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The three common definitions of local compactness require, respectively, each
point to have a compact neighbourhood, a neighbourhood basis consisting of
compact sets, or a closed compact neighbourhood. These definitions are
equivalent in Hausdorff or in regular spaces but not in general (3, 7).

A. J. Ward has called a space quasi-locally compact (q.l.c.) if given any
neighbourhood Nt of any point x of the space, there exists a neighbourhood N2

of x such that N2^N1 and N2 is contained in some finite union of members of
every open cover of N^ (9).

Here, as indicated in a previous paper (5), we introduce a new class of
spaces, called locally bounded (l.b.), strictly larger than the class of q.l.c. spaces,
as well as that of locally compact (I.e.) spaces (in any of their three common
definitions).

L.b. spaces having by their definition a simplicity advantage, at the same
time preserve many properties of the I.e. spaces. We recall from (5), that a
subset of a topological space {X, T) is called bounded in {X, T) if it is contained
in some finite union of members of every open cover of the whole space X. {X, x)
is compact iff X is bounded. Subsets of compact sets are bounded but in
general there are bounded proper subsets of X which are contained in no one
compact set. Subsets, finite unions, continuous images and arbitrary products of
bounded subsets are bounded.

Definition 1. A topological space is called locally bounded (l.b.) if each point
has at least one bounded neighbourhood or, equivalently, if each point has a
neighbourhood basis consisting of bounded subsets of the space.

Every compact space is l.b. Every regular non-l.c. space is not l.b. (see
below). From the above we have

Proposition 1. Every I.e. or q.l.c. space is a l.b. space.
The converse of the above proposition does not hold in general. Indeed,

the example below shows that there exist spaces (even Hausdorff spaces) l.b.
but which are not I.e. or q.l.c.

Example 1. Let Xconsist of points a, b, c(, a(J, btJ, i,j= 1, 2, 3, ... and let
T be the topology on X defined by the neighbourhood basis 38{x) of each point
jc e X as follows

g(a) = {V\a) = {fl}u{fly: i^nJeN}: neN}
= {V(b) = {b}u{b,j: i ̂  n,jeN}: neN}

= {c,}u{fly: j * n}v{b,j:j* «}: neN}
E.M.S.—19/4—Y
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The above space has been constructed by P. Uryshon (see (1)) for a different
purpose.

First we prove that a subset 5 of A' is bounded in (X, x) iff SnC is finite
where C = {c,-: i e N}. Indeed, if S is bounded, then it must be contained in a
finite union of members of the open cover

of X each member of which contains at most one element of C. Conversely,
let SnC be finite and 2. any open cover of X. Then, we take an open refine-
ment [V'{a), VnXb)}v{Vni{c?), {atj}, {b,j}: ieN,jeN} of St. It follows
that S- (J{ V"(Ci): i ^ max {na, «6}}u K"«(a)u V\b) is a finite subset and thus,
S is contained in a finite union of members of 2.. Therefore, (X, x) is l.b.
However, the Hausdorff space (X, x) is neither I.e. nor q.l.c. Indeed, there exists
the point a and a neighbourhood V(a) of a, such that for every basic neighbour-
hood Vm(a)<= V(a) there exists the open cover

{V m + \a ) }u{{a , j } : m^i^n,jeN} of V\a)
which does not contain a finite subcover of Vm(a).

Another example, showing that the class of l.b. spaces contains strictly the
class of I.e. spaces is the following space, described in (8, p. 88).

Example 2. If R is the set of real numbers with the Euclidean topology and
if Q is the set of rationals, x* is defined to be the topology generated by all sets
{jc}u((?nt/) where x e Ue x. The Hausdorff space (R, T*) is not regular and
thus, it is not I.e. However, it is shown that (R, x*) is l.b. since a subset S c R
is bounded in (R, x*) iff it is contained in some bounded (in the usual order
sense) interval and contains at most a finite number of irrationals.

Indeed, the bounded subset 5 must be contained in some finite union of
members of the open cover {{x}u[Qn(x — 1, * +1)]: x e R} of R. Conversely,
by essentially the same argument used to show that the interval [a, 6] is compact
it can be shown that every subset of any bounded (in the usual order sense)
interval of rational numbers is bounded in (X, T*), (see also (2, Ex. 1) where
" absolutely bounded " coincides with " bounded ").

A T3 (not necessarily Hausdorff) space is l.b. iff it is I.e. This is shown in an
essentially different terminology in (6).

Proposition 2. For every non-compact space the complement of the adherence
of the filter of the complements of the bounded subsets of the space is the set of the
points which belong to some bounded neighbourhood.

