Separating Maps between Spaces of Vector-Valued Absolutely Continuous Functions

Luis Dubarbie

Abstract

In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinitedimensional case is also studied.

1

Introduction
V. D. Pathak obtained a characterization of linear isometries between spaces of scalarvalued absolutely continuous functions defined on compact subsets of the real line [16]. In this paper, we are interested in obtaining a complete description of maps that preserve disjointness on spaces of vector-valued absolutely continuous functions also defined on compact subsets of the real line. These maps are usually called separating or disjointness preserving.

It is well known that separating linear maps between spaces of scalar-valued continuous functions defined on compact or locally compact spaces are automatically continuous and that there exists a homeomorphism between the underlying spaces $[8,13,14]$. In a more general context, J. J. Font proved that a separating linear bijection between regular Banach function algebras which satisfy Ditkin's condition is continuous and their structure spaces are homeomorphic [7].

For spaces of vector-valued continuous functions, it is necessary to require that the inverse map be also separating to obtain a similar characterization. If a bijective map and its inverse are separating, we call it biseparating. There are several papers that deal with such maps on spaces of continuous functions and results about automatic continuity and topological links between the underlying spaces are obtained (see [1, $3-5,10,11]$). Nevertheless, we do not know much about separating maps on spaces of vector-valued continuous functions. Namely, in spaces of continuous functions vanishing at infinity, just one result of automatic continuity was given by J. Araujo for spaces with finite dimension [2, Theorem 5.4].

In this paper, we study bijective and separating linear maps between spaces of absolutely continuous functions defined on compact subsets of the real line and taking

[^0]values in arbitrary Banach spaces. We obtain a description of such maps which allows us to prove that their inverses are also separating and to deduce their automatic continuity in the finite-dimensional case. Besides we show with an example that it is not possible to obtain an analogous result when we deal with Banach spaces of infinite dimension. For this reason, we consider biseparating maps in that case.

Preliminaries and Notation

From now on, X and Y will be compact subsets of the real line and E and F will be arbitrary \mathbb{K}-Banach spaces, where \mathbb{K} denotes the field of real or complex numbers.

If A is a subset of X, then $\operatorname{int}(A)$ denotes the interior of A in $X, \operatorname{cl}(A)$ denotes its closure and $\operatorname{bd}(A)$ its boundary. On the other hand, χ_{A} denotes the characteristic function on A. Finally, we define a partition of $A \subset X$ to be any finite family $\left\{x_{i}\right\}_{i=0}^{n}$ of points of A which satisfy $x_{0}<x_{1}<\cdots<x_{n}$.

Given a function $f: X \rightarrow E$, we define the cozero set of f as $c(f):=\{x \in X:$ $f(x) \neq 0\}$. Also, for any $x \in X$, we denote by δ_{x} the functional evaluation at the point x, and finally, if $e \in E$, then \hat{e} will be the constant function from X to E taking the value e.

Throughout this paper the word "homeomorphism" will be synonymous with "surjective homeomorphism".

Definitions and Previous Results

The space of absolutely continuous functions has usually been studied in the scalar context, that is, when the functions take real or complex values (see [12, Section 18]). In this part of the paper we study it when the functions take values in arbitrary Banach spaces.

Definition 1.1 A function $f: X \rightarrow E$ is said to be absolutely continuous on X if, given any $\varepsilon>0$, there exists an $\delta>0$ such that

$$
\sum_{i=1}^{n}\left\|f\left(b_{i}\right)-f\left(a_{i}\right)\right\|<\varepsilon
$$

for each finite family of non-overlapping open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{n}$ whose extreme points belong to X with

$$
\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta
$$

Then $A C(X, E)$ will denote the space of E-valued absolutely continuous functions on X. When $E=\mathbb{K}$, we will consider $A C(X):=A C(X, \mathbb{K})$.

Definition 1.2 Given $f \in A C(X, E)$, we define the variation of f on X as

$$
V(f ; X):=\sup \left\{\sum_{i=1}^{n}\left\|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right\|:\left\{x_{i}\right\}_{i=0}^{n} \text { is a partition of } X, n \in \mathbb{N}\right\}
$$

Throughout the paper we will consider $A C(X, E)$ endowed with the norm $\|\cdot\|_{A C}$ defined by $\|f\|_{A C}:=\|f\|_{\infty}+V(f ; X)$ for each $f \in A C(X, E)$, where $\|\cdot\|_{\infty}$ denotes the supremum norm.

The next lemmas, whose proofs are straightforward, show some properties of the space of absolutely continuous functions which are the key tools to prove some further results. In particular, Lemma 1.5 proves for $A C(X)$ the existence of a partition of the unity (see [9, Lemma 1]).

