
9
Spacetime transformations

An important class of symmetries is that which refers to the geometrical dis-
position of a system. This includes translational invariance, rotational invariance
and boosts. Historically, covariant methods were inspired by the fact that the
speed of light in a vacuum is constant for all inertial observers. This follows
from Maxwell’s equations, and it led Einstein to the special theory of relativity
and covariance. The importance of covariance has since been applied to many
different areas in theoretical physics.

To discuss coordinate transformations we shall refer to figure 9.1, which
shows two coordinate systems moving with a relative velocity v = βc. The
constancy of the speed of light in any inertial frame tells us that the line element
(and the corresponding proper time) must be invariant for all inertial observers.
For a real constant ', this implies that

ds2 = '2ds ′2 = '2(−c2dt2 + dx · dx). (9.1)

This should not be confused with the non-constancy of the effective speed of
light in a material medium; our argument here concerns the vacuum only. This
property expresses the constancy, or x-independence, of c. The factor '2 is
of little interest here as long as it is constant: one may always re-scale the
coordinates to absorb it. Normally one is not interested in re-scaling measuring
rods when comparing coordinate systems, since it only make systems harder to
compare. However, we shall return to this point in section 9.7.

For particles which travel at the speed of light (massless particles), one has
ds2 = 0 always, or

dx
dt
= c. (9.2)

Now, since ds2 = 0, it is clearly true that '2(x) ds2 = 0, for any non-singular,
non-zero function '(x). Thus the value of c is preserved by a group of
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208 9 Spacetime transformations

S
S

relative velocity
v

′

Fig. 9.1. The schematic arrangement for discussing coordinate transformations. Co-
ordinate systems S(x) and S′(x ′) are in relative motion, with speed v = βc.

transformations which obey

ds ′2 = '2(x)ds2. (9.3)

This set of transformations forms a group called the conformal group.
If all particles moved at the speed of light, we would identify this group as

being the fundamental symmetry group for spacetime. However, for particles
not moving at c, the line element is non-zero and may be characterized by

dx
dt
= βc, (9.4)

for some constant β = v/c. Since we know that, in any frame, a free particle
moves in a straight line at constant velocity, we know that β must be a constant
and thus

ds ′2 = ds2 �= 0. (9.5)

If it were possible for an x-dependence to creep in, then one could transform
an inertial frame into a non-inertial frame. The group of transformations which
preserve the line element in this way is called the inhomogeneous Lorentz group,
or Poincaré group.
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9.1 Parity and time reversal 209

In the non-relativistic limit, coordinate invariances are described by the so-
called Galilean group. This group is no smaller than the Lorentz group, but
space and time are decoupled, and the speed of light does not play a role at
all. The non-relativistic limit assumes that c → ∞. Galilean transformations
lie closer to our intuition, but they are often more cumbersome since space and
time must often be handled separately.

9.1 Parity and time reversal

In an odd number of spatial dimensions (n = 2l+1), a parity, or space-reflection
transformation P has the following non-zero tensor components:

P0
0 = 1

P i
i = −1, (9.6)

where i is not summed in the last line. When this transformation acts on another
tensor object, it effects a change of sign on all space components. In other words,
each spatial coordinate undergoes xi → −xi . The transformation A → −A is
the discrete group Z2 = {1,−1}.

In an even number of spatial dimensions (n = 2l), this construction does not
act as a reflection, since the combination of an even number of reflections is not
a reflection at all. In group language, (Z2)

2n = {1}. It is easy to check that, in
two spatial dimensions, reflection in the x1 axis followed by reflection in the x2

axis is equivalent to a continuous rotation. To make a true reflection operator in
an even number of space dimensions, one of the spatial indices must be left out.
For example,

P0
0 = 1

P i
i = −1 (i = 1, . . . , n − 1)

P i
i = +1 (i = n). (9.7)

The time reversal transformation in any number of dimensions performs the
analogous function for time coordinates:

T 0
0 = −1

T i
i = 1. (9.8)

