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Classical and Quantum Registers

5.1 Introduction

In this chapter we extend the discussion of the previous chapter, from one

detector to an apparatus with an arbitrary number of nodes at any given stage.

Our labeling convention is followed throughout this book: subscripts always

label stages whereas superscripts always label nodes and modules (discussed

in Chapter 11). The number of nodes at stage Σn will be called the rank of the

apparatus at that stage and denoted rn. The ith node at stage Σn will be denoted

by in, which should not be confused with labstate vectors such as in, which are

always denoted in bold font.

Whenever we are using classical mechanics (CM), the collection of classical

nodes at stage Σn will be called a classical binary register , denoted Rn. In that

case, in is represented by classical bit Bi
n, so Rn is the Cartesian product of all

the bits at that stage, that is,

Rn ≡ B1
n ×B2

n × · · · ×Brn
n . (5.1)

The cardinality (number of elements) of the rank r classical binary register Rn

is dn ≡ 2rn . If we wish to indicate the rank of Rn, we write R[rn]
n .

On the other hand, whenever we are using quantum mechanics (QM), the

collection of nodes at stage Σn will be called a quantum register and denoted

Qn or Q[rn]
n . In the quantum case, in is represented by qubit Qi

n. The quantum

register Qn is the tensor product of all the qubits at that stage, that is,

Qn ≡ Q1
n ⊗Q2

n ⊗ · · · ⊗Qrn
n . (5.2)

Such a tensor product space is a Hilbert space of dimension dn ≡ 2rn .

5.2 Labels versus Ordering

Superscripts are used in quantized detector networks (QDN) to identify individ-

ual nodes. Therefore, the standard left-right ordering in Cartesian products such
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as (5.1) or the left-right ordering in tensor products such as (5.2) is redundant.

Provided we retain superscripts, we can drop the × symbol in Cartesian products

and the ⊗ symbol in tensor products. Moreover, we can dispense with the left-

right ordering rule in such products. Henceforth, we adopt the convention that

the Cartesian product B1×B2 can be represented unambiguously by either B1B2

or B2B1. Moreover, the ordered element (i1, j2) of B1 ×B2 can unambiguously

be represented by the notation i1j2 or j2i1. A similar convention will be applied

to tensor products and to dual spaces.

Example 5.1 If Ψ1 is a vector in qubit Q1 and Φ2 is a vector in Q2,

then Ψ1Φ2 = Φ2Ψ1 ≡ Ψ1 ⊗ Φ2 is an element of the tensor product space

Q1Q2 = Q2Q1 ≡ Q1 ⊗Q2.

Example 5.2 The rank-two classical register R[2] ≡ B1B2 contains four

classical states:

R[2] ≡ {0102,1102,0112,1112}. (5.3)

These elements cannot be added together.

On the other hand, the corresponding rank-two quantum register Q[2] ≡
Q1Q2 has a preferred basis B[2] � R[2] corresponding to the above four

classical states. Now, however, arbitrary linear combinations of the form

αi1j2 + βk1l2, for complex α, β and i, j, k, l = 0, 1, are allowed, giving new

elements in Q[2]. The four elements 0102,1102,0112,1112 form the preferred

basis for Q[2], while their duals 0102,1102,0112,1112 form the preferred basis

for the dual space Q[2].

5.3 The Signal Basis Representation

For any given rank, there are infinitely many more possible quantum states than

possible classical states. Representing these quantum states efficiently there-

fore requires suitable notation. In this section, we introduce a representation

that is based on observational context (what we can see). By this we mean it

utilizes the specific details of the detectors involved in the experiments being

discussed.