Lemma 1.3 $\left(A C(X, E),\|\cdot\|_{A C}\right)$ is a Banach space.
Lemma 1.4 Let $f \in A C(X)$ and $g \in A C(X, E)$. Then $f \cdot g \in A C(X, E)$.
Lemma 1.5 Let $\left\{V_{i}\right\}_{i=1}^{n}$ be an open covering of X. Then there exist $\left\{f_{i}\right\}_{i=1}^{n} \subset A C(X)$ with $0 \leq f_{i} \leq 1$ and $c\left(f_{i}\right) \subset V_{i}$ for $i=1, \ldots, n$ such that $\sum_{i=1}^{n} f_{i}=1$.

2 Separating Maps

Definition 2.1 A map $T: A C(X, E) \rightarrow A C(Y, F)$ is said to be separating if it is linear and $c(T f) \cap c(T g)=\varnothing$ whenever $f, g \in A C(X, E)$ satisfy $c(f) \cap c(g)=\varnothing$. Equivalently, a linear map $T: A C(X, E) \rightarrow A C(Y, F)$ is separating if $\|T f(y)\|\|T g(y)\|=0$ for all $y \in Y$ whenever $f, g \in A C(X, E)$ satisfy $\|f(x)\|\|g(x)\|=0$ for all $x \in X$. Also, T is said to be biseparating if it is bijective and both T and T^{-1} are separating.

From now on we will assume that $T: A C(X, E) \rightarrow A C(Y, F)$ is a separating and bijective map unless otherwise stated.

Definition 2.2 For each $y \in Y$, we define the map $\delta_{y} \circ T: A C(X, E) \rightarrow F$ as $\left(\delta_{y} \circ T\right)(f):=T f(y)$ for each $f \in A C(X, E)$. Therefore, the support set associated with $\delta_{y} \circ T$ is defined by $\operatorname{supp}\left(\delta_{y} \circ T\right):=\{x \in X: \forall U$ open neighborhood of x, $\exists f \in A C(X, E)$ with $c(f) \subseteq U$ and $T f(y) \neq 0\}$.

For more details about the next three lemmas see the references $[9,13]$.
Lemma 2.3 The set $\operatorname{supp}\left(\delta_{y} \circ T\right)$ is a singleton for every $y \in Y$.
Definition 2.4 The previous lemma allows us to define a map $h: Y \rightarrow X$ such that $h(y)$ is the only point that belongs to $\operatorname{supp}\left(\delta_{y} \circ T\right)$, for each $y \in Y$. We call h the support map of T.

Lemma 2.5 Given $f \in A C(X, E)$ such that $f \equiv 0$ on an open subset U of X, then $T f \equiv 0$ on $h^{-1}(U)$.

Lemma 2.6 The support map h is continuous and onto.
Proposition 2.7 Let $f \in A C(X, E)$ such that $f(h(y))=0$. Then the following statements hold:
(i) If $\operatorname{bd}\left(h^{-1}(h(y))\right)=\varnothing$, then $T f \equiv 0$ on $h^{-1}(h(y))$.
(ii) If $\mathrm{bd}\left(h^{-1}(h(y))\right) \neq \varnothing$, then $T f \equiv 0$ on $\mathrm{bd}\left(h^{-1}(h(y))\right)$.

Proof Fix $y_{0} \in Y$ and suppose that $f\left(h\left(y_{0}\right)\right)=0$.
(i) If we assume that $\operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)=\varnothing$, we deduce that $h^{-1}\left(h\left(y_{0}\right)\right)$ is an open and closed set (see [6, p. 24]), and by continuity of h, so is $h\left(y_{0}\right)$. Then applying Lemma 2.5, $T f \equiv 0$ on $h^{-1}\left(h\left(y_{0}\right)\right)$.
(ii) In this case, we suppose that $\operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right) \neq \varnothing$. We must see that $T f(y)=$ 0 for every $y \in \operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)$.

We consider the following functions in $A C(X, E)$:

- $f_{A}:=f \cdot \chi_{A}$ with $A=\left(-\infty, h\left(y_{0}\right)\right) \cap X$,
- $f_{B}:=f \cdot \chi_{B}$ with $B=\left(h\left(y_{0}\right), \infty\right) \cap X$,
which satisfy $f=f_{A}+f_{B}$, so $T f=T f_{A}+T f_{B}$. On the other hand, taking into account the definitions of A and B, it is not hard to see that

$$
\left[\mathrm{cl}\left(h^{-1}(A)\right) \backslash h^{-1}(A)\right] \cup\left[\mathrm{cl}\left(h^{-1}(B)\right) \backslash h^{-1}(B)\right]=\operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)
$$

so we need to prove that $T f(y)=0$ for each $y \in \operatorname{cl}\left(h^{-1}(A)\right) \backslash h^{-1}(A)$ and $y \in$ $\mathrm{cl}\left(h^{-1}(B)\right) \backslash h^{-1}(B)$.

