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Separating Maps between Spaces of
Vector-Valued Absolutely
Continuous Functions

Luis Dubarbie

Abstract. In this paper we give a description of separating or disjointness preserving linear bijections

on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real

line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-

dimensional case is also studied.

1 Introduction

V. D. Pathak obtained a characterization of linear isometries between spaces of scalar-

valued absolutely continuous functions defined on compact subsets of the real line

[16]. In this paper, we are interested in obtaining a complete description of maps that

preserve disjointness on spaces of vector-valued absolutely continuous functions also

defined on compact subsets of the real line. These maps are usually called separating

or disjointness preserving.

It is well known that separating linear maps between spaces of scalar-valued con-

tinuous functions defined on compact or locally compact spaces are automatically

continuous and that there exists a homeomorphism between the underlying spaces

[8, 13, 14]. In a more general context, J. J. Font proved that a separating linear bi-

jection between regular Banach function algebras which satisfy Ditkin’s condition is

continuous and their structure spaces are homeomorphic [7].

For spaces of vector-valued continuous functions, it is necessary to require that the

inverse map be also separating to obtain a similar characterization. If a bijective map

and its inverse are separating, we call it biseparating. There are several papers that

deal with such maps on spaces of continuous functions and results about automatic

continuity and topological links between the underlying spaces are obtained (see [1,

3–5, 10, 11]). Nevertheless, we do not know much about separating maps on spaces

of vector-valued continuous functions. Namely, in spaces of continuous functions

vanishing at infinity, just one result of automatic continuity was given by J. Araujo

for spaces with finite dimension [2, Theorem 5.4].

In this paper, we study bijective and separating linear maps between spaces of ab-

solutely continuous functions defined on compact subsets of the real line and taking
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values in arbitrary Banach spaces. We obtain a description of such maps which allows

us to prove that their inverses are also separating and to deduce their automatic con-

tinuity in the finite-dimensional case. Besides we show with an example that it is not

possible to obtain an analogous result when we deal with Banach spaces of infinite

dimension. For this reason, we consider biseparating maps in that case.

Preliminaries and Notation

From now on, X and Y will be compact subsets of the real line and E and F will be

arbitrary K-Banach spaces, where K denotes the field of real or complex numbers.

If A is a subset of X, then int(A) denotes the interior of A in X, cl(A) denotes its

closure and bd(A) its boundary. On the other hand, χA denotes the characteristic

function on A. Finally, we define a partition of A ⊂ X to be any finite family {xi}
n
i=0

of points of A which satisfy x0 < x1 < · · · < xn.

Given a function f : X → E, we define the cozero set of f as c( f ) := {x ∈ X :

f (x) 6= 0}. Also, for any x ∈ X, we denote by δx the functional evaluation at the point

x, and finally, if e ∈ E, then ê will be the constant function from X to E taking the

value e.

Throughout this paper the word “homeomorphism” will be synonymous with

“surjective homeomorphism”.

Definitions and Previous Results

The space of absolutely continuous functions has usually been studied in the scalar

context, that is, when the functions take real or complex values (see [12, Section

18]). In this part of the paper we study it when the functions take values in arbitrary

Banach spaces.

Definition 1.1 A function f : X → E is said to be absolutely continuous on X if,

given any ε > 0, there exists an δ > 0 such that

n∑

i=1

‖ f (bi) − f (ai)‖ < ε

for each finite family of non-overlapping open intervals {(ai , bi)}
n
i=1 whose extreme

points belong to X with
n∑

i=1

(bi − ai) < δ.

Then AC(X, E) will denote the space of E-valued absolutely continuous functions on

X. When E = K, we will consider AC(X) := AC(X, K).

Definition 1.2 Given f ∈ AC(X, E), we define the variation of f on X as

V ( f ; X) := sup
{ n∑

i=1

‖ f (xi) − f (xi−1)‖ : {xi}
n
i=0 is a partition of X, n ∈ N

}
.
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Throughout the paper we will consider AC(X, E) endowed with the norm ‖ · ‖AC

defined by ‖ f ‖AC := ‖ f ‖∞ + V ( f ; X) for each f ∈ AC(X, E), where ‖ · ‖∞ denotes

the supremum norm.