Throughout the rest of this chapter we discuss a collection of qubits seen at

a single stage, or instant of the observer’s time, so in this chapter we suppress

any reference to time. However, time will not be overlooked in general. In the

dynamical theory given in the next chapter, a temporal subscript n will be

introduced that is associated with every labstate and with other quantities such

as the rank of the quantum register. Our ultimate aim is to construct a general

theory of observation in which apparatus itself becomes a dynamical quantity.
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Consider a rank-r quantum register Q[r] ≡ Q1Q2 . . . Qr. Observational context

will inform us about the preferred basis B[r] for Q[r]. This consists of all possible

signal basis states of the apparatus. These will represent all possible classical

yes-no configurations of the detectors involved. Each element of this basis set

is a tensor product of the form i1i2i3 . . . ir, where the ia are all either the 0a

(ground state) or 1a (signal state) elements of the preferred basis Ba for the ath

detector qubit Qa. When written in this form, B[r] will be referred to as the

signal basis representation (SBR).

By inspection, we see there are 2r distinct elements in B[r] and together they

constitute an orthonormal basis for the quantum register Q[r]. We can identify

the elements in the classical register R[r] with the elements of the preferred basis

B[r] of the quantum register Q[r].

Example 5.3 The SBR for a rank-three quantum register has 23 = 8

elements and is given by

B[3] ≡
{
010203,110203,011203,111203,010213,110213,011213,111213

}
.

(5.4)

To define orthonormality, we introduce the dual basis B[r], consisting of ele-

ments of the form i1i2i3 . . . ir, where ia = 0a or ia = 1a for a = 1, 2, . . . , r. Inner

products in Q[r] are defined by the action of elements of B[r] on elements of B[r],

plus linearity:

i1i2i3 . . . irj1j2j3 . . . jr = (i1j1)(i2j2)(i3j3) . . . (irjr)

= δi
1j1δi

2j2δi
3j3 . . . δi

rjr . (5.5)

This rule is interpreted as follows. If the right-hand side of (5.5) is zero, then the

elements i1i2i3 . . . ir and j1j2j3 . . . jr of the Hilbert space Q[r] are orthogonal;

otherwise, they are the same element and it has length (norm) of one.

Example 5.4 According to our notation, indices keep track of factor qubit

spaces in a quantum register. Hence for a rank-four register, for example, we

would find

0411130203110204 = (1111)︸ ︷︷ ︸
1

(0202)︸ ︷︷ ︸
1

(1303)︸ ︷︷ ︸
0

(0404)︸ ︷︷ ︸
1

= 1× 1× 0× 1 = 0. (5.6)

5.4 Maximal Questions

Given an apparatus represented by r detectors at a given stage, the observer has

the freedom to ask any one of a number of questions. For instance, the observer

may look at a particular detector to ascertain its signal state and not look at any
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of the other detectors. Such a question that does not involve all of the detectors

will be called a partial question. Partial questions are discussed in Chapter 8.

A maximal question is one that asks a binary question of every detector in

a register. From (5.5), we see that the elements of the dual basis B[r] can be

interpreted as maximal questions, and there are 2r of them. It is important to

note that in the absence of any theory that quantizes observers and/or their

questions, arbitrary vectors in Q[r] are not in general physically meaningful

maximal questions; only the elements of the preferred dual basis B[r] are maximal

questions in the formulation of QDN being discussed at this point.

It is not impossible, however, to imagine a scenario where questions being asked

correspond to elements ofQ[r] that are nontrivial linear combinations of preferred

basis elements. For instance, a given observer may be conducting an experiment

where there are two possible quantum outcomes, such that each outcome would

trigger a different maximal question of some state at a later stage. That would

correspond to quantization of apparatus and/or observers. This sort of scenario

is essentially the focus of Chapter 21.

Example 5.5 Given the rank-two quantum register Q[2] ≡ Q1Q2, the

preferred basis B[2] has four elements:

B[2] = {0102,1102,0112,1112}. (5.7)

The maximal questions are all the elements of the dual basis

B[r]≡{0102,1102,0112,1112}. (5.8)

5.5 Signality

The signality of a basis state corresponds to the total “particle number” being

detected by the apparatus concerned, if any positive signal in any of the detectors

is interpreted as registering a particle in the conventional sense.