We next prove that if $y \in \operatorname{cl}\left(h^{-1}(A)\right) \backslash h^{-1}(A)$, then $y \in h^{-1}\left(h\left(y_{0}\right)\right)$ and $T f(y)=$ 0 . Since $y \in \operatorname{cl}\left(h^{-1}(A)\right)$, there exists a sequence $\left(y_{n}\right)$ in $h^{-1}(A)$ converging to y. By continuity of h, we obtain that $h\left(y_{n}\right)$ converges to $h(y)$. Besides $\mathrm{cl}(A) \backslash A=\left\{h\left(y_{0}\right)\right\}$, so $h\left(y_{n}\right)$ converges to $h\left(y_{0}\right)$ and then $h(y)=h\left(y_{0}\right)$. In order to show that $T f(y)=0$, we will prove that $T f_{A}(y)=0$ and $T f_{B}(y)=0$. By Lemma 2.5 it is obvious that $T f_{B}\left(y_{n}\right)=0$ for each $n \in \mathbb{N}$, and by continuity of $T f_{B}$ we deduce that $T f_{B}(y)=0$. We now see that $T f_{A}(y)=0$. Suppose that $T f_{A}(y) \neq 0$. Let $\left(z_{n}\right)$ be a sequence in $h^{-1}(A)$ converging to y and such that $\left\|f_{A}\left(h\left(z_{n}\right)\right)\right\|<1 / n^{3}$ for each $n \in \mathbb{N}$. Taking a subsequence if necessary, we can consider disjoint open neighborhoods U_{n} of $h\left(z_{n}\right)$ for each $n \in \mathbb{N}$, such that $\left\|f_{A}(x)\right\|<1 / n^{3}$ for all $x \in U_{n}$ and $V\left(f_{A} ; U_{n}\right)<1 / n^{3}$. Also, we take compact neighborhoods K_{n} of $h\left(z_{n}\right)$ with $K_{n} \subset U_{n}$ for every $n \in \mathbb{N}$. As each K_{n} is a compact subset of the real line, we can consider the least compact interval [m_{n}, M_{n}] in \mathbb{R} such that $K_{n} \subset\left[m_{n}, M_{n}\right]$ for each $n \in \mathbb{N}$. Then since each $K_{n} \subset U_{n}$ and U_{n} is an open set, there exists $\varepsilon_{n}>0$ satisfying that $\left(m_{n}-\varepsilon_{n}, m_{n}+\varepsilon_{n}\right) \subset U_{n}$ and $\left(M_{n}-\varepsilon_{n}, M_{n}+\varepsilon_{n}\right) \subset U_{n}$ for every $n \in \mathbb{N}$. Finally, we define $g_{n} \in A C(X)$ for each $n \in \mathbb{N}$ in the following way:

- $g_{n} \equiv n$ on $\left[m_{n}, M_{n}\right] \cap X$,
- $g_{n} \equiv 0$ on $\mathrm{X} \backslash\left(m_{n}-\frac{\varepsilon_{n}}{2}, M_{n}+\frac{\varepsilon_{n}}{2}\right) \cap X$,
- g_{n} is linear on $\left(m_{n}-\frac{\varepsilon_{n}}{2}, m_{n}\right) \cup\left(M_{n}, M_{n}+\frac{\varepsilon_{n}}{2}\right)$.

Each function g_{n} satisfies $g_{n} \equiv n$ on $K_{n}, c\left(g_{n}\right) \subset U_{n},\left\|g_{n}\right\|_{\infty}=n$, and $V\left(g_{n} ; X\right)=2 n$. Now we define the function $g_{0}:=\sum_{n=1}^{\infty} f_{A} g_{n}$ and we are going to see that g_{0} belongs to $A C(X, E)$.

It is enough to see that $\left\|f_{A} g_{n}\right\|_{A C}<4 / n^{2}$ for each $n \in \mathbb{N}$. Notice at this point that $c\left(f_{A} g_{n}\right) \subset U_{n}$, so we just need to study $\left\|f_{A} g_{n}\right\|_{A C}$ on U_{n} for every $n \in \mathbb{N}$. It is obvious that $\left\|f_{A} g_{n}\right\|_{\infty}<1 / n^{2}$ on U_{n} for each $n \in \mathbb{N}$. On the other hand, if we consider $\left\{x_{i}\right\}_{i=0}^{m}$ any partition of U_{n}, we have that