These transformations belong to the Lorentz group (and others), and are
sometimes referred to as large Lorentz transformations since they cannot be
formed by integration or repeated combination of infinitesimal transformations.
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210 9 Spacetime transformations

9.2 Translational invariance

A general translation in space, or in time, is a coordinate shift. A scalar field
transforms simply:

φ(x)→ φ(x +�x). (9.9)

The direction of the shift may be specified explicitly, by

φ(t, xi )→ φ(t, xi +�xi )

φ(t, xi )→ φ(t +�t, xi ). (9.10)

Invariance under such a constant shift of a coordinate is almost always a
prerequisite in physical problems found in textbooks. Translational invariance
is easily characterized by the coordinate dependence of Green functions. Since
the Green function is a two-point function, one can write it as a function of x
and x ′ or in terms of variables rotated by 45 degrees, 1√

2
(x− x ′) and 1√

2
(x+ x ′).

These are more conveniently defined in terms of a difference and an average
(mid-point) position:

x̃ = (x − x ′)

x = 1

2
(x + x ′). (9.11)

The first of these is invariant under coordinate translations, since

x − x ′ = (x + a)− (x ′ + a). (9.12)

The second equation is not, however. Thus, in a theory exhibiting translational
invariance, the two-point function must depend only on x̃ = x − x ′.

9.2.1 Group representations on coordinate space

Translations are usually written in an additive way,

xµ→ xµ + aµ, (9.13)

but, by embedding spacetime in one extra dimension, dR = (n+1)+1, one can
produce a group vector formulation of the translation group:(

xµ

1

)
→

(
1 aµ

0 1

) (
xµ′

1

)
. (9.14)

This has the form of a group vector multiplication. The final 1 in the column
vector is conserved and plays only a formal role. This form is common in
computer representations of translation, such as in computer graphics.
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9.2 Translational invariance 211

A representation of translations which is particularly important in quantum
mechanics is the differential coordinate representation. Consider an infinites-
imal translation aµ = εµ. This transformation can be obtained from an
exponentiated group element of the form

U (ε) = exp
(
iθ AT A

)
(9.15)

by writing

U (ε) = exp
(
iερ kρ

)
exp

(
iερ pρ/ χh

) = (1+ iερ pρ/ χh ), (9.16)

where

pµ = χh kµ = −iχh ∂µ. (9.17)

The action of the infinitesimal group element is thus

xµ→ U (ε) xµ = (1+ χh ε
ρ∂ρxµ) = xµ + ερ η µρ = xµ + εµ. (9.18)

The reason for writing the generator,

T A → pµ/ χh , (9.19)

in this form, is that pµ is clearly identifiable as a momentum operator which
satisfies

[x, p] = iχh . (9.20)

Thus, it is the momentum divided by a dimensionful scale (i.e. the wavenumber
kµ) which is the generator of translations. In fact, we already know this from
Fourier analysis.

The momentum operator closely resembles that from quantum mechanics.
The only difference is that the scale χh (with dimensions of action), which is
required to give pµ the dimensions of momentum, is not necessarily h̄. It is
arbitrary. The fact that h̄ is small is the physical content of quantum mechanics;
the remainder is group theory. What makes quantum mechanics special and
noticeable is the non-single-valued nature of the exponentiated group element.
The physical consequence of a small χh is that even a small translation will
cause the argument of the exponential to go through many revolutions of 2π . If
χh is large, then this will not happen. Physically this means that the oscillatory
nature of the group elements will be very visible in quantum mechanics, but
essentially invisible in classical mechanics. This is why a wavelike nature is
important in quantum mechanics.
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212 9 Spacetime transformations

9.2.2 Bloch’s theorem: group representations on field space

Bloch’s theorem, well known in solid state physics, is used to make predictions
about the form of wavefunctions in systems which have periodic potentials.
In metals, for instance, crystal lattices look like periodic arrays of potential
wells, in which electrons move. The presence of potentials means that the
eigenfunctions are not plane waves of the form

eik(x−x ′), (9.21)

for any x, x ′. Nevertheless, translational invariance by discrete vector jumps ai

is a property which must be satisfied by the eigenfunctions

φk(t, x+ a) = U (a) φk(t, x) = ei k·a φk(t, x). (9.22)