The next lemmas, whose proofs are straightforward, show some properties of the

space of absolutely continuous functions which are the key tools to prove some fur-

ther results. In particular, Lemma 1.5 proves for AC(X) the existence of a partition

of the unity (see [9, Lemma 1]).

Lemma 1.3 (AC(X, E), ‖ · ‖AC ) is a Banach space.

Lemma 1.4 Let f ∈ AC(X) and g ∈ AC(X, E). Then f · g ∈ AC(X, E).

Lemma 1.5 Let {Vi}
n
i=1 be an open covering of X. Then there exist { fi}

n
i=1 ⊂ AC(X)

with 0 ≤ fi ≤ 1 and c( fi) ⊂ Vi for i = 1, . . . , n such that
∑n

i=1 fi = 1.

2 Separating Maps

Definition 2.1 A map T : AC(X, E) → AC(Y, F) is said to be separating if it is linear

and c(T f ) ∩ c(Tg) = ∅ whenever f , g ∈ AC(X, E) satisfy c( f ) ∩ c(g) = ∅. Equiv-

alently, a linear map T : AC(X, E) → AC(Y, F) is separating if ‖T f (y)‖‖Tg(y)‖ = 0

for all y ∈ Y whenever f , g ∈ AC(X, E) satisfy ‖ f (x)‖‖g(x)‖ = 0 for all x ∈ X. Also,

T is said to be biseparating if it is bijective and both T and T−1 are separating.

From now on we will assume that T : AC(X, E) → AC(Y, F) is a separating and

bijective map unless otherwise stated.

Definition 2.2 For each y ∈ Y , we define the map δy ◦ T : AC(X, E) → F as

(δy ◦ T)( f ) := T f (y) for each f ∈ AC(X, E). Therefore, the support set associated

with δy ◦ T is defined by supp(δy ◦ T) := {x ∈ X : ∀U open neighborhood of x,
∃ f ∈ AC(X, E) with c( f ) ⊆ U and T f (y) 6= 0}.

For more details about the next three lemmas see the references [9, 13].

Lemma 2.3 The set supp(δy ◦ T) is a singleton for every y ∈ Y .

Definition 2.4 The previous lemma allows us to define a map h : Y → X such that

h(y) is the only point that belongs to supp(δy ◦ T), for each y ∈ Y . We call h the

support map of T.

Lemma 2.5 Given f ∈ AC(X, E) such that f ≡ 0 on an open subset U of X, then

T f ≡ 0 on h−1(U ).

Lemma 2.6 The support map h is continuous and onto.

Proposition 2.7 Let f ∈ AC(X, E) such that f (h(y)) = 0. Then the following

statements hold:

(i) If bd(h−1(h(y))) = ∅, then T f ≡ 0 on h−1(h(y)).

(ii) If bd(h−1(h(y))) 6= ∅, then T f ≡ 0 on bd(h−1(h(y))).
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Proof Fix y0 ∈ Y and suppose that f (h(y0)) = 0.

(i) If we assume that bd(h−1(h(y0))) = ∅, we deduce that h−1(h(y0)) is an open

and closed set (see [6, p. 24]), and by continuity of h, so is h(y0). Then applying

Lemma 2.5, T f ≡ 0 on h−1(h(y0)).

(ii) In this case, we suppose that bd(h−1(h(y0))) 6= ∅. We must see that T f (y) =

0 for every y ∈ bd(h−1(h(y0))).

We consider the following functions in AC(X, E):

• fA := f · χA with A = (−∞, h(y0)) ∩ X,

• fB := f · χB with B = (h(y0),∞) ∩ X,

which satisfy f = fA + fB, so T f = T fA +T fB. On the other hand, taking into account

the definitions of A and B, it is not hard to see that

[cl(h−1(A))\h−1(A)] ∪ [cl(h−1(B))\h−1(B)] = bd
(

h−1(h(y0))
)
,

so we need to prove that T f (y) = 0 for each y ∈ cl(h−1(A))\h−1(A) and y ∈
cl(h−1(B))\h−1(B).

We next prove that if y ∈ cl(h−1(A))\h−1(A), then y ∈ h−1(h(y0)) and T f (y) =

0. Since y ∈ cl(h−1(A)), there exists a sequence (yn) in h−1(A) converging to y. By

continuity of h, we obtain that h(yn) converges to h(y). Besides cl(A) \A = {h(y0)},

so h(yn) converges to h(y0) and then h(y) = h(y0). In order to show that T f (y) = 0,

we will prove that T fA(y) = 0 and T fB(y) = 0. By Lemma 2.5, it is obvious that

T fB(yn) = 0 for each n ∈ N, and by continuity of T fB we deduce that T fB(y) = 0.