$$
\begin{aligned}
& \sum_{i=1}^{m}\left\|\left(f_{A} g_{n}\right)\left(x_{i}\right)-\left(f_{A} g_{n}\right)\left(x_{i-1}\right)\right\| \\
& \quad \leq \sum_{i=1}^{m}\left\|\left(f_{A} g_{n}\right)\left(x_{i}\right)-f_{A}\left(x_{i}\right) g_{n}\left(x_{i-1}\right)\right\|+\sum_{i=1}^{m}\left\|f_{A}\left(x_{i}\right) g_{n}\left(x_{i-1}\right)-\left(f_{A} g_{n}\right)\left(x_{i-1}\right)\right\| \\
& \quad \leq\left\|f_{\left.A\right|_{U_{n}}}\right\|_{\infty} \sum_{i=1}^{m}\left|g_{n}\left(x_{i}\right)-g_{n}\left(x_{i-1}\right)\right|+\left\|g_{n}\right\|_{\infty} \sum_{i=1}^{m}\left\|f_{A}\left(x_{i}\right)-f_{A}\left(x_{i-1}\right)\right\| \\
& \quad \leq\left\|f_{\left.A\right|_{U_{n}}}\right\|_{\infty} V\left(g_{n} ; U_{n}\right)+\left\|g_{n}\right\|_{\infty} V\left(f_{A} ; U_{n}\right)<\frac{3}{n^{2}},
\end{aligned}
$$

and then $V\left(f_{A} g_{n} ; U_{n}\right) \leq 3 / n^{2}$ for each $n \in \mathbb{N}$.
Now let V_{n} be an open neighborhood of $h\left(z_{n}\right)$ with $V_{n} \subset K_{n}$ for every $n \in \mathbb{N}$. It is obvious that $g_{0} \equiv n f_{A}$ on V_{n}, and by Lemma 2.5 we deduce that $T g_{0} \equiv n T f_{A}$ on $h^{-1}\left(V_{n}\right)$. Consequently, $T g_{0}\left(z_{n}\right)=n T f_{A}\left(z_{n}\right)$ for each $n \in \mathbb{N}$. Taking into account that $T f_{A}(y) \neq 0$ and the fact that $T f_{A}\left(z_{n}\right)$ converges to $T f_{A}(y)$, we can conclude that $\left\|T g_{0}\left(z_{n}\right)\right\|$ converges to ∞. This behavior implies that $T g_{0}$ is not continuous, which is absurd.

In a similar way, we can see that $y \in h^{-1}\left(h\left(y_{0}\right)\right)$ and $T f(y)=0$ whenever $y \in$ $\operatorname{cl}\left(h^{-1}(B)\right) \backslash h^{-1}(B)$.

3 The Finite-Dimensional Case

In this section, we study separating bijections between spaces of absolutely continuous functions that take values in finite-dimensional normed spaces. We suppose that the spaces E and F are both n-dimensional and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of E.
Lemma 3.1 Let $f \in A C(X, E)$ such that $f\left(h\left(y_{0}\right)\right)=0$. Then there exists $y_{1} \in$ $h^{-1}\left(h\left(y_{0}\right)\right)$ such that $\left\{T \widehat{e}_{i}\left(y_{1}\right): i=1, \ldots, n\right\}$ is a basis of F.
Proof By Proposition 2.7 we know that there exists $y_{1} \in h^{-1}\left(h\left(y_{0}\right)\right)$ such that $T f\left(y_{1}\right)=0$. We will prove that $\left\{T \widehat{e}_{i}\left(y_{1}\right): i=1, \ldots, n\right\}$ is a basis of F. As E and F have the same dimension, it is enough to show that they are linearly independent.

Suppose that $T \widehat{e}_{1}\left(y_{1}\right), \ldots, T \widehat{e_{n}}\left(y_{1}\right)$ are linearly dependent. Therefore, we can take $\mathrm{f} \in F$ linearly independent with them and consider the non-vanishing function $T^{-1} \widehat{\mathrm{f}}$. Now as $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of E, there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, not all of them equal to zero, such that $T^{-1} \widehat{\mathrm{f}}\left(h\left(y_{0}\right)\right)=\sum_{i=1}^{n} \alpha_{i} e_{i}$. For this reason, if we define the function $g:=\sum_{i=1}^{n} \alpha_{i} \widehat{e_{i}} \in A C(X, E)$, we obtain that $\left(T^{-1} \widehat{\mathrm{f}}-g\right)\left(h\left(y_{0}\right)\right)=0$, and then $\widehat{\mathrm{f}}-$ $T g)\left(y_{1}\right)=0$ applying Proposition 2.7 again. This implies that $\mathrm{f}=\sum_{i=1}^{n} \alpha_{i} T \widehat{e}_{i}\left(y_{1}\right)$, which is a contradiction.

Theorem $3.2 h$ is a homeomorphism.
Proof We know that h is a continuous, onto and closed map. We only need to prove that h is injective. Suppose that there exist two distinct points $y_{0}, y_{1} \in Y$ such that $h\left(y_{0}\right)=h\left(y_{1}\right)$ and we will study the three possible situations.

