since y intertwines the TLa

nðqÞ actions, we

have ðt; zÞ ¼ ðt0; z0Þ. Moreover, by irreducibility, y must be a scalar multiple of the
map U described in the proof of (2.3). Hence, we may assume, without loss of
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generality, that y ¼ U. If t ¼ n, tn acts on Lðn;zÞðnÞ as multiplication by z. Hence, the

equation yðs � mÞ ¼ s � yðmÞ shows that zz ¼ z0z0. If t < n, then t ¼ 0 or t ¼ t0 and

z0 ¼ �z. Consider the latter case first. Then

yðs � mÞ ¼ yðztn � mÞ ¼ zð�1ÞrkðmÞþ1tn � m ¼ s � yðmÞ ¼ z0ð�1ÞrkðmÞtn � m;

whence z0 ¼ �z. If t ¼ 0, W0;zðnÞ ¼W0;z�1ðnÞ, so L0;zðzÞ ¼ L0;z�1ðzÞ.
The remaining case is when M contains a TLa

nðqÞ submodule Lþ isomorphic to

Lð0;iÞþ , which occurs only when q
2 6¼ �1. In this case,M also has a TLa

nðqÞ submodule

isomorphic to Lð0;iÞ� , viz. s � Lþ, and s2 � Lþ ffi Lþ. Hence we are in the situation of

(2.6) with r ¼ 2. Application of (2.6) yields that s acts onM ffi Lð0;iÞþ � Lð0;iÞ� via the

matrix

0 l1tn
l2tn 0

� �
for some scalars l1; l2 2 R.

The condition sn ¼ 1 implies that ðl1l2Þ
n
2 ¼ 1. Write M ¼ Lð0;iÞðl1; l2Þ for this

module. We shall show

(2.8.1). The modules Lð0;iÞðl1; l2Þ and Lð0;iÞðl
0
1; l

0
2Þ are isomorphic as gTLa

nðqÞ modules if

and only if l1l2 ¼ l01l
0
2.

To see how the theorem follows from (2.8.1), observe that each isomorphism class

of modules Lð0;iÞðl1; l2Þ contains a module Lð0;iÞðz; zÞ, with zn ¼ 1, because since R is
algebraically closed, there is an element z 2 R such that z2 ¼ l1l2. In the notation of
the statement, Lð0;iÞðz; zÞ ¼ Lð0;iÞðzÞ, and by (2.8.1), Lð0;iÞðzÞ ffi Lð0;iÞð�zÞ and there are
no other coincidences among the Lð0;iÞðzÞ.
It therefore remains only to prove (2.8.1). First suppose that y: Lð0;iÞðl1; l2Þ !

Lð0;iÞðl
0
1; l

0
2Þ is an intertwining map. Then as above, since yðs2 � mÞ ¼ s2 � yðmÞ for

m 2 Lð0;iÞðnÞ and since s2 acts on Lð0;iÞðl1; l2Þ as l1l2t2n, we have l1l2 ¼ l01l
0
2. Conver-

sely, suppose this condition holds. Write k ¼ l1=l
0
1 ¼ l02=l2. Let y : Lð0;iÞðnÞ !

Lð0;iÞðnÞ have matrix description analogous to those above given by

y ¼
I 0
0 kI

� �
;

where I denotes the identity matrix. It is then easily checked that y intertwines
Lð0;iÞðl1; l2Þ and Lð0;iÞðl

0
1; l

0
2Þ. This proves (2.8.1) and completes the proof of the

theorem. &

(2.9) DEFINITION. Define the sets Da
ðnÞþ and Da

ðnÞ by

Da
ðnÞþ ¼ f½ðt; zÞ; z� 2 La

ðnÞþ � R� j zn ¼ z�tg;

Da
ðnÞ ¼ f½ðt; zÞ; z� 2 La

ðnÞ � R� j zn ¼ z�tg:

Let � be the equivalence relation on Da
ðnÞþ defined by
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ðiÞ ½ðn; zÞ; z� � ½ðn; yÞ; zzy�1�;

ðiiÞ ½ðt; zÞ; z� � ½ðt;�zÞ;�z�;

ðiiiÞ ½ð0; zÞ; z� � ½ð0; z�1Þ; z�;

ðivÞ ½ð0; iÞ; z� � ½ð0; iÞ;�z�:

Define the quotient sets Da
ðnÞþ0 and Da

ðnÞ0 by Da
ðnÞþ0 ¼ Da

ðnÞþ= � and

Da
ðnÞ0 ¼ Da

ðnÞ= �.

Notice that in (2.9), the relation (iv) is a consequence of (ii) and (iii), since if z ¼ i,

z�1 ¼ �z. Also, if t ¼ n, (ii) follows from (i). We shall write ðt; z; zÞ for the � class of
½ðt; zÞ; z�.
It is clear that in analogy with the irreducible modules Lt;zðzÞ defined in the state-

ment of (2.8), we may define, for any triple ½ðt; zÞ; z� 2 Da
ðnÞþ, the cell module (or

‘standard module’) Wt;zðzÞ for the algebra gTLa
nðqÞ by stipulating that as space

Wt;zðzÞ ¼Wt;z, the cell module for T
aðnÞ, while s acts as ztn.