Definition 5.6 The signality of an element i1i2i3 · · · ia of the signal basis

B[r] is the sum
∑r

a=1 i
a.

Example 5.7 The signality of the element 061211050314 in B[6] is 1 + 1 +

0 + 1 + 0 + 0 = 3.

The particle interpretation of signality has to be viewed cautiously for two

reasons. First, detectors register irreversible processes that may have nothing

to do with any identifiable, persistent “particle.” For example, a phonon is a

collective phenomenon, a quantum of excitation in a crystal that does not “exist”
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64 Classical and Quantum Registers

in a reductionist sense. Second, it is possible in QDN to deal with labstates that

are superpositions of preferred basis states of differing signality. Classically, this

would have no particle interpretation but is part and parcel of QDN.

Dynamics may in many situations rule out certain superpositions of labstates

in a quantum register. For example, charge conservation rules out superpositions

of labstates corresponding to different numbers of electrons. Another example

is angular momentum: we are not allowed in conventional quantum mechanics

to superpose states of particles with different total spin number, conventionally

denoted by j. However, the general principle remains: superposition of labstates

of different signality is allowed in principle in QDN; only dynamical context rules

out certain mathematical possibilities.

These comments apply to the labstates. As far as the dual basis is concerned,

we are not at this stage entitled to create linear superpositions of any of the

basis elements in the dual basis set B[r], as these elements represent questions

being asked by the observer. We have introduced no concept yet of a “quantized

observer,” whatever that might mean. Notwithstanding our comments just before

Example 5.5, all questions asked at this stage of this book have to be completely

classical. The point about QDN is that the labstates do not have this restriction

and can be superpositions of the classical-looking elements of the preferred basis.

This remark applies before the observer looks at a labstate.

5.6 The Economy of Success

A useful fact now emerges, a fact that underpins the success of CM (a moderately

simple theory) in describing a hideously complex reality. Of all the 2r states in

a rank-r classical register, only one of them has a truth value of one relative to

any given maximal question, and all the other 2r − 1 states have truth value

of zero, relative to that question. To see this, consider an arbitrary maximal

question i
1
i
2
. . . i

r
asked of an arbitrary classical register state j1j2 . . . jr. The

answer is

i
1
i
2
. . . i

r
j1j2 . . . jr = (i

1
j1)︸ ︷︷ ︸

δi1j1

(i
2
j2)︸ ︷︷ ︸

δi2j2

. . . (i
r
jr)︸ ︷︷ ︸

δirjr

= δi
1j1δi

2j2 . . . δi
rjr , (5.9)

which is zero in general except for the particular case when ia = ja for each

possible value of a, and then the answer value is one. This result greatly simplifies

calculations in QDN.

This result contributes to the inherent economy of the particle description in

CM, as the following example illustrates. Suppose we wanted to describe a single

point particle in three-dimensional space. The conventional approach would be

to define a Cartesian coordinate system with coordinates x, y, and z along three

mutually orthogonal axes, relative to some chosen origin of coordinates. Then the

position of a particle P would be fully specified by giving only three numbers,

(xP , yP , zP ), referred to as the position coordinates of the particle. The economy
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of this approach is literally infinite: saying where the particle is immediately says

where the particle is not, which is every point in space apart from the one with

coordinates (xP , yP , zP ).

This economy of information comes about because of context: we have been

told that there is only one particle.

But suppose now we are presented with a situation where we were not told

beforehand how many particles there were in our laboratory. Then we would

have to look at every point in space if we wanted to know the total particle

number. This is not a trivial point but a hard fact in astrophysics and cosmology:

astronomers have to scan space thoroughly in order to make estimates of matter

and dark matter densities on cosmological scales.

In the quantum context, we may use signality to tell us how many signals

there are in our detector array. A labstate of signality one corresponds closely to

what can be thought of as a single particle state. This means that, if we knew

beforehand that we were dealing with a signality-one state, then it would suffice

to find a positive signal in just one detector in an array to be sure (by context)

that there were no positive signals anywhere else in that array.