We now see that T fA(y) = 0. Suppose that T fA(y) 6= 0. Let (zn) be a sequence in

h−1(A) converging to y and such that ‖ fA(h(zn))‖ < 1/n3 for each n ∈ N. Taking a

subsequence if necessary, we can consider disjoint open neighborhoods Un of h(zn)

for each n ∈ N, such that ‖ fA(x)‖ < 1/n3 for all x ∈ Un and V ( fA; Un) < 1/n3. Also,

we take compact neighborhoods Kn of h(zn) with Kn ⊂ Un for every n ∈ N. As each

Kn is a compact subset of the real line, we can consider the least compact interval

[mn, Mn] in R such that Kn ⊂ [mn, Mn] for each n ∈ N. Then since each Kn ⊂ Un

and Un is an open set, there exists εn > 0 satisfying that (mn − εn, mn + εn) ⊂ Un and

(Mn − εn, Mn + εn) ⊂ Un for every n ∈ N. Finally, we define gn ∈ AC(X) for each

n ∈ N in the following way:

• gn ≡ n on [mn, Mn] ∩ X,

• gn ≡ 0 on X\(mn −
εn

2
, Mn + εn

2
) ∩ X,

• gn is linear on (mn −
εn

2
, mn) ∪ (Mn, Mn + εn

2
).

Each function gn satisfies gn ≡ n on Kn, c(gn) ⊂ Un, ‖gn‖∞ = n, and V (gn; X) = 2n.

Now we define the function g0 :=
∑∞

n=1 fAgn and we are going to see that g0 belongs

to AC(X, E).

It is enough to see that ‖ fAgn‖AC < 4/n2 for each n ∈ N. Notice at this point that

c( fAgn) ⊂ Un, so we just need to study ‖ fAgn‖AC on Un for every n ∈ N. It is obvious

that ‖ fAgn‖∞ < 1/n2 on Un for each n ∈ N. On the other hand, if we consider

{xi}
m
i=0 any partition of Un, we have that
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m∑

i=1

‖( fAgn)(xi) − ( fAgn)(xi−1)‖

≤

m∑

i=1

‖( fAgn)(xi) − fA(xi)gn(xi−1)‖ +

m∑

i=1

‖ fA(xi)gn(xi−1) − ( fAgn)(xi−1)‖

≤ ‖ fA|Un
‖∞

m∑

i=1

|gn(xi) − gn(xi−1)| + ‖gn‖∞

m∑

i=1

‖ fA(xi) − fA(xi−1)‖

≤ ‖ fA|Un
‖∞V (gn; Un) + ‖gn‖∞V ( fA; Un) <

3

n2
,

and then V ( fAgn; Un) ≤ 3/n2 for each n ∈ N.

Now let Vn be an open neighborhood of h(zn) with Vn ⊂ Kn for every n ∈ N. It

is obvious that g0 ≡ n fA on Vn, and by Lemma 2.5 we deduce that Tg0 ≡ nT fA on

h−1(Vn). Consequently, Tg0(zn) = nT fA(zn) for each n ∈ N. Taking into account

that T fA(y) 6= 0 and the fact that T fA(zn) converges to T fA(y), we can conclude that

‖Tg0(zn)‖ converges to ∞. This behavior implies that Tg0 is not continuous, which

is absurd.

In a similar way, we can see that y ∈ h−1(h(y0)) and T f (y) = 0 whenever y ∈
cl(h−1(B))\h−1(B).

3 The Finite-Dimensional Case

In this section, we study separating bijections between spaces of absolutely continu-

ous functions that take values in finite-dimensional normed spaces. We suppose that

the spaces E and F are both n-dimensional and {e1, . . . , en} is a basis of E.

Lemma 3.1 Let f ∈ AC(X, E) such that f (h(y0)) = 0. Then there exists y1 ∈
h−1(h(y0)) such that {Têi(y1) : i = 1, . . . , n} is a basis of F.