Assume that $y_{0}, y_{1} \in \operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)$. If $\left\{\mathrm{f}_{1}, \ldots, \mathrm{f}_{n}\right\}$ is a basis of F, since T is an onto map, we know that there exist $g_{1}, \ldots, g_{n} \in A C(X, E)$ such that $T g_{i}=\widehat{\mathrm{f}}_{i}$ for each i. We claim that $g_{1}\left(h\left(y_{0}\right)\right), \ldots, g_{n}\left(h\left(y_{0}\right)\right)$ are linearly independent. Suppose that it is not true. Therefore, there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, not all of them equal to zero, such that $\sum_{i=1}^{n} \alpha_{i} g_{i}\left(h\left(y_{0}\right)\right)=0$. By Proposition 2.7, we obtain that $T \sum_{i=1}^{n} \alpha_{i} g_{i}\left(y_{0}\right)=0$, and this implies that $\sum_{i=1}^{n} \alpha_{i} \mathrm{f}_{i}=0$, which is not possible. Then for each $f \in A C(X, E)$ we have that $f\left(h\left(y_{0}\right)\right)=\sum_{i=1}^{n} \beta_{i} g_{i}\left(h\left(y_{0}\right)\right)$ for $\beta_{1}, \ldots, \beta_{n} \in \mathbb{K}$ not all of them equal to zero. Applying Proposition [2.7, we obtain that $T f\left(y_{0}\right)=T \sum_{i=1}^{n} \beta_{i} g_{i}\left(y_{0}\right)=\sum_{i=1}^{n} \beta_{i} \widehat{\mathrm{f}}_{i}\left(y_{0}\right)=\sum_{i=1}^{n} \beta_{i} \mathrm{f}_{i}$ and $T f\left(y_{1}\right)=$ $T \sum_{i=1}^{n} \beta_{i} g_{i}\left(y_{1}\right)=\sum_{i=1}^{n} \beta_{i} \widehat{\mathrm{f}}_{i}\left(y_{1}\right)=\sum_{i=1}^{n} \beta_{i} \mathrm{f}_{i}$, that is, $T f\left(y_{0}\right)=T f\left(y_{1}\right)$ for each $f \in A C(X, E)$. This behavior implies that T is not onto, in contradiction with our assumption.

Suppose now that $\operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)=\varnothing$. With similar reasoning as in the previous situation we obtain the same contradiction.

Finally, we assume that $y_{0} \in \operatorname{bd}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)$ and $y_{1} \in \operatorname{int}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)$. Let $g \in$ $A C(Y, F)$ be a non-zero function with $c(g) \subset \operatorname{int}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)$ and consider $T^{-1} g$. We are going to prove that there exists an open subset V of X satisfying that $V \cap\left\{h\left(y_{0}\right)\right\}=$ \varnothing and $T^{-1} g(x) \neq 0$ for all $x \in V$. If it is not true, $T^{-1} g$ is equal to zero on $X \backslash\left\{h\left(y_{0}\right)\right\}$. Besides, we know that $h\left(y_{0}\right)$ is not an isolated point, so we deduce that $T^{-1} g \equiv 0$ on X, which is a contradiction since g is a non-zero function. Therefore, if we consider $x_{1} \in V$ and a basis $\left\{e_{i}: i=1, \ldots, n\right\}$ of E, we have that $T^{-1} g\left(x_{1}\right)=\sum_{i=1}^{n} \alpha_{i} \widehat{e_{i}}\left(x_{1}\right)$ for $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$ not all of them equal to zero. Applying Proposition 2.7 and Lemma3.1. we can deduce that $g\left(y_{2}\right)=\sum_{i=1}^{n} \alpha_{i} T \widehat{e}_{i}\left(y_{2}\right) \neq 0$ for some $y_{2} \in h^{-1}\left(x_{1}\right)$, which is not possible since $c(g) \subset \operatorname{int}\left(h^{-1}\left(h\left(y_{0}\right)\right)\right)$.