9.2.3 Spatial topology and boundary conditions

Fields which live on spacetimes with non-trivial topologies require boundary
conditions which reflect the spacetime topology. The simplest example of this
is the case of periodic boundary conditions:

φ(x) = α φ(x + L), (9.23)

for some number α. Periodic boundary conditions are used as a model for
homogeneous crystal lattices, where the periodicity is interpreted as translation
by a lattice cell; they are also used to simulate infinite systems with finite
ones, allowing the limit L → ∞ to be taken in a controlled manner. Periodic
boundary conditions are often the simplest to deal with.

The value of the constant α can be specified in a number of ways. Setting it
to unity implies a strict periodicity, which is usually over-restrictive. Although
it is pragmatic to specify a boundary condition on the field, it should be noted
that the field itself is not an observable. Only the probability P = (φ, φ) and
its associated operator P̂ are observables. In Schrödinger theory, for example,
P̂ = ψ∗(x)ψ(x), and one may have ψ(x + L) = eiθ(x)ψ(x) and still preserve
the periodicity of the probability.

In general, if the field φ(x) is a complex field or has some multiplet symmetry,
then it need only return to its original value up to a gauge transformation; thus
α = U (x). For a multiplet, one may write

#A(x + L) = U B
A (x) #B(x). (9.24)

The transformation U is the exponentiated phase factor belonging to the
group of symmetry transformations which leaves the action invariant. This is
sometimes referred to as a non-integrable phase. Note that, for a local gauge
transformation, one also has a change in the vector field:

Aµ(x + L) = βAµ(x). (9.25)
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9.2 Translational invariance 213

This kind of transformation is required in order to obtain a consistent energy–
momentum tensor for gauge symmetric theories (see section 11.5). The value of
β depends now on the type of couplings present. From the spacetime symmetry,
a real field, Aµ, has only a Z2 reflection symmetry, i.e. β = ±1, which
corresponds heuristically to ferromagnetic and anti-ferromagnetic boundary
conditions. Usually β = 1 to avoid multiple-valuedness.

In condensed matter physics, conduction electrons move in a periodic poten-
tial of crystallized valence ions. The potential they experience is thus periodic:

V (x) = V (x+ L), (9.26)

and it follows that, for plane wave eigenfunctions,

φk(t, x+ L) = U (L) φk(t, x) = ei k·L φk(t, x). (9.27)

This is a straightforward application of the scalar translation operator; the result
is known as Bloch’s theorem.

On toroidal spacetimes, i.e. those which have periodicities in several direc-
tions, the symmetries of the boundary conditions are linked in several directions.
This leads to boundary conditions called co-cycle conditions [126]. Such
conditions are responsible for flux quantization of magnetic fields in the Hall
effect [65, 85].

In order to define a self-consistent set of boundary conditions, it is convenient
to look at the so-called Wilson loops in the two directions of the torus, since they
may be constructed independently of the eigenfunctions of the Hamiltonian.
Normally this is presented in such a way that any constant part of the vector
potential would cancel out, giving no information about it. This is the co-cycle
condition, mentioned below. The Wilson line is defined by

W j (x) = P exp

{
ig

∫ 
x


x0

A j dx ′j

}
, (9.28)

j not summed, for some fixed point 
x0. It has an associated Wilson loop W j (L ′j )
around a cycle of length L ′j in the x j direction by

W j (x j + L ′j ) = W j (L
′
j )W j (x j ). (9.29)

The notation here means that the path-dependent Wilson line W j (
x) returns to
the same value multiplied by a phase W j (L ′j , 
x) on translation around a closed
curve from x j to x j + L ′j . The coordinate dependence of the phase usually
arises in the context of a uniform magnetic field passing through the torus. In
the presence of a constant magnetic field strength, the two directions of the torus
are closely linked, and thus one has

W1(u1 + L1, u2) = exp
{

iL1u2 + ic1L1

}
W1(u1, u2) (9.30)