Proof By Proposition 2.7, we know that there exists y1 ∈ h−1(h(y0)) such that

T f (y1) = 0. We will prove that {Têi(y1) : i = 1, . . . , n} is a basis of F. As E and F

have the same dimension, it is enough to show that they are linearly independent.

Suppose that Tê1(y1), . . . , Tên(y1) are linearly dependent. Therefore, we can take

f ∈ F linearly independent with them and consider the non-vanishing function T−1̂f.

Now as {e1, . . . , en} is a basis of E, there exist α1, . . . , αn ∈ K, not all of them equal

to zero, such that T−1̂f(h(y0)) =

∑n
i=1 αiei . For this reason, if we define the function

g :=
∑n

i=1 αi êi ∈ AC(X, E), we obtain that (T−1̂f − g)(h(y0)) = 0, and then (̂f −
Tg)(y1) = 0 applying Proposition 2.7 again. This implies that f =

∑n
i=1 αiTêi(y1),

which is a contradiction.

Theorem 3.2 h is a homeomorphism.

Proof We know that h is a continuous, onto and closed map. We only need to prove

that h is injective. Suppose that there exist two distinct points y0, y1 ∈ Y such that

h(y0) = h(y1) and we will study the three possible situations.
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Assume that y0, y1 ∈ bd(h−1(h(y0))). If {f1, . . . , fn} is a basis of F, since T is

an onto map, we know that there exist g1, . . . , gn ∈ AC(X, E) such that Tgi = f̂i

for each i. We claim that g1(h(y0)), . . . , gn(h(y0)) are linearly independent. Sup-

pose that it is not true. Therefore, there exist α1, . . . , αn ∈ K, not all of them

equal to zero, such that
∑n

i=1 αigi(h(y0)) = 0. By Proposition 2.7, we obtain that

T
∑n

i=1 αigi(y0) = 0, and this implies that
∑n

i=1 αifi = 0, which is not possi-

ble. Then for each f ∈ AC(X, E) we have that f (h(y0)) =

∑n
i=1 βigi(h(y0)) for

β1, . . . , βn ∈ K not all of them equal to zero. Applying Proposition 2.7, we ob-

tain that T f (y0) = T
∑n

i=1 βigi(y0) =

∑n
i=1 βi f̂i(y0) =

∑n
i=1 βifi and T f (y1) =

T
∑n

i=1 βigi(y1) =

∑n
i=1 βi f̂i(y1) =

∑n
i=1 βifi , that is, T f (y0) = T f (y1) for each

f ∈ AC(X, E). This behavior implies that T is not onto, in contradiction with our

assumption.

Suppose now that bd(h−1(h(y0))) = ∅. With similar reasoning as in the previous

situation we obtain the same contradiction.

Finally, we assume that y0 ∈ bd(h−1(h(y0))) and y1 ∈ int(h−1(h(y0))). Let g ∈
AC(Y, F) be a non-zero function with c(g) ⊂ int(h−1(h(y0))) and consider T−1g. We

are going to prove that there exists an open subset V of X satisfying that V∩{h(y0)} =

∅ and T−1g(x) 6= 0 for all x ∈ V . If it is not true, T−1g is equal to zero on X\{h(y0)}.

Besides, we know that h(y0) is not an isolated point, so we deduce that T−1g ≡ 0 on

X, which is a contradiction since g is a non-zero function. Therefore, if we consider

x1 ∈ V and a basis {ei : i = 1, . . . , n} of E, we have that T−1g(x1) =

∑n
i=1 αi êi(x1)

for α1, . . . , αn ∈ K not all of them equal to zero. Applying Proposition 2.7 and

Lemma 3.1, we can deduce that g(y2) =

∑n
i=1 αiTêi(y2) 6= 0 for some y2 ∈ h−1(x1),

which is not possible since c(g) ⊂ int(h−1(h(y0))).

Corollary 3.3 Let f ∈ AC(X, E) such that f (h(y)) = 0. Then T f (y) = 0.

Proof It is an obvious application of Proposition 2.7 and Theorem 3.2.

Remark 3.4 For any y ∈ Y fixed, we define the function g := f − ̂f (h(y)) ∈
AC(X, E) for each f ∈ AC(X, E). It is obvious that g(h(y)) = 0, and by the pre-

vious corollary, we deduce that Tg(y) = 0. For this reason, we obtain T f (y) =

T ̂f (h(y))(y) for all f ∈ AC(X, E) and y ∈ Y . Therefore, we define the map Jy for

each y ∈ Y in the following way:

Jy : E → F

e 7→ Jy(e) := Tê(y).