Corollary 1. A non-compact space is l.b. iff the filter of the complements of
the bounded subsets of the space has empty adherence.

Proposition 3. The image of a l.b. space by an open continuous surjection
is l.b.

Note that a continuous image of a l.b. space is not necessarily l.b., e.g. any
non-l.b. space may be considered as the continuous image of the discrete topology
on the same set, by making use of the identity function.
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Proposition 4. If a product space (X, T) contains a non-empty open bounded
subset, then the coordinate spaces (X;, T,), i e I are compact with the possible
exception of at most a finite number of them.

Proof Let UVt be a non-empty basic open bounded subset of {X, T),
where Vt = X, except for at most a finite number of indices i e F— I. Since
boundedness is projective (5, Cor. 3.1), (Xh T() is compact for each ie I—F.

Theorem 1. A product space is l.b. iff all coordinate spaces are l.b. and at
most a finite number of them are not compact.

Proof. Necessity follows from Propositions 3 and 4. Conversely, given a
point xe X, take V{ = Xt for each compact coordinate space (X,, x,) and Vt a
bounded in (Xh T() neighbourhood of x, for the remainder. Since boundedness
is productive, ITKf is a bounded neighbourhood of x.

Proposition 5. Every closed subspace (B, TB) of a l.b. space (X, T) is l.b.

Proof. For every bounded in (X.t) neighbourhood V of a point xeB
the set Vr\B is shown (by (5, § 2.4), (2, § 2)) to be bounded in (B, iB) because
c\(VnB)<zB.

A non-closed subspace of a l.b. space, is not necessarily l.b., for example the
set Q of rationals with topology induced by the Euclidean topology on the set R
of reals.

An open subspace of a l.b. space is not necessarily l.b. Indeed, the subspace
A = {a}<u{aij: i,je N} of the space A'of Example 1 is open and T3 since it is a
bounded subset of X (5, § 2.8) and thus, I.e. if it is l.b. But there is not any
compact neighbourhood of a consisting of elements of A.

Theorem 2. The disjoint topological union (X, r) of a family of spaces
(Xh T,), i"e/ is l.b. iff each space (Xh T,) is l.b.

In the case of Hausdorff spaces we can get as special cases of Propositions
4,5 and of Theorems 1,2 well-known results (e.g. see (4)) by replacing "bounded "
by " compact".

Another generalisation of a known fact is given by

Proposition 6. Each compact subset of a l.b. space has a neighbourhood basis
consisting of bounded subsets.

Proposition 7. Every Hausdorff l.b. space is locally regular but not necessarily
regular.

Definition 2. A l.b. (resp. Hausdorff l.b.) space is called minimal l.b. (resp.
minimal Hausdorff l.b.) if there is not any strictly weaker (i.e. coarser) l.b.
(resp. Hausdorff l.b.) topology on the same set.

A compact space is not necessarily minimal l.b. but a Hausdorff compact
space is minimal Hausdorff and thus minimal Hausdorff l.b.
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Although the next theorem is not a generalisation of the corresponding
theorem for Hausdorff I.e. spaces (1), their proofs are almost identical.

Theorem 3. If a minimal l.b. space (X, T) contains at least one closed compact
set A having non empty interior then (X, T) is a compact space.

Proof. Let (X, T) be non compact, x an interior point of A and ^ the open
filter basis of the complements of the closed compact sets. A new topology T*
is constructed on A'by taking for eachj> # x, 3S*{y) = 3S{y), i.e. the same open
neighbourhood basis as in x and 3S*{x) = 3S(x)n^. The topology T* is strictly
weaker than T because the r-neighbourhood A of x is not a ^-neighbourhood
since otherwise (X, T) would be compact. It is proved that {X, T*) is compact.
Indeed, if a filter ^ o n l has an adherent point in (X, T) it will have non empty
adherence in (X, T*). Otherwise, the point at the infinity of the one-point
compactification of (X, T) will be an adherent point of 2F. It follows, that for
every FeSF and G e ^ w e have Fr\G # <j> and thus, x is an adherent point in
(X, T*) of the filter F.

Hence, (X, T*) is l.b. and strictly weaker than (X, T), contradicting the
hypothesis. Therefore, (X, T) is necessarily compact.

Added in proof: The author found that from a different point of view (that
of the one point compactification) and in a different context (that of not
necessarily topological, separated closure spaces) a similar definition to that of
a locally bounded space has been given by L. Skula (Ordered set of classes of
compactifications, Czechoslovak Math. J. 19 (94), 1969, 42-59) on p. 54, where
"/-compact spaces" are defined.
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