(2.10) COROLLARY. The set Da
ðnÞ0 defined in ð2:9Þ parametrises the isomorphism

classes of those cell modules for gTLa
nðqÞ on which the canonical invariant bilinear form

ðcf: ½GL2; Definition ð2:6Þ ð2Þ; p:188:�Þ does not vanish and, hence, parametrises the

irreducible modules. Moreover, for elements ½ðt; zÞ; z� and ½ðt0; z0Þ; z0� 2 Da
ðnÞþ,

Wt;zðzÞ ffiWt0;z0 ðz
0
Þ () Lt;zðzÞ ffi Lt0;z0 ðz

0
Þ () ½ðt; zÞ; z� � ½ðt0; z0Þ; z0�:

Proof. For ½ðt; zÞ; z� 2 Da
ðnÞ, Wt;zðzÞ is the gTLa

nðqÞ module which is the extension

of the TLa
nðqÞ module Wt;zðnÞ to gTLa

nðqÞ, on which s acts as ztn. This is the ‘cell
module’ corresponding to ½ðt; zÞ; z�, and the top quotient Lt;zðzÞ is the corresponding
irreducible. It is nonzero if and only if ½ðt; zÞ; z� 2 Da

ðnÞ. All the statements of the

corollary follow from (2.8). &

3. Multiplicities and Decomposition Numbers

The irreducible gTLa
nðqÞ-modules classified in (2.8) are all quotients of the spaces

Wt;zðnÞ by the radical of the form ft;z, with s ¼ o� 1 acting as a scalar multiple
of tn. In this section we begin our discussion of the composition factors of the cell
modules.

As in (2.10), Denote by Wt;zðzÞ the gTLa
nðqÞ module in which s acts as described in

(2.8) (for the irreducibles), i.e. as ztn. These are the ‘cell modules’ for gTLa
nðqÞ. We

remark that for convenience, we shall take the triples ½ðt; zÞ; z� to be in Da
ðnÞþ rather

than in the quotient set Da
ðnÞþ0. This means that there are isomorphisms among the

modules Wt;zðzÞ which induce the isomorphisms among the irreducible gTLa
nðqÞ mod-

ules which are referred to in the statement (2.8). In particular, we have isomorphisms

for each of the cases of the equivalence relation defined in (2.9).

Wt;zðzÞ ffiWt;�zð�zÞ for all z 2 R�;

Wn;zðzÞ ffiWn;yðzzy�1Þ for all y; z 2 R�;
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W0;zðzÞ ffiW0;z�1ðzÞ for all z 2 R�;

W0;iðzÞ ffiW0;ið�zÞ for any z with zn ¼ 1;

and similarly for the irreducible heads of these modules.

As above, for any pair t; z 2 La
ðnÞþ we denote by gðt; zÞ its equivalence class in

gLa
ðnÞ.

The dimensions of the Wt;zðnÞ are known (see (2.1) above), so the problem of

determining the dimensions of the irreducible modules is equivalent to that of deter-

mining the multiplicities of the irreducibles in the ‘cell modules’Wt;zðzÞ. We address
this question now. In rough terms, we shall show that with few exceptions, the

expression for Lt;zðzÞ as a linear combination of cell modules in the Grothendieck
group GðgTLa

nðqÞÞ is similar to that for Lt;zðnÞ as a linear combination of the

Ws;yðnÞ in GðTaðnÞÞ.

As in [GL2], the key is the existence of certain homomorphisms between cell

modules.

(3.1) PROPOSITION. Let ðt; zÞ and ðs; yÞ be elements of La
ðnÞ which satisfy the

conditions of ½GL2; ð3:4Þ�; i.e. s ¼ tþ 2‘! ð‘5 0Þ; z2 ¼ qs; y ¼ zq�‘ ðso that

y2 ¼ qtÞ. Assume that ðt; zÞ 6¼ ð0;�iÞ. Let y:Ws;yðnÞ !Wt;zðnÞ be the TaðnÞ-homo-

morphism defined in ½GL2; loc: cit:�. Then y is a homomorphism of gTLa
nðqÞ modules:

Ws;yðzÞ !Wt;zðzÞ for any z which satisfies zn ¼ z�t ½note that the assumptions imply

that z�t ¼ y�s�.

Proof. By the construction in [GL2, (3.5)], y intertwines the TaðnÞ actions on

Ws;yðnÞ and Wt;zðnÞ. Hence for m 2Ws;yðnÞ, we have

yðtn � mÞ ¼ tn � yðmÞ:

Multiplying both sides by z, we see that y intertwines the action of s on Ws;yðzÞ
and on Wt;zðzÞ. Since gTLa

nðqÞ is generated by s and TLa
nðqÞ, the result follows. &

(3.2) THEOREM. Let ðt; zÞ 2. Suppose that in the Grothendieck group GðTaðnÞÞ, we

have

Wt;zðnÞ ¼
X

ðs;yÞ2La
ðnÞ0

m
s;y
t;zLs;yðnÞ: ð3:2:1Þ

Then for any z satisfying zn ¼ z�t, we have, in GðgTLa
nðqÞÞ

Wðt;zÞðzÞ ¼
X

ðs;yÞ2La
ðnÞ0

m
s;y
t;zLðs;yÞðzÞ: ð3:2:2Þ

Proof. Given (3.2.1), there is a composition series ofWt;zðnÞ as T
aðnÞ-module, with

the irreducible TaðnÞmodule Ls;yðnÞ occurring m
s;y
t;z times. But by (2.8), the enveloping

algebra of gTLa
nðqÞ acting onWt;zðzÞ is precisely that of theTaðnÞ-action. It follows from

this and (3.1) that the composition series ofWt;zðnÞ as a T
aðnÞ-module is also a com-

position series forWt;zðzÞ as a gTLa
nðqÞ-module, for any z with zn ¼ z�t; moreover the

subquotientLs;yðnÞ is isomorphic toLs;yðzÞ as a gTLa
nðqÞ-module. The result follows. &
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We shall discuss the multiplicities m
s;y
t;z in the next section, but to make use of our

knowledge of these, we prove

(3.3) LEMMA. Let ½ðt; zÞ; z� 2 Da
ðnÞþ. Then ½ðt0; z0Þ; z� 2 Da

ðnÞþ satisfies ½ðt; zÞ; z� �
½ðt0; z0Þ; z� if and only if ðt; zÞ � ðt0; z0Þ in La

ðnÞþ. That is, for any ðappropriateÞ z,
½ðt; zÞ; z� � ½ðt0; z0Þ; z� in Da

ðnÞþ if and only if ðt; zÞ � ðt0; z0Þ in La
ðnÞþ.