It is an intriguing thought that when we specify the classical Cartesian coordi-

nates x, y, z of a point particle, we are not only answering the question where is

the particle? but also saying that it is not at any of the other points in space,

of which there is an uncountable number. Clearly, that is an impressive form of

economy, but one occurring only because of our contextual information.

5.7 Quantum Registers

We now extend the discussion from quantum labstates of a single detector to

quantum labstates of two or more detectors. These higher rank labstates are

elements of some quantum register Q[r] ≡ Q1Q2 . . . Qr, where r � 1 is the rank

of the register and Qi is the ith qubit in the register. We have suppressed the

tensor product symbol ⊗ here.

Tensor products of vector spaces are discussed in the Appendix. Unlike Carte-

sian products, tensor product spaces are genuine vector spaces, the quantum

register Q[r] being a complex vector space of dimension 2r. This is one of the

places where the fundamental differences between CM and QM manifest them-

selves. In the classical case, there is only a finite number of different possible

states in a classical register. For a system of r classical bits, each of which has

two possible mutually exclusive answer states, then the total number of integers

0 or 1 we would need in order to parametrize any classical state of the system

is just r. Any state in such a classical register can therefore be represented by

an r-tuple of the form {i1, i2, . . . , ir}, where ia = 0 or 1, for a = 1, 2, . . . r, and

there are just 2r different such r-tuples. In the quantum case, possible states are

elements of a finite-dimensional complex vector space of dimension 2r, which has

infinitely many elements.
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Consider an arbitrary state Ψ in Q[2]. Given the above preferred basis, we can

always write

Ψ = z10102 + z21102 + z30112 + z41112, (5.10)

where the za are labeled complex numbers, not powers of z. The dual state Ψ is

given by

Ψ ≡ z10102 + z21102 + z30112 + z41112

= z1∗0102 + z2∗1102 + z3∗0112 + z4∗1112, (5.11)

where za∗ is the complex conjugate of za. If the state is normalized, we have the

condition

ΨΨ = |z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. (5.12)

If now we write za = xa + iya, where xa and ya are real, then the normalization

condition (5.12) is equivalent to saying that possible states rank-two quantum

register can be identified one-to-one with points on S7, the unit sphere in eight-

dimensional Euclidean space E8.

The above analysis is for just two detectors. If we had in mind, say, a screen

consisting of a million detectors, or a neural network in a brain, the numbers

shoot up beyond imagination.1 Clearly, qubit register states have much more

structure than their classical counterparts. The exploration of this structure is

in a real sense in its infancy at this time. For example, there is still a great deal

to be understood about the physics of quantum entangled states in low rank

quantum registers. We discuss some aspects of this in Chapter 22.

5.8 The Computational Basis Representation

The SBR {i1i2i3 . . . ir : ia = 0, 1 : a = 1, 2, . . . , r} for elements of the preferred

basis B[r] is useful in some respects but less so in others. A frequently more

useful but equivalent notation for the elements of the preferred basis will be

called the computational basis representation (CBR) and is obtained as follows.

For each element i1i2i3 · · · ir of the SBR, there is precisely one element i of the

CBR, where i is an integer in the range [0, 2r − 1], given by the computational

basis map

i = i1 + 2i2 + 4i3 + · · ·+ 2r−1ir, (5.13)

where i3 means the third element in the SBR and not i to the power of three.

The computational basis map can be inverted. Given an element p of the CBR,

where p is an integer in the range [0, 2r − 1], we can write

p = p[1] + 2p[2] + 4p[3] + · · ·+ 2r−1p[p] =
1

2

r∑
a=1

2ap[a], (5.14)

1 The average human brain has about a hundred billion neurons.
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where the symbol p[a] denotes the signal status (zero or one) of the ath detector

when the apparatus is in the labstate p. The coefficients p[a] will be referred to

as the binary components of the integer p and are discussed in further detail later

on in this chapter. They play an essential role in the formalism of QDN and in

many calculations.