W2(u1, u2 + L2) = exp
{

ic2L2

}
W2(u1, u2). (9.31)
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214 9 Spacetime transformations

At this stage, it is normal to demonstrate the quantization of flux by opening out
the torus into a rectangle and integrating around its edges:

W1(u2 + L2)W2(u1)W
−1
1 (u2)W

−1
2 (u1 + L1) = 1. (9.32)

This is known as the co-cycle condition, and has the effect of cancelling the
contributions to the c’s and thus flux quantization is found independently of
the values of ci due to the nature of the path. The most general consistency
requirement for the gauge field (Abelian or non-Abelian), which takes into
account the phases ci , has been constructed in ref. [18].

The results above imply that one is not free to choose, say, periodic boundary
conditions for bosons and anti-periodic boundary conditions for fermions in the
presence of a uniform field strength. All fields must satisfy the same consistency
requirements. Moreover, the spectrum may not depend on the constants, ci ,
which have no invariant values. One may understand this physically by noting
that a magnetic field causes particle excitations to move in circular Landau
orbits, around which the line integral of the constant vector potential is null. The
constant part of the vector potential has no invariant meaning in the presence of
a magnetic field.

In more complex spacetimes, such as spheres and other curved surfaces,
boundary conditions are often more restricted. The study of eigenfunctions
(spherical harmonics) on spheres shows that general phases are not possible
at identified points. Only the eigenvalues ±1 are consistent with a spherical
topology [17].

9.3 Rotational invariance: SO(n)

Rotations are clearly of special importance in physics. In n spatial dimensions,
the group of rotations is the group which preserves the Riemannian, positive
definite, inner product between vectors. In Cartesian coordinates this has the
well known form

x · y = xi yi . (9.33)

The rotation group is the group of orthogonal matrices with unit determinant
SO(n). Rotational invariance implies that the Green function only depends on
squared combinations of this type:

G(x, x ′) = G
(
(x1 − x ′1)

2 + (x2 − x2)
2 + · · · + (xn − x ′n)

2
)
. (9.34)

The exception here is the Dirac Green function.
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9.3 Rotational invariance: SO(n) 215

9.3.1 Group representations on coordinate space

Three-dimensional rotations are generated by infinitesimal matrices:

T 1 =

 0 0 0

0 0 −i
0 i 0




T 2 =

 0 0 i

0 0 0
−i 0 0




T 3 =

 0 −i 0

i 0 0
0 0 0


 (9.35)

which satisfy a Lie algebra

[Ti , Tj ] = iεi jk Tk . (9.36)

These exponentiate into the matrices for a three-dimensional rotation,
parametrized by three Euler angles,

Rx ≡ Ux =

 1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1


 (9.37)

Ry ≡ Uy =

 cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 (9.38)

Rz ≡ Uz =

 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1


 . (9.39)

The rotation group is most often studied in n = 3 dimensions, for obvious
reasons, though it is worth bearing in mind that its properties differ quite
markedly with n. For instance, in two dimensions it is only possible to have
rotation about a point. With only one angle of rotation, the resulting rotation
group, SO(2), is Abelian and is generated by the matrix

T1 =
(

0 i
−i 0

)
. (9.40)

This exponentiates into the group element

U =
(

cos θ sin θ
− sin θ cos θ

)
. (9.41)
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216 9 Spacetime transformations

A two-dimensional world can also be represented conveniently by adopting
complex coordinates on the Argand plane. In this representation, a vector is
simply a complex number z, and a rotation about the origin by an angle θ is
accomplished by multiplying:

z → eiθ z. (9.42)

9.3.2 Eigenfunctions: circular and spherical harmonics

The eigenfunctions of the rotation operators form a set of basis functions which
span representation space. The rotational degrees of freedom in quantum fields
can be expanded in terms of these eigenfunctions.

