Notation

Numbers refer to pages where definitions are given

Sets

- $\cup A \cup B$, union of A and B
- $\cap \quad A \cap B, \text{ intersection of } A \text{ and } B$
- \supset $A \subset B, B \supset A, A$ is contained in B
- A B, B subtracted from A
- $\in x \in A$, is a member of A
- \emptyset the empty set

Maps

 $\begin{array}{ll} \phi \colon \mathscr{U} \to \mathscr{V}, \ \phi \ \text{maps} \ p \in \mathscr{U} \ \text{to} \ \phi(p) \in \mathscr{V} \\ \phi(\mathscr{U}) & \text{image of} \ \mathscr{U} \ \text{under} \ \phi \\ \phi^{-1} & \text{inverse map to} \ \phi \\ f \circ g & \text{composition,} \ g \ \text{followed by} \ f \\ \phi_{*}, \ \phi^{*} & \text{mappings of tensors induced by map} \ \phi, \ 22-4 \end{array}$

Topology

 \overline{A} closure of AA' boundary of A, 183 int A interior of A, 209

Differentiability

 $C^{0}, C^{r}, C^{r-}, C^{\infty}$ differentiability conditions, 11

Manifolds

 \mathscr{M} n-dimensional manifold, 11 $(\mathscr{U}_{\alpha}, \phi_{\alpha})$ local chart determining local coordinates x^{a} , 12 [381] $\partial \mathcal{M}$ boundary of \mathcal{M} , 12

 R^n Euclidean *n*-dimensional space, 11

 $\frac{1}{2}R^n$ lower half $x^1 \leq 0$ of R^n , 11

 S^n *n*-sphere, 13

 \times Cartesian product, 15

Tensors

 $(\partial/\partial t)_{\lambda}$, X vectors, 15

 $\boldsymbol{\omega}, \mathrm{d}f$ one-forms, 16, 17

 $\langle \omega, X \rangle$ scalar product of vector and one-form, 16

 $\{\mathbf{E}_a\}, \{\mathbf{E}^a\}$ dual bases of vectors and one-forms, 16, 17

 $T^{a_1\cdots a_r}{}_{b_1\dots b_r}$, components of tensor **T** of type (r, s), 17–19

 \otimes tensor product, 18

 \land skew product, 21

() symmetrization (e.g. $T_{(ab)}$), 20

skew symmetrization (e.g. $T_{[ab]}$), 20

 $\delta^a{}_b$ Kronecker delta $(+1 \text{ if } a = b, 0 \text{ if } a \neq b)$

 T_p, T^*_p tangent space at p and dual space at p, 16

 $T_s^r(p)$ space of tensors of type (r, s) at p, 18

 $T_{s}^{r}(\mathcal{M})$ bundle of tensors of type (r, s) on $\mathcal{M}, 51$

 $T(\mathcal{M})$ tangent bundle to \mathcal{M} , 51

 $L(\mathcal{M})$ bundle of linear frames on \mathcal{M} , 51

Derivatives and connection

 $\partial/\partial x^i$ partial derivatives with respect to coordinate x^i

 $(\partial/\partial t)_{\lambda}$ derivative along curve $\lambda(t)$, 15

d exterior derivative, 17, 25

 $L_{\mathbf{X}}\mathbf{Y}$, $[\mathbf{X}, \mathbf{Y}]$ Lie derivative of \mathbf{Y} with respect to \mathbf{X} , 27-8

 $\nabla, \nabla_{\mathbf{x}}, T_{ab;c}$ covariant derivative, 30-2

 $D/\partial t$ covariant derivative along curve, 32

 $\Gamma^{i}_{\ jk}$ connection components, 31

exp exponential map, 33

Riemannian spaces

- $(\mathcal{M}, \mathbf{g})$ manifold \mathcal{M} with metric \mathbf{g} and Christoffel connection
- η volume element, 48

Rabed Riemann tensor, 35

 R_{ab} Ricci tensor, 36

382

R curvature scalar, 41

 C_{abcd} Weyl tensor, 41

O(p,q) orthogonal group leaving metric G_{ab} invariant, 52

 G_{ab} diagonal metric diag $(\underbrace{+1, +1, ..., +1}_{p \text{ terms}}, \underbrace{-1, ..., -1}_{q \text{ terms}})$

 $O(\mathcal{M})$ bundle of orthonormal frames, 52

Space-time

Space-time is a 4-dimensional Riemannian space $(\mathcal{M}, \mathbf{g})$ with metric normal form diag (+1, +1, +1, -1). Local coordinates are chosen to be (x^1, x^2, x^3, x^4) .

 T_{ab} energy momentum tensor of matter, 61

 $\Psi_{(i)}^{a...b}_{c...d}$ matter fields, 60

L Lagrangian, 64

Einstein's field equations take the form

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi T_{ab},$$

where Λ is the cosmological constant.

 $(\mathcal{G}, \boldsymbol{\omega})$ is an initial data set, 233

Timelike curves

perpendicular projection, 79 $D_F/\partial s$ Fermi derivative, 80-1 θ expansion, 83 $\omega^a, \omega_{ab}, \omega$ vorticity, 82-4 σ_{ab}, σ shear, 83-4

Null geodesics

 $\hat{\theta}$ expansion, 88 $\hat{\omega}_{ab}, \hat{\omega}$ vorticity, 88 $\hat{\sigma}_{ab}, \hat{\sigma}$ shear, 88

Causal structure

 I^+, I^- chronological future, past, 182 J^+, J^- causal future, past, 183 E^+, E^- future, past horismos, 184

- D^+ , D^- future, past Cauchy developments, 201
- H^+, H^- future, past Cauchy horizons, 202

Boundary of space-time

- $\mathcal{M}^* = \mathcal{M} \cup \Delta$ where Δ is the c-boundary, 220
- $\mathscr{I}^+, \mathscr{I}^-, i^+, i^-$ c-boundary of asymptotically simple and empty spaces, 122, 225
- $\overline{\mathcal{M}} = \mathcal{M} \cup \partial \mathcal{M}$ when \mathcal{M} is weakly asymptotically simple; the boundary $\partial \mathcal{M}$ of \mathcal{M} consists of \mathcal{I}^+ and \mathcal{I}^- , 221, 225
- $\mathcal{M}^+ = \mathcal{M} \cup \partial$ where ∂ is the b-boundary, 283