Lemma 3.5 The map Jy is linear, bijective and continuous for every y ∈ Y .

Proof Obviously each Jy is linear. We next see that Jy is a bijective map.

First, we will prove that Jy is injective. If e 6= 0 and {ei : i = 1, . . . , n} is a

basis of E, then there exist α1, . . . , αn ∈ K, not all of them equal to zero, such that

e =

∑n
i=1 αiei , and this implies that ê(h(y)) =

∑n
i=1 αi êi(h(y)). By Lemma 3.1 and

Corollary 3.3 we deduce that Tê(y) =

∑n
i=1 αiTêi(y) 6= 0, and by definition of Jy

we conclude that Jy(e) 6= 0.
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Secondly, we will see that Jy is an onto map. Given f ∈ F, since T is surjective,

there exists g ∈ AC(X, E) such that Tg = f̂, in particular, Tg(y) = f. We define

e := g(h(y)) ∈ E. It is obvious that (ê − g)(h(y)) = 0, and by Corollary 3.3 we

deduce that T(ê − g)(y) = 0. This implies that Jy(e) = f.

Finally, it is trivial to see that each Jy is continuous, since it is a linear map and E

is a finite-dimensional normed space.

Theorem 3.6 Let T : AC(X, E) → AC(Y, F) be a separating and bijective map with

E and F n-dimensional normed spaces. Then there exist a homeomorphism h : Y → X

and a map Jy : E → F linear, bijective and continuous for each y ∈ Y , such that

T f (y) = Jy( f (h(y)))

for every f ∈ AC(X, E) and y ∈ Y . Also, T is continuous and biseparating.

Proof The representation of T follows by Remark 3.4 and from the definition of Jy

above. To see that T is a continuous map we apply the closed graph theorem, so we

just need to prove that T is a closed map (see [15, Theorem 7.3.2]). Therefore, it is

enough to see that if we take ( fn) in AC(X, E) converging to 0 and (T fn) converges to

g, then g ≡ 0.

First, we are going to prove that δy ◦ T is a continuous map for each y ∈ Y . Fix

y ∈ Y . It is obvious that δy ◦T is linear, and, by the representation of T, we have that

‖δy ◦ T( f )‖ ≤ ‖ Jy‖‖ f ‖∞ for each f ∈ AC(X, E). From this inequality, we obtain

that δy ◦ T is continuous and consequently that (δy ◦ T( fn)) converges to 0.

On the other hand, ‖T fn(y)−g(y)‖ ≤ ‖T fn−g‖∞ ≤ ‖T fn−g‖AC for each n ∈ N,

and since we assume that (T fn) converges to g, we deduce that (T fn(y)) converges to

g(y) for each y ∈ Y . Combined with the above, we conclude that g(y) = 0 for all

y ∈ Y and this completes the proof that T is continuous.

Finally, we prove that T is a biseparating map. It is enough to see that

T−1 : AC(Y, F) → AC(X, E) is separating. Suppose that T−1 is not separating. Then

there exist f , g ∈ AC(Y, F) with c( f ) ∩ c(g) = ∅ such that c(T−1 f ) ∩ c(T−1g) 6= ∅.

For this reason, there exists x0 ∈ X with T−1 f (x0) 6= 0 and T−1g(x0) 6= 0. As

{e1, . . . , en} is a basis of E, we can take α1, . . . , αn ∈ K, not all of them equal to

zero, such that T−1 f (x0) =

∑n
i=1 αi êi(x0) and β1, . . . , βn ∈ K, not all of them

equal to zero, such that T−1g(x0) =

∑n
i=1 βi êi(x0). Applying Lemma 3.1 and

Corollary 3.3, we can deduce that f (h−1(x0)) =

∑n
i=1 αiTêi(h−1(x0)) 6= 0 and

g(h−1(x0)) =

∑n
i=1 βiTêi(h−1(x0)) 6= 0, which contradicts the fact that f and g

have disjoint cozeros.