Example 5.8 For the rank-three quantum register Q1Q2Q3, the SBR of the

preferred basis B[3] is

B[3] = {010203,110203,011203,111203,010213,110213,011213,111213}.
(5.15)

The CBR of B[3] is the set

B[3] = {0,1,2,3,4,5,6,7}, (5.16)

where 0 = 010203, 1 = 110203, and so on.

The CBR generally has the advantage over the SBR of being more compact

and on that account is better suited in many but not all calculations. The dual

preferred basis B[r] can also be expressed in CBR terms, and then the inner

product relations (5.5) take the form

ij = δij , 0 � i, j < 2r, (5.17)

which is very useful.

A disadvantage of the CBR is that it masks the signal properties of a given

state. For example, the CBR element 3 could represent the SBR element 1112 for

a rank-two apparatus or the SBR element 1112030405 of a rank-five apparatus

and so on. However, context will generally make it clear what is meant by a given

CBR expression.

The CBR is useful for representing linear operators over the register. These

will generally be denoted in blackboard font in QDN. For example, the classical

or quantum register identity operator I[r] is expressed in the CBR by

I[r] =

2r−1∑
k=0

kk. (5.18)

More generally, if we know the action of a linear register operator on each

element of the signal basis, then we can represent that operator as a dyadic in

the computation representation, as we show in the next section.

5.9 Register Operators

A register operator is a function that maps elements of a classical or quantum

register into itself or another classical or quantum register. Linear register oper-

ators will be denoted in blackboard bold font, such as U, A, and so on. The same
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labeling convention used for states and questions will be used for linear operators:

upper indices refer to qubits and, while lower labels indicate stages.

Suppose On,m is a linear register operator mapping states from an initial stage

Σm rank-rm classical or quantum register into a final stage Σn rank-rn classical

or quantum register. Suppose further that we are given its action on each element

im of the CBR, that is,

On,mim =
2rn−1∑
j=0

Oji
n,mjn, i = 0, 1, . . . , 2rm − 1, (5.19)

where the Oji
n,m are complex coefficients.

Now “multiply” each side from the right by im and sum over i:

2rm−1∑
i=0

On,mimim =

2rm−1∑
i=0

2rn−1∑
j=0

Oji
n,mjnim (5.20)

The left-hand side simplifies because of linearity:

2rm−1∑
i=0

On,mimim = On,m

{
2rm−1∑
i=0

imim

}
= On,mIm = On,m, (5.21)

using (5.18). Hence finally we arrive at the dyadic representation of a typical

register operator:

On,m =
2rm−1∑
i=0

2rn−1∑
j=0

jnO
ji
n,mim. (5.22)

We define the retraction On,m of a register operator On,m by

On,m ≡
2rm−1∑
i=0

2rn−1∑
j=0

imOji∗
n,mjn, (5.23)

where Oij∗
n,m is the complex conjugate of Oij

n,m. A retraction as defined here is not

necessarily the equivalent of an inverse operator.

5.10 Classical Register Operators

We saw in Chapter 3 that there are only four classical bit operators C1 ≡ I,

C2 ≡ F , C3 ≡ D , and C4 ≡ U that map bit states to bit states. Likewise, a

classical register operator maps classical register states to classical register states.

We shall discuss a classical register operator Cn,m mapping register states from

a rank-rm classical register Rm to a rank-rn classical register Rn.

As before, the most economical way to discuss classical register operators is

via the CBR, as follows. For any element im in Rm, where i = 0, 1, 2, . . . , 2rm −1,

the operator Cn,m necessarily maps it into precisely one element in Rn, and not

into a linear combination of two or more, as in the quantum case. This means

that we can always write
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Cn,mim =

2rn−1∑
j=0

Cji
n,mjn, i = 0, 1, 2, . . . , 2rm − 1, (5.24)

where for a given i, every element Cji
n,m is zero for every integer j in the interval

[0, 2rn − 1] except for one, which has value one. Using the completeness property

of the elements {im} we arrive at the dyadic representation

Cn,m =
2rn−1∑
j=0

2rm−1∑
i=0

jnC
ji
n,mim. (5.25)

This is a special case of (5.22) and there is a total of (2rn)2
rm

different possible

such operators.