Corollary 3.3 Let $f \in A C(X, E)$ such that $f(h(y))=0$. Then $T f(y)=0$.
Proof It is an obvious application of Proposition 2.7 and Theorem 3.2,
Remark 3.4 For any $y \in Y$ fixed, we define the function $g:=f-\widehat{f(h(y))} \in$ $A C(X, E)$ for each $f \in A C(X, E)$. It is obvious that $g(h(y))=0$, and by the previous corollary, we deduce that $\operatorname{Tg}(y)=0$. For this reason, we obtain $\operatorname{Tf}(y)=$ $T \widehat{f(h(y)})(y)$ for all $f \in A C(X, E)$ and $y \in Y$. Therefore, we define the map J_{y} for each $y \in Y$ in the following way:

$$
\begin{aligned}
J_{y}: & E \rightarrow F \\
e & \mapsto J_{y}(e):=T \hat{e}(y) .
\end{aligned}
$$

Lemma 3.5 The map J_{y} is linear, bijective and continuous for every $y \in Y$.
Proof Obviously each J_{y} is linear. We next see that J_{y} is a bijective map.
First, we will prove that J_{y} is injective. If $e \neq 0$ and $\left\{e_{i}: i=1, \ldots, n\right\}$ is a basis of E, then there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, not all of them equal to zero, such that $e=\sum_{i=1}^{n} \alpha_{i} e_{i}$, and this implies that $\hat{e}(h(y))=\sum_{i=1}^{n} \alpha_{i} \widehat{e}_{i}(h(y))$. By Lemma 3.1 and Corollary 3.3 we deduce that $T \hat{e}(y)=\sum_{i=1}^{n} \alpha_{i} T \widehat{e}_{i}(y) \neq 0$, and by definition of J_{y} we conclude that $J_{y}(e) \neq 0$.

Secondly, we will see that J_{y} is an onto map. Given $\mathrm{f} \in F$, since T is surjective, there exists $g \in A C(X, E)$ such that $T g=\widehat{\mathrm{f}}$, in particular, $T g(y)=\mathrm{f}$. We define $e:=g(h(y)) \in E$. It is obvious that $(\hat{e}-g)(h(y))=0$, and by Corollary 3.3 we deduce that $T(\hat{e}-g)(y)=0$. This implies that $J_{y}(e)=\mathrm{f}$.

Finally, it is trivial to see that each J_{y} is continuous, since it is a linear map and E is a finite-dimensional normed space.
Theorem 3.6 Let $T: A C(X, E) \rightarrow A C(Y, F)$ be a separating and bijective map with E and F n-dimensional normed spaces. Then there exist a homeomorphism $h: Y \rightarrow X$ and a map $J_{y}: E \rightarrow F$ linear, bijective and continuous for each $y \in Y$, such that

$$
T f(y)=J_{y}(f(h(y)))
$$

for every $f \in A C(X, E)$ and $y \in Y$. Also, T is continuous and biseparating.
Proof The representation of T follows by Remark 3.4 and from the definition of J_{y} above. To see that T is a continuous map we apply the closed graph theorem, so we just need to prove that T is a closed map (see [15, Theorem 7.3.2]). Therefore, it is enough to see that if we take $\left(f_{n}\right)$ in $A C(X, E)$ converging to 0 and $\left(T f_{n}\right)$ converges to g, then $g \equiv 0$.

First, we are going to prove that $\delta_{y} \circ T$ is a continuous map for each $y \in Y$. Fix $y \in Y$. It is obvious that $\delta_{y} \circ T$ is linear, and, by the representation of T, we have that $\left\|\delta_{y} \circ T(f)\right\| \leq\left\|J_{y}\right\|\|f\|_{\infty}$ for each $f \in A C(X, E)$. From this inequality, we obtain that $\delta_{y} \circ T$ is continuous and consequently that $\left(\delta_{y} \circ T\left(f_{n}\right)\right)$ converges to 0 .

On the other hand, $\left\|T f_{n}(y)-g(y)\right\| \leq\left\|T f_{n}-g\right\|_{\infty} \leq\left\|T f_{n}-g\right\|_{A C}$ for each $n \in \mathbb{N}$, and since we assume that $\left(T f_{n}\right)$ converges to g, we deduce that $\left(T f_{n}(y)\right)$ converges to $g(y)$ for each $y \in Y$. Combined with the above, we conclude that $g(y)=0$ for all $y \in Y$ and this completes the proof that T is continuous.

Finally, we prove that T is a biseparating map. It is enough to see that $T^{-1}: A C(Y, F) \rightarrow A C(X, E)$ is separating. Suppose that T^{-1} is not separating. Then there exist $f, g \in A C(Y, F)$ with $c(f) \cap c(g)=\varnothing$ such that $c\left(T^{-1} f\right) \cap c\left(T^{-1} g\right) \neq \varnothing$. For this reason, there exists $x_{0} \in X$ with $T^{-1} f\left(x_{0}\right) \neq 0$ and $T^{-1} g\left(x_{0}\right) \neq 0$. As $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of E, we can take $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, not all of them equal to zero, such that $T^{-1} f\left(x_{0}\right)=\sum_{i=1}^{n} \alpha_{i} \widehat{e}_{i}\left(x_{0}\right)$ and $\beta_{1}, \ldots, \beta_{n} \in \mathbb{K}$, not all of them equal to zero, such that $T^{-1} g\left(x_{0}\right)=\sum_{i=1}^{n} \beta_{i} \widehat{e}_{i}\left(x_{0}\right)$. Applying Lemma 3.1 and Corollary 3.3 we can deduce that $f\left(h^{-1}\left(x_{0}\right)\right)=\sum_{i=1}^{n} \alpha_{i} T \widehat{e}_{i}\left(h^{-1}\left(x_{0}\right)\right) \neq 0$ and $g\left(h^{-1}\left(x_{0}\right)\right)=\sum_{i=1}^{n} \beta_{i} T \widehat{e}_{i}\left(h^{-1}\left(x_{0}\right)\right) \neq 0$, which contradicts the fact that f and g have disjoint cozeros.

