Notation

Numbers refer to pages where definitions are given

$$
\begin{gathered}
\equiv \text { definition } \quad \Rightarrow \text { implies } \\
\exists \text { there exists } \quad \Sigma \text { summation sign } \\
\square \text { end of a proof }
\end{gathered}
$$

Sets

$\cup A \cup B$, union of A and B
ก $A \cap B$, intersection of A and B
ว $A \subset B, B \supset A, A$ is contained in B

- $A-B, B$ subtracted from A
$\in x \in A$, is a member of A
\varnothing the empty set

Maps

$\phi: \mathscr{U} \rightarrow \mathscr{V}, \phi$ maps $p \in \mathscr{U}$ to $\phi(p) \in \mathscr{V}$
$\phi(\mathscr{U})$ image of \mathscr{U} under ϕ
ϕ^{-1} inverse map to ϕ
$f \circ g$ composition, g followed by f
ϕ_{*}, ϕ^{*} mappings of tensors induced by map $\phi, 22-4$

Topology

\bar{A} closure of A
A^{*} boundary of $A, 183$
$\operatorname{int} A$ interior of $A, 209$

Differentiability

$C^{0}, C^{r}, C^{r-}, C^{\infty}$ differentiability conditions, 11

Manifolds

$\mathscr{M} n$-dimensional manifold, 11
$\left(\mathscr{U}_{\alpha}, \phi_{\alpha}\right) \quad$ local chart determining local coordinates $x^{a}, 12$
$\partial \mathscr{M}$ boundary of $\mathscr{M}, 12$
$R^{n} \quad$ Euclidean n-dimensional space, 11
$\frac{1}{2} R^{n} \quad$ lower half $x^{1} \leqslant 0$ of $R^{n}, 11$
$S^{n} \quad n$-sphere, 13
\times Cartesian product, 15

Tensors

$(\partial / \partial t)_{\lambda}, \mathbf{X} \quad$ vectors, 15
$\omega, \mathrm{d} f$ one-forms, 16,17
$\langle\omega, \mathbf{X}\rangle$ scalar product of vector and one-form, 16
$\left\{\mathbf{E}_{a}\right\},\left\{\mathbf{E}^{a}\right\} \quad$ dual bases of vectors and one-forms, 16, 17
$T_{1} a_{1} \ldots a_{r_{b_{1}} \ldots b_{s}}, \quad$ components of tensor \mathbf{T} of type $(r, s), 17-19$
\otimes tensor product, 18
\wedge skew product, 21
() symmetrization (e.g. $\left.T_{(a b)}\right), 20$
[] skew symmetrization (e.g. $T_{[a b]}$), 20
$\delta^{a}{ }_{b} \quad$ Kronecker delta (+1 if $a=b, 0$ if $a \neq b$)
$T_{p}, T^{*}{ }_{p}$ tangent space at p and dual space at $p, 16$
$T_{s}^{r}(p)$ space of tensors of type (r, s) at $p, 18$
$T_{s}^{r}(\mathscr{M})$ bundle of tensors of type (r, s) on $\mathscr{M}, 51$
$T(\mathscr{M})$ tangent bundle to $\mathscr{M}, 51$
$L(\mathscr{M})$ bundle of linear frames on $\mathscr{M}, 51$

Derivatives and connection

$\partial / \partial x^{i}$ partial derivatives with respect to coordinate x^{i}
$(\partial / \partial t)_{\lambda}$ derivative along curve $\lambda(t), 15$
d exterior derivative, 17, 25
$L_{\mathbf{X}} \mathbf{Y},[\mathbf{X}, \mathbf{Y}] \quad$ Lie derivative of \mathbf{Y} with respect to $\mathbf{X}, 27-8$
$\nabla, \nabla_{\mathbf{x}}, T_{a b ; c}$ covariant derivative, 30-2
$\mathrm{D} / \partial t$ covariant derivative along curve, 32
$\Gamma^{i}{ }_{j k}$ connection components, 31
\exp exponential map, 33

Riemannian spaces

$(\mathscr{M}, \boldsymbol{g}) \quad$ manifold \mathscr{M} with metric \mathbf{g} and Christoffel connection
η volume element, 48
$R_{a b c d}$ Riemann tensor, 35
$R_{a b}$ Ricci tensor, 36
$R \quad$ curvature scalar, 41
$C_{a b c d}$ Weyl tensor, 41
$O(p, q)$ orthogonal group leaving metric $G_{a b}$ invariant, 52
$G_{a b}$ diagonal metric diag $(\underbrace{+1,+1, \ldots,+1}_{p \text { terms }}, \underbrace{-1, \ldots,-1}_{q \text { terms }})$
$O(\mathscr{M})$ bundle of orthonormal frames, 52

Space-time

Space-time is a 4-dimensional Riemannian space (\mathscr{M}, \mathbf{g}) with metric normal form diag $(+1,+1,+1,-1)$. Local coordinates are chosen to be ($x^{1}, x^{2}, x^{3}, x^{4}$).
$T_{a b}$ energy momentum tensor of matter, 61
$\Psi_{(i)}{ }^{a \ldots b}{ }_{c \ldots d}$ matter fields, 60
L Lagrangian, 64
Einstein's field equations take the form

$$
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}=8 \pi T_{a b}
$$

where Λ is the cosmological constant.
$(\mathscr{S}, \boldsymbol{\omega})$ is an initial data set, 233

Timelike curves

\perp perpendicular projection, 79
$\mathrm{D}_{F} / \partial s$ Fermi derivative, $80-1$
θ expansion, 83
$\omega^{a}, \omega_{a b}, \omega$ vorticity, 82-4
$\sigma_{a b}, \sigma$ shear, 83-4

Null geodesics

θ expansion, 88
$\hat{\omega}_{a b}, \hat{\omega} \quad$ vorticity, 88
$\hat{\sigma}_{a b}, \hat{\sigma} \quad$ shear, 88

Causal structure

I^{+}, I^{-}chronological future, past, 182
J^{+}, J^{-}causal future, past, 183
$E^{+}, E^{-} \quad$ future, past horismos, 184
$D^{+}, D^{-} \quad$ future, past Cauchy developments, 201
$H^{+}, H^{-} \quad$ future, past Cauchy horizons, 202

Boundary of space-time

$\mathscr{M}^{*}=\mathscr{M} \cup \Delta \quad$ where Δ is the c-boundary, 220
$\mathscr{I}^{+}, \mathscr{F}^{-}, i^{+}, i^{-} \quad$ c-boundary of asymptotically simple and empty spaces, 122, 225
$\overline{\mathscr{M}}=\mathscr{M} \cup \partial \mathscr{M}$ when \mathscr{M} is weakly asymptotically simple; the boundary $\partial \mathscr{M}$ of \mathscr{M} consists of \mathscr{I}^{+}and $\mathscr{I}-, 221,225$
$\mathscr{M}^{+}=\mathscr{M} \cup \partial \quad$ where ∂ is the b-boundary, 283