Proof. Suppose ½ðt; zÞ; z� � ½ðt0; z0Þ; z�. Then clearly t ¼ t0. If t ¼ n, then using the

relation (2.9)(i), we see immediately that z ¼ z0. If 0 < t < n, then z0 ¼ �z. But if

z0 ¼ �z, then z ¼ �z, i.e. R has characteristic 2. But in that case, z0 ¼ z. If t ¼ 0 and

z2 6¼ �1, then z0 ¼ z�1, so that ðt; zÞ � ðt0; z0Þ. Finally, if t ¼ 0 and z ¼ �i, we again

have z0 ¼ �i, which completes the proof. &

4. Multiplicities, Dimension Formulae and Combinatorics

In this section we take R to be an algebraically closed field of characteristic zero, with

q an invertible element of R. We begin by reviewing the results of [GL2] concerning

the multiplicities of irreducible TaðnÞ-modules in the cell modules.

Recall (2.2.1) that La
ðnÞþ0 ¼ La

ðnÞþ= � where ðt; zÞ � ðt0; z0Þ if and only if t ¼ 0

and z0 ¼ z�1, and similarly for La
ðnÞ0. Then La

ðnÞþ0 parametrises the cell modules

Wt;zðnÞ and La
ðnÞ0 parametrises the distinct (isomorphism classes of) irreducible

TaðnÞ modules Lt;zðnÞ, which correspond to those cell modules on which the canoni-

cal form does not vanish.

Let & be the partial order on La
ðnÞ which is generated by the preorder '� which

stipulates that ðt; zÞ '� ðs; yÞ if

04 t4 s4 n; s ¼ tþ 2‘ ð‘ 2 Z; ‘ > 0Þ ð4:1aÞ

and

z2 ¼ qEðs;zÞs and y ¼ zq�Eðs;zÞ‘ for Eðs; zÞ ¼ �1: ð4:1bÞ

Note that (4.1) implies that

y2 ¼ qEðs;zÞt and zt ¼ ys ð4:2aÞ

and

ðt; zÞ & ðt0; z0Þ ) zt ¼ ðz0Þ
t0 : ð4:2bÞ

It suffices to verify (4.2b) when ðt; zÞ '� ðt0; z0Þ, in which case it follows easily from (4.1).

We note also that

(4.3) LEMMA. The partial order & on La
ðnÞ induces a partial order, also denoted &,

on the set La
ðnÞ0 ¼ La

ðnÞ= �.

Proof. We must show that if ðt; zÞ � ðt0; z0Þ in La
ðnÞ and ðt; zÞ '� ðs; yÞ, then

ðt0; z0Þ '
�
ðs; yÞ. It clearly suffices to take ðt; zÞ ¼ ð0; zÞ and ðt0; z0Þ ¼ ð0; z�1Þ. Then

ðs; yÞ ¼ ð2‘;�1Þ in the notation of (4.1a and 4.1b) and an easy calculation using (4.1a

and 4.1b) shows that Eðs; z�1Þ ¼ �Eðs; zÞ yields a solution of the equations (4.1). &
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The following result is proved in [GL2, Theorem 5.1].

(4.4) THEOREM. We have, in the Grothendieck ring GðTaðnÞÞ, for any ðt; zÞ 2

La
ðnÞþ,

Wt;zðnÞ ¼
X

ðs;yÞ2La
ðnÞ0

ðt;zÞ&ðs;yÞ

Ls;yðnÞ: ð4:4:1Þ

Thus the matrix expressing the cell modules in terms of the irreducibles in GðTaðnÞÞ

is upper unitriangular, and has entries 0 or 1. Now if ðt; zÞ is confined to La
ðnÞ, the

relation (4.4.1) can clearly be inverted. The next result is a statement about the

inverse of the matrix of the partial order on La
ðnÞ0. It asserts that the inverse has

all entries equal to 0 or �1. We thank D. Kazhdan for the suggestion that Theorem

ð4:5Þ might hold in general.

(4.5) THEOREM. We have, in the notation of ð4:4Þ,

Lt;zðnÞ ¼
X

ðs;yÞ2La
ðnÞ0

ðt;zÞ&ðs;yÞ

n
s;y
t;zWs;yðnÞ

where n
s;y
t;z ¼ 0 or �1.