Eigenfunctions in n = 2 In two dimensions, there is only a single axis of
rotation to consider. Then the action of the rotation operator T1 has the form

−i∂φ |φ〉 =  |φ〉. (9.43)

This equation is trivially solved to give

|φ〉 = ei φ. (9.44)

In two spatial dimensions, there are no special restrictions on the value of  .
Notice that this means that the eigenfunctions are not necessarily single-valued
functions: under a complete rotation, they do not have to return to their original
value. They may differ by a phase:

|φ + 2π〉 = ei (φ+2π) = eiδ ei φ, (9.45)

where δ = 2 π . In higher dimensions δ must be unity because of extra
topological restrictions (see below).

Eigenfunctions in n = 3 The theory of matrix representations finds all of
the irreducible representations of the rotation algebra in n = 3 dimensions.
These are characterized by their highest weight, or spin, with integral and
half-integral values. There is another approach, however, which is to use a
differential representation of the operators. The advantage of this is that it is then
straightforward to find orthonormal basis functions which span the rotational
space.

A set of differential operators which satisfies the Lie algebra is easily
constructed, and has the form

T = r× i∇, (9.46)

or

Ti = iεi jk x j ∂k . (9.47)
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9.3 Rotational invariance: SO(n) 217

This has the form of an orbital angular momentum operator L = r×p, and
it is no coincidence that it re-surfaces also in chapter 11 in that context with
only a factor of h̄ to make the dimensions right. It is conventional to look for
the simultaneous eigenfunctions of the operators L1 and L2 by writing these
operators in spherical polar coordinates (with constant radius):

L1 = i
(
sinφ ∂θ + cot θ cosφ ∂φ

)
L2 = i

(− cosφ ∂θ + cot θ sinφ ∂φ
)

L3 = −i ∂φ, (9.48)

and

L2 = 1

sin θ
∂θ (sin θ ∂θ )+ 1

sin2 θ
∂2
φ. (9.49)

The eigenvectors and eigenvalues involve two angles, and may be defined by

L2 |φ, θ〉 = T 2|φ, θ〉
L3 |φ, θ〉 =  c|φ, θ〉. (9.50)

The solution to the second equation proceeds as in the two-dimensional case,
with only minor modifications due to the presence of the other coordinates. The
eigenfunctions are written as a direct product,

|φ, θ〉 = &(θ)#(φ), (9.51)

so that one may identify#(φ)with the solution to the two-dimensional problem,
giving

|φ, θ〉 = &(θ) ei cφ. (9.52)

The values of  c are not arbitrary in this case: the solution of the constraints
for the θ coordinate imposes extra restrictions, because of the topology of a
three-dimensional space. Suppose we consider a rotation through an angle of
2π in the φ direction in the positive and negative directions:

|φ + 2π〉 = ei c(φ+2π) = eiδ ei cφ,

|φ − 2π〉 = ei c(φ−2π) = e−iδ ei cφ. (9.53)

In two spatial dimensions, these two rotations are distinct, but in higher
dimensions they are not. This is easily seen by drawing the rotation as a circle
with an arrow on it (see figure 9.2). By flipping the circle about an axis in its
plane we can continuously deform the positive rotation into the negative one,
and vice versa. This is not possible in n = 2 dimensions. This means that they
are, in fact, different expressions of the same rotation. Thus,

eiδ = e−iδ = ±1. (9.54)
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218 9 Spacetime transformations

Fig. 9.2. Exchange of particles in two and three spatial dimensions. In the plane,
there is only one rotation about the centre of mass which exchanges identical particles.
Clockwise and anti-clockwise are inequivalent. In three dimensions or greater, one may
rotate this plane around another axis and deform clockwise into anti-clockwise.