4 The Infinite-Dimensional Case

The next example shows that it is not possible to obtain a similar result as in the

previous case when we deal with infinite-dimensional Banach spaces. For this reason,

we study biseparating maps instead of separating in this case.

Example 4.1 Let c0 be the space of all scalar-valued sequences that converge to zero

and let T : AC([0, 1], c0) → AC([0, 1] ∪ [2, 3], c0) be a bijective, separating and con-

tinuous map defined by T f (x) = (λ1, λ3, λ5, . . . ) and T f (2 + x) = (λ2, λ4, λ6, . . . ),
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when f (x) = (λ1, λ2, λ3, . . . ) ∈ c0 for each x ∈ [0, 1]. It is easy to see that T−1 is

not a separating map.

Remark 4.2 Similarly to the previous example, a separating bijection from

AC([0, 1], R
2) to AC([0, 1] ∪ [2, 3], R) can be constructed that is not biseparating.

This fact allows us to conclude that Theorem 3.6 is not true if we do not suppose that

E and F have the same dimension.

Remark 4.3 In this final section, T : AC(X, E) → AC(Y, F) will be a biseparating

map and E and F will be Banach spaces of infinite dimension. Since T is biseparating,

we obtain two different continuous support maps h and k asociated with T and T−1,

respectively.

Theorem 4.4 h is a homeomorphism.

Proof It is not difficult to see that h and k are inverse maps. The proof given in

[9, Theorem 1(8)] for group algebras can easily be adapted to our context.

Corollary 4.5 Let f ∈ AC(X, E) such that f (h(y)) = 0. Then T f (y) = 0.

Proof It is clear applying Proposition 2.7 and previous theorem.

Remark 4.6 With the same construction as in Remark 3.4, we obtain T f (y) =

T ̂f (h(y))(y) for all f ∈ AC(X, E) and y ∈ Y , and we define the map Jy for each

y ∈ Y , as in the previous case.

Lemma 4.7 Jy is linear and bijective for every y ∈ Y .

Proof We obtain that each Jy is linear and onto in a similar way as in the finite-

dimensional case. We next prove that Jy is injective. Suppose that it is not true. Thus

we consider e ∈ E with e 6= 0 such that Jy(e) = 0. We have proved that k is a

homeomorphism, so there exists x ∈ X such that y = k(x), and then Jk(x)(e) = 0.

Since Tê(k(x)) = 0, applying Corollary 4.5 to the separating map T−1, we obtain

that T−1(Tê)(x) = 0, which implies that ê(x) = 0 in contradiction with e 6= 0.

Theorem 4.8 Let T : AC(X, E) → AC(Y, F) be a biseparating map with E and F

infinite-dimensional Banach spaces. Then there exist a homeomorphism h : Y → X and

a map Jy : E → F linear and bijective for each y ∈ Y , such that

T f (y) = Jy( f (h(y)))

for every f ∈ AC(X, E) and y ∈ Y . Also, if Y has no isolated points, then T is continu-

ous.

Proof By Remark 4.6 and the definition of Jy we deduce the representation of T. We

only need to prove that T is continuous if Y has no isolated points. We will prove that

δy ◦ T is continuous for every y ∈ Y , and then applying the closed graph theorem in

a similar way as in Theorem 3.6, we will deduce that T is a continuous map.
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Suppose that there exists y0 ∈ Y such that δy0
◦ T is not continuous. Then we

consider a sequence (en) in E such that ‖en‖ ≤ 1/n3 and ‖Tên(y0)‖ > 1 for all n ∈ N.

In this way, we can find a sequence (yn) in Y , strictly monotone and converging to

y0, such that ‖Tên(yn)‖ > 1 for each n ∈ N.

We now take disjoint open neighborhoods Un of h(yn) for each n ∈ N, and define

fn ∈ AC(X) such that fn(h(yn)) = 1, 0 ≤ fn ≤ 1 and c( fn) ⊂ Un for all n ∈ N.

Finally, we consider the function f :=
∑∞

n=1 fnên that belongs to AC(X, E).

It is obvious that f (h(y0)) = 0 and, by Corollary 4.5, T f (y0) = 0. On the other

hand, ( f − ên)(h(yn)) = 0 and then T f (yn) = Tên(yn) for all n ∈ N. This implies

that ‖T f (yn)‖ > 1 for each n ∈ N, and we obtain a contradiction, since T f is

continuous.
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