4 The Infinite-Dimensional Case

The next example shows that it is not possible to obtain a similar result as in the previous case when we deal with infinite-dimensional Banach spaces. For this reason, we study biseparating maps instead of separating in this case.

Example 4.1 Let c_{0} be the space of all scalar-valued sequences that converge to zero and let $T: A C\left([0,1], c_{0}\right) \rightarrow A C\left([0,1] \cup[2,3], c_{0}\right)$ be a bijective, separating and continuous map defined by $T f(x)=\left(\lambda_{1}, \lambda_{3}, \lambda_{5}, \ldots\right)$ and $T f(2+x)=\left(\lambda_{2}, \lambda_{4}, \lambda_{6}, \ldots\right)$,
when $f(x)=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \in c_{0}$ for each $x \in[0,1]$. It is easy to see that T^{-1} is not a separating map.

Remark 4.2 Similarly to the previous example, a separating bijection from $A C\left([0,1], \mathbb{R}^{2}\right)$ to $A C([0,1] \cup[2,3], \mathbb{R})$ can be constructed that is not biseparating. This fact allows us to conclude that Theorem[3.6 is not true if we do not suppose that E and F have the same dimension.

Remark 4.3 In this final section, $T: A C(X, E) \rightarrow A C(Y, F)$ will be a biseparating map and E and F will be Banach spaces of infinite dimension. Since T is biseparating, we obtain two different continuous support maps h and k asociated with T and T^{-1}, respectively.

Theorem $4.4 h$ is a homeomorphism.
Proof It is not difficult to see that h and k are inverse maps. The proof given in [9 , Theorem 1(8)] for group algebras can easily be adapted to our context.

Corollary 4.5 Let $f \in A C(X, E)$ such that $f(h(y))=0$. Then $T f(y)=0$.
Proof It is clear applying Proposition 2.7 and previous theorem.
Remark 4.6 With the same construction as in Remark 3.4 we obtain $T f(y)=$ $T \widehat{f(h(y)})(y)$ for all $f \in A C(X, E)$ and $y \in Y$, and we define the map J_{y} for each $y \in Y$, as in the previous case.

Lemma 4.7 J_{y} is linear and bijective for every $y \in Y$.
Proof We obtain that each J_{y} is linear and onto in a similar way as in the finitedimensional case. We next prove that J_{y} is injective. Suppose that it is not true. Thus we consider $e \in E$ with $e \neq 0$ such that $J_{y}(e)=0$. We have proved that k is a homeomorphism, so there exists $x \in X$ such that $y=k(x)$, and then $J_{k(x)}(e)=0$. Since $T \hat{e}(k(x))=0$, applying Corollary 4.5 to the separating map T^{-1}, we obtain that $T^{-1}(T \hat{e})(x)=0$, which implies that $\hat{e}(x)=0$ in contradiction with $e \neq 0$.

Theorem 4.8 Let $T: A C(X, E) \rightarrow A C(Y, F)$ be a biseparating map with E and F infinite-dimensional Banach spaces. Then there exist a homeomorphism $h: Y \rightarrow X$ and a map $J_{y}: E \rightarrow F$ linear and bijective for each $y \in Y$, such that

$$
T f(y)=J_{y}(f(h(y)))
$$

for every $f \in A C(X, E)$ and $y \in Y$. Also, if Y has no isolated points, then T is continuous.

Proof By Remark 4.6 and the definition of J_{y} we deduce the representation of T. We only need to prove that T is continuous if Y has no isolated points. We will prove that $\delta_{y} \circ T$ is continuous for every $y \in Y$, and then applying the closed graph theorem in a similar way as in Theorem 3.6, we will deduce that T is a continuous map.

Suppose that there exists $y_{0} \in Y$ such that $\delta_{y_{0}} \circ T$ is not continuous. Then we consider a sequence $\left(e_{n}\right)$ in E such that $\left\|e_{n}\right\| \leq 1 / n^{3}$ and $\left\|T \widehat{e_{n}}\left(y_{0}\right)\right\|>1$ for all $n \in \mathbb{N}$. In this way, we can find a sequence $\left(y_{n}\right)$ in Y, strictly monotone and converging to y_{0}, such that $\left\|T \widehat{e_{n}}\left(y_{n}\right)\right\|>1$ for each $n \in \mathbb{N}$.