Proof. If Lt;zðnÞ ¼Wt;zðnÞ there is nothing to prove. If not, then by [GL2, The-

orem (3.4)], there is a homomorphism of TLa
nðqÞ-modules

y : Ws;yðnÞ �!Wt;zðnÞ

for some ðs; yÞ such that ðt; zÞ ' ðs; yÞ and we may assume ðs; yÞ is minimal with

respect to this property, i.e. that ðt; zÞ '� ðs; yÞ. Then y is injective (cf. [GL2, p. 214])
and the quotient Q ¼Wt;zðnÞ=im y has head Lt;zðnÞ. By the argument given in [GL2,

pp214–215], the radical of Q (which is the radical of the form induced by ft;z on Q) is

either 0 or equal to Ls0;y0 ðnÞ, where ðs
0; y0Þ is the unique element of La

ðnÞ0 such that

ðt; zÞ ' ðs0; y0Þ and ðs; yÞ 6' ðs0; y0Þ. Then in the Grothendieck ring GðTaðnÞÞ, we have

Lt;zðnÞ ¼Wt;zðnÞ �Ws;yðnÞ � Ls0;y0 ðnÞ: ð4:5:1Þ

Now arguing by (downward) induction in La
ðnÞ0, the result follows for Lt;zðnÞ

from the corresponding equation for Ls0;y0 ðnÞ, together with the properties of

ðs0; y0Þ 2 La
ðnÞ. &

(4.6) COROLLARY. ðiÞ Every maximal chain between two elements of the poset

La
ðnÞ0 has the same number of elements.

ðiiÞ In the notation of ð4:5Þ, we have ns;yt;z ¼ ð�1Þ
i, where i is the number of links in a

maximal chain between ðt; zÞ and ðs; yÞ 2 La
ðnÞ.

This is proved by an easy refinement of the argument in the proof of (4.5) above.
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(4.7) DEFINITION. We say that ðt; zÞ and ðt0; z0Þ 2 La
ðnÞ0 are in the same block if

Lt0;z0 ðnÞ is a composition factor of Wt;zðnÞ, or vice versa. Define blocks of D
a
ðnÞ0

similarly.

Let us now interpret these results as they apply to the representation theory of the

algebra gTLa
nðqÞ.

(4.8) THEOREM. Let gTLa
nðqÞ be the Temperley-Lieb quotient of the affine Hecke

algebra of type An�1 ðsee ð1:8ÞÞ. For any element ðt; z; zÞ 2 Da
ðnÞ0 ðsee ð2:9ÞÞ we have

Wt;zðzÞ ¼
X

ðs;yÞ2La
ðnÞ0

ðt;zÞ&ðs;yÞ

Ls;yðzÞ ð4:8:1Þ

in the Grothendieck ring GðgTLa
nðqÞÞ ðsee ð2:8Þ and ð2:10Þ for the definitions of these

modulesÞ.

The irreducibles Ls;yðzÞ occurring on the right side of ð4:8:1Þ are all distinct ði.e. pair-

wise nonisomorphicÞ. Thus the multiplicity of any irreducible module in a cell module is

0 or 1.

Proof. Equation (4.8.1) follows immediately from (3.2) and (4.4). If Ls;yðzÞ ffi
Ls0;y0 ðzÞ then by (2.8), ½ðs; yÞ; z� � ½ðs0; y0Þ; z�. But by (3.3), this implies that ðs; yÞ ¼
ðs0; y0Þ in La

ðnÞ0, which proves the statement. &

(4.9) COROLLARY. Two elements ½ðs; yÞ; z� and ½ðs0; y0Þ; z0� of Da
ðnÞ0 are in the same

block if and only if there is a triple ½ðt; zÞ; z� such that ½ðs0; y0Þ; z0� � ½ðt; zÞ; z�, and ðt; zÞ is
connected to ðs; yÞ in the partial order & on La

ðnÞ0.

Proof. To say that two elements d ¼ ½ðs; yÞ; z� and d0 ¼ ½ðs0; y0Þ; z0� of Da
ðnÞ0 are in

the same block is to say that there is a chain d1 ¼ d; d2; . . . ; dr ¼ d0 such that for each
i, the irreducible module Ldi is a composition factor of the cell module Wdiþ1 or vice

versa (cf. [GL1, (3.9)]). By Theorems (3.2) and (4.8), the implied equivalence relation

on triples is generated by a relation which preserves the third factor z. The result
follows. &

Combining (4.5) and (4.6), we also have

(4.10) THEOREM. Maintain the notation of ð4:8Þ. For any element ½ðt; zÞ; z� 2 Da
ðnÞ0

ðsee ð2:9ÞÞ we have

Lt;zðzÞ ¼
X

ðs;yÞ2La
ðnÞ0

ðt;zÞ&ðs;yÞ

n
s;y
t;zWs;yðzÞ ð4:10:1Þ

in the Grothendieck ring GðgTLa
nðqÞÞ, where n

s;y
t;z ¼ ð�1Þ

i if i is the length of a maximal

chain in La
ðnÞ0 from ðt; zÞ to ðs; yÞ.
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The last three results may also be formulated in terms of the order relation which

& induces on Da
ðnÞ0.

(4.11) THEOREM. Let & be the partial order on Da
ðnÞ0 induced by the preorder '�

defined by

ðt; z; zÞ '
�
ðt0; z0; zÞ () ðt; zÞ '

�
ðt0; z0Þ in La

ðnÞþ:

If ðt; z; zÞ & ðt0; z0; z0Þ, then there is an injective homomorphism of gTLa
nðqÞ modules

:Wt0;z0 ðz
0
Þ �!Wt;zðzÞ. The multiplicity of the irreducible module Lt0;z0 ðz

0
Þ in the cell

module Wt;zðzÞ is one if ðt; z; zÞ & ðt0; z0; z0Þ and zero otherwise.

This is simply a restatement of (4.8). Of course this and the preceding statements

may be rephrased in terms of the representations of the extended affine Hecke alge-

bra, but we leave this to the next section.