In this set of operators, there are two subsets that are of particular importance

in both classical register mechanics and quantum register mechanics. These are

the register projection operators and the register signal operators.

Register Projection Operators

Given a rank-r register, the observer may be interested in asking questions of an

individual bit or qubit and leaving all the other bits or qubits alone. The register

projection operators Pi and P̂i will be used in later chapters to construct partial

questions. These operators are defined by

Pi = I1I2 . . . Ii−1P iIi+1 . . . Ir,

P̂i = I1I2 . . . Ii−1P̂ iIi+1 . . . Ir,

where Ia is the bit identity operator for the ath bit or qubit and P i, P̂ i are

the bit projection operators for the ith bit or qubit, as discussed in the previous

chapter.

Register Signal Operators

Associated with a rank-r quantum register Q[r] are some important operators

connected to the physics of observation, and these will appear frequently through-

out the formalism. The most important of these are the r signal annihilation

operators Ai, i = 1, 2, . . . , r and the related signal creation operators Âi. These

operators are defined in terms of the signal bit operators discussed in the previous

chapter, as follows:

Ai ≡ I1I2 . . . Ii−1AiIi+1 . . . Ir,

Âi ≡ I1I2 . . . Ii−1ÂiIi+1 . . . Ir, i = 1, 2, . . . , r,
(5.26)

where the superscripts on the right-hand side label the individual qubits in a

given rank-r register and we suppress the tensor product symbol ⊗.

5.11 The Signal Algebra

We define Sa, the ath signal set , to be the set of register operators

Sa ≡ {Pa, P̂a,Aa, Âa}, a = 1, 2, . . . , r. (5.27)
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Table 5.1 The signal set algebra

Pa P̂a Aa Âa

Pa Pa 0 Aa 0

P̂a 0 P̂a 0 Âa

Aa 0 Aa 0 Pa

Âa Âa 0 P̂a 0

Then an extraordinarily useful fact is that any two elements from different signal

sets commute.

For a given signal set Sa, we have the ath signal set algebra, as shown in

Table 5.1. For i = 1, 2, . . . , r we have

AiAi = ÂiÂi = 0,
{
Ai, Âi

}
= Pi + P̂i = I[r], (5.28)

where curly brackets denote an anticommutator, while for i 	= j, we have

[Ai,Aj ] = [Âi, Âj ] = [Ai, Âj ] = 0, (5.29)

where square brackets denote a commutator. Note that in the above, the symbol

0 represents the zero operator for the register concerned.

The signal set algebra gives QDN a particular flavor; parts of it are reminiscent

of a theory with fermions (anticommuting objects), while other parts have a

bosonic (commuting) character. At the signal level, however, we are dealing with

neither concept specifically; the signal algebra is determined by the physics of

observation as it relates to the apparatus and has its own logic that is distinct

from that of conventional particle physics.

5.12 Signal Excitations

The signal operators introduced above are used to construct signal states from

the signal ground state 0 as follows.

1. The signality one states are of the form Âi0 ≡ 2i−1, 1 ≤ i ≤ r.

2. The signality two states are of the form ÂiÂj0 ≡ 2i−1 + 2j−1, 1 ≤ i < j ≤ r.

3. The signality k states are of the form

Âi1Âi2 . . . Âik0 ≡
k∑

j=1

2ij−1, (5.30)

for 1 ≤ i1 < i2 < · · · < ik ≤ r.

Remark 5.9 In the above, we underline expressions such as 2i−1 + 2j−1 to

indicate that this is not the vector sum of 2i−1 and 2j−1 but the vector in the

CBR corresponding to the sum of the integers 2i−1 and 2j−1.

https://doi.org/10.1017/9781009401432.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.006


5.13 Signality Classes 71

The same approach can be used to discuss maximal questions. Recall that these

are represented by the dual preferred basis elements of the form i, 0 ≤ i < 2r.