We now take disjoint open neighborhoods U_{n} of $h\left(y_{n}\right)$ for each $n \in \mathbb{N}$, and define $f_{n} \in A C(X)$ such that $f_{n}\left(h\left(y_{n}\right)\right)=1,0 \leq f_{n} \leq 1$ and $c\left(f_{n}\right) \subset U_{n}$ for all $n \in \mathbb{N}$. Finally, we consider the function $f:=\sum_{n=1}^{\infty} f_{n} \widehat{e}_{n}$ that belongs to $A C(X, E)$.

It is obvious that $f\left(h\left(y_{0}\right)\right)=0$ and, by Corollary4.5, $T f\left(y_{0}\right)=0$. On the other hand, $\left(f-\widehat{e_{n}}\right)\left(h\left(y_{n}\right)\right)=0$ and then $T f\left(y_{n}\right)=T \widehat{e_{n}}\left(y_{n}\right)$ for all $n \in \mathbb{N}$. This implies that $\left\|T f\left(y_{n}\right)\right\|>1$ for each $n \in \mathbb{N}$, and we obtain a contradiction, since $T f$ is continuous.

Acknowledgements The author wishes to thank the referee for valuable suggestions and Professor J. Araujo for his guidance in the development of this paper.

References

[1] Y. A. Abramovich and A. K. Kitover, Inverses of disjointness preserving operators. Mem. Amer. Math. Soc. 143(2000), no. 679.
[2] J. Araujo, Separating maps and linear isometries between some spaces of continuous functions. J. Math. Anal. Appl. 226(1998), no. 1, 23-39. doi:10.1006/jmaa.1998.6031
[3] , Realcompactness and spaces of vector-valued functions. Fund. Math. 172(2002), no. 1, 27-40. doi:10.4064/fm172-1-3
[4] , Realcompactness and Banach-Stone theorems. Bull. Belg. Math. Soc. Simon Stevin 11(2004), no. 2, 247-258.
[5] J. Araujo and K. Jarosz, Automatic continuity of biseparating maps. Studia Math. 155(2003), no. 3, 231-239. doi:10.4064/sm155-3-3
[6] R. Engelking, General Topology. Heldermann Verlag, Berlín, 1989.
[7] J. J. Font, Automatic continuity of certain isomorphisms between regular Banach function algebras. Glasgow Math. J. 39(1997), no. 3, 333-343. doi:10.1017/S0017089500032250
[8] J. J. Font and S. Hernández, On separating maps between locally compact spaces. Arch. Math. (Basel) 63(1994), no. 2, 158-165.
[9] , Automatic continuity and representation of certain linear isomorphisms between group algebras. Indag. Math. 6(1995), no. 4, 397-409. doi:10.1016/0019-3577(96)81755-1
[10] H. L. Gau, J. S. Jeang, and N. C. Wong, Biseparating linear maps between continuous vector-valued function spaces. J. Aust. Math. Soc. 74(2003), no. 1, 101-109. doi:10.1017/S1446788700003153
[11] S. Hernández, E. Beckenstein, and L. Narici, Banach-Stone theorems and separating maps. Manuscripta Math. 86(1995), no. 4, 409-416. doi:10.1007/BF02568002
[12] E. Hewitt and K. Stromberg, Real and Abstract Analysis. Graduate Texts in Mathematics 25. Springer-Verlag, New York, 1975.
[13] K. Jarosz, Automatic continuity of separating linear isomorphisms. Canad. Math. Bull. 33(1990), no. 2, 139-144.
[14] J. S. Jeang and N. C. Wong, Weighted composition operators of $C_{0}(X)$'s. J. Math. Anal. Appl. 201(1996), no. 3, 981-993. doi:10.1006/jmaa.1996.0296
[15] R. Larsen, Functional Analysis. An Introduction. Pure and Applied Mathematics 15. Marcel Dekker, New York, 1973.
[16] V. D. Pathak, Linear isometries of spaces of absolutely continuous functions. Canad. J. Math. 34(1982), no. 2, 298-306.

[^1]
[^0]: Received by the editors May 14, 2007.
 Published electronically April 6, 2010.
 The author's research was supported by the Spanish Ministry of Science and Education (MTM200614786) and by a predoctoral grant from the University of Cantabria and the Goverment of Cantabria. AMS subject classification: 47B38, 46E15, 46E40, 46H40, 47B33.
 Keywords: separating maps, disjointness preserving, vector-valued absolutely continuous functions, automatic continuity.

[^1]: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Santander, Spain
 e-mail: luis.dubarbie@gmail.com