5. Description in Terms of Semisimple-Nilpotent Pairs

Let G be the group SLNðCÞ and let G be the Lie algebra of G. When R ¼ C, the

affine Hecke algebra may be realised as a convolution algebra (cf. [KL], [L1], [L2],

[Gi], [CG] or [X]), and there is consequently a theory of ‘standard modules’ for

the algebra gTLa
nðqÞ which classifies them by G-conjugacy classes of pairs ðs;NÞ such

that AdðgÞ �N ¼ q2N, where s is a semisimple element of G and N is a nilpotent ele-

ment of G (notice that our algebra is a quotient of the affine Hecke algebra which

corresponds to the parameter q2 in the usual notation). These modules ‘generically’

have top quotients which constitute a complete set of irreducible modules for gTLa
nðqÞ.

When q2 is a root of unity, the picture is not so well understood (see, however [G]

and [A]). We show how our results may be expressed in these terms; in particular

our results give complete information on the irreducible modules and decomposition

numbers of the standard modules, for pairs ðs;NÞ, where N has at most two Jordan

blocks. Write Pþ for the set of G-conjugacy classes of pairs ðs;NÞ such that

AdðgÞ �N ¼ q2N as above.

(5.1) PROPOSITION. There is a natural bijection between the set Da
ðnÞþ0 of ð2:9Þ and

the set Pþ of semisimple-nilpotent pairs described above, in which N has at most two

Jordan blocks.

Proof. Let t be any integer satisfying n ¼ 2kþ t, where k 2 Z and 04 k4 n=2.

Let Jk denote the k� k (Jordan) matrix with zeros everywhere except on the super-

diagonal, where all entries are 1. Then each pair ðs;NÞ such that AdðgÞ �N ¼ q2N and

N has at most two Jordan blocks is G-conjugate to one where

N ¼ Nk ¼
Jn�k

Jk

� �
ð5:1:1Þ

and

190 J. J. GRAHAM AND G. I. LEHRER

https://doi.org/10.1023/A:1019693505291 Published online by Cambridge University Press

https://doi.org/10.1023/A:1019693505291


s ¼

a1
a1q

�2

a1q
�4

. .
.

a1q
�2ðn�k�1Þ

a2
a2q

�2

a2q
�4

. .
.

a2q
�2ðk�1Þ

266666666666666664

377777777777777775
ð5:1:2Þ

where, since det s ¼ 1, a1; a2 2 C satisfy

akþt1 ak2 ¼ qf2kðk�1Þþ2ktþtðt�1Þg ¼ qfnðn�1Þ�2kðn�kÞg: ð5:1:3Þ

Denote the element s of (5.1.2) by sða1; a2Þ. It is easily verified that the ordered pair

ða1; a2Þ is uniquely determined by the G conjugacy class of the pair ðs;NÞ, except if

n ¼ 2k, in which case a1 and a2 may be reversed; i.e. ðsða1; a2Þ;Nn
2
Þ is G conjugate

to ðsða2; a1Þ;Nn
2
Þ. Hence

(5.1A). The set Pþ of the statement is in bijection with the set of pairs fðsða1; a2Þ;NkÞg,

where 04 2k4 n, and a1; a2 2 C satisfy ð5:1:3Þ, modulo the equivalence of

ðsða1; a2Þ;Nn
2
Þ and ðsða2; a1Þ;Nn

2
Þ.

Define variables A1;A2 by

A1 ¼ a1a2q
�ðn�2Þ; A2 ¼ a1q

�ðn�k�1Þ: ð5:1:4Þ

With this change of variables, Equation (5.1.3) becomes

Ak
1A

t
2 ¼ 1: ð5:1:5Þ

We now have the following parametrisation of the relevant G-conjugacy classes of

pairs ðs;NÞ in terms of solutions of Equation (5.1.5).

(5.1.6) LEMMA. For any t ¼ n� 2k 6¼ 0; n, the G-conjugacy classes of pairs ðs;NÞ

where N has Jordan blocks of size n� k; k, are in natural bijection with the solutions

ðA1;A2Þ of Equation ð5:1:5Þ. If t ¼ n, the classes are in bijection with the solutions A2
of equation An

2 ¼ 1, while if t ¼ 0, the classes are in bijection with the solutions ðA1;A2Þ

of the Equation ð5:1:5Þ, modulo the equivalence relation �, which stipulates that

ðA1;A2Þ � ðA1;A1A
�1
2 Þ.

Proof. Given a solution ðA1;A2Þ of (5.1.5), Equations (5.1.4) determine unique

values of a1; a2 which satisfy (5.1.3) and hence determine a class ðs;NÞ of the required

type. Conversely, the class of ðs;NÞ determines ða1; a2Þ uniquely unless t ¼ 0, in

which case, ðs;NÞ corresponds to both ða1; a2Þ and ða2; a1Þ. Hence if t 6¼ 0, both the

class of ðs;NÞ and ða1; a2Þ are determined by ðA1;A2Þ which is arbitrary, subject to
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(5.1.5). If t 6¼ 0; n, then distinct ða1; a2Þ determine distinct classes, proving the first

statement. If t ¼ n, a2 is irrelevant to the class, which is determined by a1, proving

the second statement.