Then we can write

0Ai1Ai2 . . .Aik ≡
k∑

j=1

2ij−1 . (5.31)

Exercise 5.10 Prove that

Ai0 = 0, 0Âi = 0, 1 ≤ i ≤ r. (5.32)

Exercise 5.11 Use the signal algebra to show that

ij = δij , 0 ≤ i, j, < 2r. (5.33)

5.13 Signality Classes

For each rank r quantum register Q[r], we may write its preferred basis B[r] in

the form

B[r] = {0, Â10, Â20, . . . , Âr0, Â1Â20, . . . , Â1Â2 . . . Âr0}. (5.34)

For each element, the signality of that element is the number of signal creation

operators used to create it from the signal ground state.

Example 5.12 For a rank-11 quantum register, the preferred basis state

given by 851 in the CBR is given by 111203041506170819110011 in the SBR,

from which we can read off its signality as 6. Equivalently, we can see that

this state is given by Â1Â2Â5Â7Â9Â100, which clearly has signality 6.

Such examples soon show the enormous advantage of using the CBR for large

rank registers. The CBR is particularly suited for computer algebra calculations.

By inspection, it is easy to see that the preferred basis B[r] separates into r+1

disjoint signality classes:

signality zero B[r,0] ≡ {0},
signality one B[r,1] ≡ {Âa0 : a = 1, 2, . . . , r},
signality two B[r,2] ≡ {ÂaÂb0 : 1 � a < b � r},

...
...

signality r B[r,r] ≡ {Â1Â2 . . . Âr0}.

(5.35)

Then we may write the preferred basis as the union of all of these signality classes,

that is,

B[r] =

r⋃
a=0

B[r,a]. (5.36)
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We define the signality count σ[r,a] as the number of elements in B[r,a]. Then

σ[r,a] =
r!

a!(r − a)!
=
(
r
a

)
(5.37)

Hence the total signality σ[r] is given by

σ[r] ≡
r∑

i=0

σ[r,a] =

r∑
a=0

(
r
a

)
= 2a, (5.38)

as expected.

A significant feature of QDN is that the addition of register states of different

signality is permitted, unless the dynamics specifically rules it out. This will

happen, for example, whenever the signals are interpreted as electrically charged

particles. Under such circumstances, we expect conservation of total signality.

5.14 Binary Decomposition

Given a nonnegative integer k, the binary decomposition of k is the expansion

k =
∞∑
a=1

k[a]2a−1, k = 0, 1, 2, . . . , (5.39)

where each of the binary coefficients k[a] is either zero or one. Table 5.2 shows

the binary decomposition up to k = 9.

From the table, we read off for example that

6 = 0× 21−1 + 1× 22−1 + 1× 23−1 + 0× 24−1 + 0× · · · = 2 + 4 = 6.

For each k, the maximum a for which k[a] = 1 is the minimum rank of k,

denoted μ(k) and indicated by a box in Table 5.2. The minimum rank of k is the

rank of the “smallest” quantum register that contains the basis state k.

Table 5.2 The binary decomposition of the

integers up to nine

a → 1 2 3 4 . . .
2a−1 → 1 2 4 8 . . .

k ↓ 0 0 0 0 0 . . .

1 1 0 0 0 . . .

2 0 1 0 0 . . .

3 1 1 0 0 . . .

4 0 0 1 0 . . .

5 1 0 1 0 . . .

6 0 1 1 0 . . .

7 1 1 1 0 . . .

8 0 0 0 1 . . .