An easy calculation shows that in the bijective correspondence which is defined by

(5.1.4) between solutions ða1; a2Þ of (5.1.3) and ðA1;A2Þ of (5.1.5), if ða1; a2Þ corre-

sponds to ðA1;A2Þ, then ða2; a1Þ corresponds to ðA1;A1A
�1
2 q�tÞ. Hence, if t ¼ 0,

the G-conjugacy of the pairs ðs;NÞ corresponding to ða1; a2Þ and ða2; a1Þ is reflected

in the equivalence ðA1;A2Þ � ðA1;A1A
�1
2 Þ. &

We shall next give an analogous description of Da
ðnÞþ0. Recall (2.9) that Da

ðnÞþ0 is

a quotient of the set Da
ðnÞþ of triples ðt; z; zÞ, where t ¼ n� 2k for some integer k

such that 04 k4 n
2 and z; z 2 R are such that znzt ¼ 1. Equivalently, if we write

B1 ¼ z2; B2 ¼ zz; ð5:1:7Þ

then

Bk
1B

t
2 ¼ 1: ð5:1:8Þ

In analogy with (5.1.6) we shall prove

(5.1.9) LEMMA. If t 6¼ 0; n, the set Da
ðnÞþ0 of equivalence classes under � of triples

ðt; z; zÞ are in bijection with the solutions ðB1;B2Þ of ð5:1:8Þ. If t ¼ n the equivalence

classes are in bijection with the solutions B2 of B
n
2 ¼ 1. If t ¼ 0, the equivalence classes

of triples are in bijection with the solutions ðB1;B2Þ of Equations ð5:1:7Þ, modulo the

equivalence relation �, which stipulates that ðB1;B2Þ � ðB1;B1B
�1
2 Þ.

Proof of ð5:1:8Þ. If t 6¼ 0; n, the only relation among the relevant triples is (2.9)(ii).

It follows that the � class of ðt; z; zÞ is uniquely determined by ðz2; zzÞ, which may be
arbitrary, subject to (5.1.8). The first statement follows. If t ¼ n, the� class of ðn; z; zÞ
depends only on B2 ¼ zz, which satisfies Bn

2 ¼ 1, which is the second statement.

If t ¼ 0, the equivalence class of ð0; z; zÞ consists of the four triples

fð0; z; zÞ; ð0; z�1; zÞ; ð0;�z;�zÞ; ð0;�z�1; zÞg:

These all have the same value for B1, while the (two) possible values for B2 are

B2 ¼ zz and B02 ¼ z�1z ¼ B1B
�1
2 . This proves the third statement. &

The proof of (5.1) is now complete, since Lemmas (5.1.6) and (5.1.9) show that Pþ
and Da

ðnÞþ0 have the same parameter set.

(5.1B) COROLLARY. The above correspondence between the set Pþ of G-classes of

pairs and the set Da
ðnÞþ0 of � classes of triples is realized as follows. The class of the

pair ðsða1; a2Þ;NkÞ ðsee ð5:1:1ÞÞ corresponds to the class of the triple ðt; z; zÞ ðsee ð2:9ÞÞ if

t ¼ n� 2k; z2 ¼ a1a2q
�ðn�2Þ; zz ¼ a1q

�ðn�k�1Þ: ð5:1:10Þ
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Note that the relations (5.1.10) imply

z2 ¼ a1a
�1
2 q�t ð5:1:11Þ

Using the identification (5.1B), we may describe the partial order & in terms of the

pairs ðs;NÞ. First, let us agree to writeMs;N ¼Mt;zðzÞ for the cell module of gTLa
nðqÞ if

ðs;NÞ and ðt; z; zÞ correspond under the map defined in (5.1) or (5.1B). The irreduci-
ble gTLa

nðqÞ modules are parametrised by the subset D
a
ðnÞ0 of Da

ðnÞþ0 (the two sets are

equal unless q2 ¼ �1). The next result describes the corresponding subset of Pþ.

(5.1C) PROPOSITION. The subset P of Pþ which corresponds to Da
ðnÞ0 under the

bijection ð5:1BÞ is given by

P ¼ Pþ if q2 6¼ �1;
Pþ nfðsðx;�ð�1Þn2xÞ;Nn

2
Þ j xn ¼ ð�1Þ

n
2g if q2 ¼ �1 and n is even:



Proof. The subset P is obtained from Pþ by excluding the pairs ðs;NÞ which

correspond under (5.1B) to the triples ð0;�q; zÞ when q2 ¼ �1 and n is even (see (2.2)
and (2.2A)). Thus the excluded triples are fð0;�i; zÞ j zn ¼ 1g. It now remains only to
express these triples as pairs ðs;NÞ, using the relations in (5.1B). &

If ðs;NÞ 2 P corresponds to ðt; z; zÞ 2 Da
ðnÞþ0, we write Ls;N ¼ Lt;zðzÞ for the cor-

responding irreducible gTLa
nðqÞ module.

(5.2) PROPOSITION. Suppose ðsða1; a2Þ;NkÞ is the semisimple-nilpotent pair defined

in ð5:1Þ ð2 PþÞ. The corresponding cell module, Msða1;a2Þ;Nk
, is irreducible unless there is

a solution ðE; t0Þ of the equations

a1a
�1
2 ¼ qðtþEt

0Þ; E ¼ �1; t < t0 # n; t � t0ðmod 2Þ ð5:2:1Þ

If Equations ð5:2:1Þ have a solution, then there is an injective homomorphism

Msða0
1
;a0
2
Þ;Nk0

�!Msða1;a2Þ;Nk
;

where

k0 ¼
1

2
ðn� t0Þ; a01 ¼ a1q

ð1�EÞðk�k0Þ; a02 ¼ a2q
�ð1�EÞðk�k0Þ: ð5:2:2Þ

Proof. The statement is a translation into the language of semisimple-nilpotent

pairs of the fact (cf. (4.11) above) that if ðt; z; zÞ & ðt0; z0; z0Þ in Da
ðnÞ0, then there is an

injective homomorphism between the corresponding cell modules of gTLa
nðqÞ, while if

ðt; z; zÞ is maximal, then the corresponding cell module is irreducible. But (5.1B)
shows that in the above correspondence between pairs and triples,

z2 ¼ a1a
�1
2 q�t: ð5:2:3Þ

By (4.1), ðt; z; zÞ is maximal unless there is a solution to the equation z2 ¼ qEt
0

with

E; t0 as in (5.2.1). If ðt; z; zÞ is a triple corresponding to ðsða1; a2Þ;NkÞ, then translating

this using (5.2.3) yields the first statement.
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Given a solution ðE; t0Þ of (5.2.1) one uses (4.1) to determine the corresponding tri-
ple ðt0; z0; zÞ such that ðt; z; zÞ '� ðt0; z0; zÞ. The corresponding semisimple-nilpotent
pair ðsða01; a

0
2Þ;Nk0 Þ may then be determined using Equations (5.1.10) and the

Equations (5.2.2) are the result. &

The partial order & may now be expressed in terms of the set Pþ of semisimple-
nilpotent pairs.

(5.3) DEFINITION. Let Pþ ¼ fðsða1; a2Þ;NkÞg be the set of semisimple-nilpotent

pairs as described in (5.1). Define the partial order & on Pþ as that which is gen-
erated by the preorder '� which asserts that ðsða1; a2Þ;NkÞ '

�
ðsða01; a

0
2Þ;Nk0 Þ if there

exists E ¼ �1 such that if t ¼ n� 2k; t0 ¼ n� 2k0,

k0 < k; a1a
�1
2 ¼ qðtþEt

0Þ a01 ¼ a1q
ð1�EÞðk�k0Þ a02 ¼ a2q

�ð1�EÞðk�k0Þ:

We may now express (4.11) in the language of pairs. As well as doing this, the next

result gives some properties of the ordered set Pþ. The statement (iv) of Proposi-
tion (5.4) is related to a result of Zelevinsky [Z1].

(5.4) PROPOSITION. ðiÞ Let ðs;NÞ and ðs0;N0Þ be two elements of Pþ. The irre-

ducible module Ls0;N0 is a composition factor of multiplicity one in the cell module Ms;N

if ðs;NÞ & ðs0;N0Þ in Pþ. Otherwise its multiplicity is zero.

ðiiÞ In Equations ð5:3Þ, if E ¼ þ1, then a01 ¼ a1 and a02 ¼ a2. If E ¼ �1, then a01 ¼ a2
and a02 ¼ a1. Thus in all cases, we have

a01ða
0
2Þ
�1
¼ qðt

0þEtÞ ¼ ða1a
�1
2 Þ

E:

ðiiiÞ If Equations ð5:3Þ have a solution ðE; k0Þ, then an1 ¼ qnðn�1ÞþkðEt
0�nÞ.

ðivÞ If q is not a root of unity, then each cell module has at most two composition

factors.

Proof. The statement (i) is clear from (4.11). The assertions in (ii) are obtained by

elementary manipulations of Equations in (5.3), while (iii) is a consequence of

Equations (5.3), together with (5.1.3).

Now suppose q is not a root of unity, and that ðsða1; a2Þ;NkÞ '
�
ðsða01; a

0
2Þ;Nk0 Þ as in

(5.3). Then by (ii) above, a01ða
0
2Þ
�1
¼ qðt

0þEtÞ ¼ ða1a
�1
2 Þ

E. Therefore if ðsða01; a
0
2Þ;Nk0 Þ '

�

ðsða001; a
00
2Þ;Nk00 Þ, we require k

00 < k0 < k and a01ða
0
2Þ
�1
¼ qðt

0þE0t0Þ. Since q is not a root

of unity, this entails t0 þ E0t00 ¼ t0 þ Et, whence t00 ¼ t 6> t0, so that no solution exists.

The result now follows from (i). &

We now summarise our results as they apply to the affine Hecke algebra.

(5.5) THEOREM. Let fHa
nðqÞ be the extended affine Hecke algebra of type ~An�1

ðsee ð1:3ÞÞ over an algebraically closed field R of characteristic zero. Let G ¼ SLnðRÞ

and let Pþ be the set of G-conjugacy classes of pairs ðs;NÞ with s 2 G semisimple,
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N 2 LieðGÞ nilpotent with at most two Jordan blocks, and AdðsÞ �N ¼ q2N. Let P
be the subset of Pþ defined in Proposition ð5:1CÞ. Then fHa

nðqÞ has a set

fMs;N j ðs;NÞ 2 Pþg of ‘cell modules’ which have the following properties.

ðiÞ For each cell module Msða1;a2Þ;Nk
there is a canonical fHa

nðqÞ invariant bilinear

pairing

fsða1;a2Þ;Nk
: Msða1;a2Þ;Nk

�Msða0
1
;a0
2
Þ;Nk
�!R;

where a01 ¼ a�11 q2ðn�k�1Þ and a02 ¼ a�12 q2ðk�1Þ, such that fsða1;a2Þ;Nk
6¼ 0 if and only

if ðsða1; a2Þ;NkÞ 2 P.
ðiiÞ If ðs;NÞ 2 P, Ms;N has a unique simple quotient Ls;N. This is the quotient of Ms;N

by the radical of the form fs;N.

ðiiiÞ The simple modules fLs;N j ðs;NÞ 2 Pg are pairwise non-isomorphic and form a

complete set of irreducible fHa
nðqÞ modules which factor through the Temperley–

Lieb quotient gTLa
nðqÞ ðsee ð1:7Þ, ð1:8Þ for the definitionÞ.

ðivÞ Each cell module has all its composition factors among the simple modules in ðiiÞ.