9 1 0 0 1 . . .
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Example 5.13 From Table 5.2 we read off

μ(1) = 1,

μ(2) = μ(3) = 2,

μ(4) = μ(5) = μ(6) = μ(7) = 3. (5.40)

We see μ(9) = 4 and 9[1] = 1, 9[2] = 0, 9[3] = 0, 9[4] = 1, so

9 = 1× 21−1 + 0× 21 + 0× 23−1 + 1× 24−1 = 1 + 8 = 9. (5.41)

5.15 Computational Basis Representation for Signal Operators

For a given rank-r register Q[r], the preferred basis elements {k : k =

0, 1, 2, . . . , 2r − 1} are given in the CBR by

k =

μ(k)∑
a=1

k[a]2a−1, k = 0, 1, 2, . . . , 2r − 1, (5.42)

where k[a] = 0 or 1 is the ath binary component of the integer k; i.e., we have

k = k[1]21−1 + k[2]22−1 + k[3]23−1 + · · ·+ 2μ(k)−1. (5.43)

Hence we may equate the CBR and SBR elements in the basis B[μk]

k = k[1]k[2] . . .1μk =
(
Â1
)k[1]

(
Â2
)k[2]

. . .
(
Âμk

)
0. (5.44)

Now use the results

Âak = 0 if k[a] = 1,

= k + 2a−1 if k[a] = 0.
(5.45)

Defining

k̂[a] ≡ 1− k[a], (5.46)

then we can readily show

Âak = k̂[a]k + 2a−1, kÂa = k[a]k − 2a−1

Aak = k[a]k − 2a−1, kAa = k̂[a]k + 2a−1. (5.47)

Hence we must have

Âa =
2r−1∑
k=0

k̂[a]k + 2a−1k =
2r−1∑
k=0

k[a]kk − 2a−1, (5.48)

Aa =

2r−1∑
k=0

k[a]k − 2a−1k =

2r−1∑
k=0

k̂[a]kk + 2a−1, (5.49)

which leads to

Pa =
2r−1∑
k=0

k̂[a]kk, P̂a =
2r−1∑
k=0

k[a]kk. (5.50)
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These results are consistent with

Pa + P̂a =

2r−1∑
k=0

(k[a] + k̂[a])kk =

2r−1∑
k=0

kk = I[r], a = 1, 2, . . . , r. (5.51)

Example 5.14 Using the above expansions, we find

Rank one
P = 00, P̂ = 11

A = 01, Â = 10. (5.52)

Rank two
P1 = 00+ 22, P̂1 = 11+ 33,

P2 = 00+ 11, P̂2 = 22+ 33,

A1 = 01+ 23, Â1 = 10+ 32,

A2 = 02+ 13, Â2 = 20+ 31. (5.53)

Rank three
P1 = 00+ 22+ 44+ 66, P̂1 = 11+ 33+ 55+ 77,

P2 = 00+ 11+ 44+ 55, P̂2 = 22+ 33+ 66+ 77,

P3 = 00+ 11+ 22+ 33, P̂3 = 44+ 55+ 66+ 77,

A1 = 01+ 23+ 45+ 67, Â1 = 10+ 32+ 54+ 76,

A2 = 02+ 13+ 46+ 57, Â2 = 20+ 31+ 64+ 75,

A3 = 04+ 15+ 26+ 37, Â3 = 40+ 51+ 62+ 73. (5.54)

In general, the CBR for any signal operator in a rank-r register consists of a

sum of 2r−1 transition operators, all of which annihilate each other, including

themselves. Likewise, a product ÂiÂj of two different signal operators can be

expressed as a sum of 2r−2 transition operators that mutually annihilate, and

so on. This process of representation can be continued until we arrive at the

saturation operator Â1Â2 . . . Âr, which when applied to the signal ground state

creates the antithesis of the ground state, the fully saturated signal state 2r − 1 ≡
1112 . . .1r.

A particularly useful expression for the signal creation operators is obtained

by writing any of them in the form

Âi = 2i−10+ Xi, (5.55)

where the operator Xi ≡
∑2r−1

k=1 k̂[i]k + 2i−1k annihilates the signal ground

state. This expression can be used to greatly simplify calculations for those

experiments involving signality-one labstates, as in single-photon quantum optics

experiments.
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