ðvÞ Using the description of P in ð5:1Þ and ð5:1:6Þ, the elements of P are represented

by pairs ðsða1; a2Þ;NkÞ. Then dimMsða1;a2Þ;Nk
¼ n

k

� �
and the multiplicity

½Msða1;a2Þ;Nk
: Lsða0

1
;a0
2
Þ;Nk0

� is one if ðsða1; a2Þ;NkÞ & ðsða
0
1; a

0
2Þ;Nk0 Þ in the partial

order defined in ð5:3Þ, and is zero otherwise.

ðviÞ In particular, Msða1;a2Þ;Nk
is irreducible unless an1 and an2 are powers of q.

ðviiÞ In the ðuniqueÞ expression of the irreducible module Ls;N as a linear combination of

the cell modules Ms0;N0 in the Grothendieck group GðfHa
nðqÞÞ, the coefficients occur-

ring are all 0 or �1.

The statement (i) is a reformulation of the properties of the pairing ft;z:

Wt;zðnÞ �Wt;z�1ðnÞR described just before (2.2). The relationship between ða1; a2Þ

and ða01; a
0
2Þ follows from the relations (5.1.10) applied to the triples ðt; z; zÞ and

ðt; z�1; z�1Þ. The last statement (vii) is a reformulation of Theorem (4.5) above. All
the other statements are clear from the foregoing discussion, and the results of

[GL2].

To illustrate our results, we give firstly an explicit description of the subregular

case (cf. [L2] for a K-theoretic description of this case for all classical groups) and

then two examples, one where q is not a root of unity, but the cell module has

two composition factors, the other where q is a root of unity and the cell module

has n=4 composition factors.

(5.6) EXAMPLE. Suppose N is subregular and that s corresponds to ða1; a2Þ. Then

t ¼ n� 2 and k ¼ 1 above, and if there were a solution to the equations in (5.3), we

would have k0 ¼ 0, so that t0 ¼ n. A short computation shows thatMs;N is irreducible

unless

an1 ¼ qnðn�2þEÞ ð5:6:1Þ
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for E ¼ �1. If this equation has a solution, thenMs;N has a composition factor Ls0;N0

where N0 is regular nilpotent and s0 is semisimple with a01 ¼ a1q
ð1�EÞ. Equation (5.6.1)

has a solution for both E ¼ 1 and E ¼ �1 if and only if q2n ¼ 1. Hence if q2n 6¼ 1, then
for the n values of a1 which satisfy (5.6.1),Ms;N has two distinct composition factors,

of dimension 1; n� 1. If q2n ¼ 1, thenMs;N has three distinct composition factors, of

dimension 1; 1; n� 2, except if q2 ¼ 1 in which case there are again two.

(5.7) EXAMPLES. (i) Suppose that q is not a root of unity. Take n ¼ 2m to be even

with m > 4 and let a1 be one of the n solutions of a
n
1 ¼ q2m

2þ10m�16. Let a2 ¼ a1q
�12.

Then ðsða1; a2Þ;Nm�2Þ 2 P and a short computation using Equations in (5.3) shows
that Msða1;a2Þ;Nm�2

has two composition factors, viz. Lsða1;a2Þ;Nm�2
and Lsða1;a2Þ;Nm�4

.

Similarly, if a1 is one of the n solutions of an1 ¼ q2m
2�6mþ16, and a2 ¼ a1q

4,

then Msða1;a2Þ;Nm�2
again has two composition factors, viz. Lsða1;a2Þ;Nm�2

and

Lsða1q4;a2q�4Þ;Nm�4
(this is the case E ¼ �1). In both cases, the dimension of the irredu-

cible module Lsða1;a2Þ;Nm�2
is

2m

m� 4

	 

12mþ 6

ðm� 2Þðm� 3Þ
;

and the second composition factor coincides with its cell module.

(ii) Suppose that q2 ¼ �1 and that n ¼ 4m is divisible by 4. Take a1 ¼ a2 ¼ a, with

an ¼ 1. Then the pair ðsða1; a2Þ;Nn
2
Þ lies in P. Consider the cell moduleMsða;aÞ;N2m . It is

straightforward to show that in this case, ðsða; aÞ;N2mÞ ' ðs;NÞ if and only if

ðsða; aÞ;N2mÞ '
�
ðs;NÞ, and that the set of pairs ðs;NÞ for which this is true is

fðsða; aÞ;N2m�2iÞ j i ¼ 0; 1; 2; . . . ;mg. Thus Msða;aÞ;N2m has mþ 1 composition factors.

We conclude with some remarks concerning the connection between our results

and the more general ones of Grojnowski [G]. According to [G], the irreducible mod-

ules Lf, as well as the ‘cell’ or standard modules Mf for fHa
nðqÞÞ correspond (in our

case) to elements f of a certain subset F�q of the set of G-conjugacy classes of pairs
ðs;NÞ with Ad(s)�N ¼ q2N. It may be verified, using [G, Theorem 2], that our P is a
subset of F�q.
Moreover, although it speaks only of dimensions, [G, Theorem 1] implies that the

multiplicity of the irreducible Lc (c � ðs0;N0Þ) in the cell module Mf (f � ðs;NÞ) is
given by a ‘Kazhdan–Lusztig’ type coefficient afc, which is the multiplicity of the

constant local system on ZGðsÞ �N in the perverse extension of the corresponding

local system on ZGðs
0Þ �N0 to its closure in the Lie algebra of G. Assuming this result,

if we also assume$ that our cell modules coincide with those in [G], our results show

that if N is a two-step (or regular) nilpotent element, the coefficients afc are 0 or 1.

Moreover, the coefficients efc of the inverse matrix are 0;�1.

?Note added in Proof. This has now been proved and will appear in a subsequent work of the authors.
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Similar remarks apply to the connection between our results and those concerning

standard modules and their decomposition in [Z2] and [R].
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