These two values are connected with the existence of two types of particle:
bosons and fermions, or

 c = 0,±1

2
,±1, . . . , (9.55)

for integer m. Note that, in older texts, it was normal to demand the single-
valuedness of the wavefunction, rather than using the topological argument
leading to eqn. (9.54). If one does this, then only integer values of  c are
found, and there is an inconsistency with the solution of the group algebra.
This illustrates a danger in interpreting results based on coordinate systems
indiscriminately. The result here tells us that the eigenfunctions may be either
single-valued for integer  c, or double-valued for half-integral  c. In quantum
mechanics, it is normal to use the notation

T 2 = l(l + 1) (9.56)

 c = m. (9.57)

If we now use this result in the eigenvalue equation for L2, we obtain

1

sin θ

d

dθ

(
sin θ

d&

dθ

)
+

(
l(l + 1)− m2

sin2 θ

)
& = 0. (9.58)

Putting z = cos θ in this equation turns it into the associated Legendre equation,

d

dz

[
(1− z2)

dP

dz

]
+

[
l(l + 1)− m2

1− z2

]
P = 0, (9.59)
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where P = &(cos θ). The solutions of the associated Legendre equation may
be found for integral and half-integral values of  c, though most books ignore
the half-integral solutions. They are rather complicated, and their form is not
specifically of interest here. They are detailed, for instance, in Gradshteyn and
Ryzhik [63]. Since the magnitude of L3 cannot exceed that of L2, by virtue of
the triangle (Schwartz) inequality,

m2 ≤ l(l + 1), (9.60)

or

−l ≤ m ≤ l. (9.61)

The rotational eigenfunctions are

|l,m〉 = Nlm Pm
l (cos θ) eimφ, (9.62)

with normalization factor

Nlm = (−1)m
√[

2l + 1

4π

(l − m)!

(l + m)!

]
. (9.63)

These harmonic eigenfunctions reflect the allowed boundary conditions for
systems on spherical spacetimes. They also reflect particle statistics under the
interchange of identical particles. The eigenvalues of the spherical harmonics
are ±1 in 3 + 1 dimensions, corresponding to (symmetrical) bosons and
(anti-symmetrical) fermions; in 2 + 1 dimensions, the Abelian rotation group
has arbitrary boundary conditions corresponding to the possibility of anyons, or
particles with ‘any’ statistics [83, 89].

9.4 Lorentz invariance

9.4.1 Physical basis

The Lorentz group is a non-compact Lie group which lies at the heart of
Einsteinian relativistic invariance. Lorentz transformations are coordinate
transformations which preserve the relativistic scalar product

xµyµ = −x0 y0 + xi yi , (9.64)

and therefore also the line element

ds2 = gµνdxµdxν. (9.65)

Lorentz transformations include, like the Galilean group, translations, rotations
and boosts, or changes of relative speed. Under a linear transformation of xµ,
we may write generally

xµ→ x ′µ = Uµ
νx
ν + aµ, (9.66)
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where aµ is a constant translation and

Uµ
ν =

∂x ′µ

∂xν
(9.67)

is constant.

9.4.2 Lorentz boosts and rotations

A boost is a change of perspective from one observer to another in relative
motion to the first. The finite speed of light makes boosts special in Einsteinian
relativity. If we refer to figure 9.1 and consider the case of relative motion along
the x1 axis, such that the two frames S and S′ coincide at x0 = 0, the Lorentz
transformation relating the primed and unprimed coordinates may be written

x ′0 = γ (x0 − βx1) = x0 coshα − x1 sinhα

x ′1 = γ (x1 − βx0) = x1 coshα − x0 sinhα

x ′2 = x2

x ′3 = x3, (9.68)

where

γ = 1/
√

1− β2

β i = vi/c

β =
√
β iβi

α = tanh−1 β. (9.69)

The appearance of hyperbolic functions here, rather than, say, sines and cosines
means that there is no limit to the numerical values of the group elements.
The group is said to be non-compact. In matrix form, in (3 + 1) dimensional
spacetime we may write this:

L(B) =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


 =




coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1




(9.70)

where the ‘rapidity’ α = tanh−1 β. This may be compared with the explicit form
of a rotation about the x1 axis:

L(R) =




1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 . (9.71)
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Notice that the non-trivial parts of these matrices do not overlap. This leads
to an important result, which we shall derive below, namely that rotations
and boosts are independent transformations which can be used to parametrize
general transformations.

The form of these matrix representations makes it clear that the n-dimensional
group of rotations, SO(n), is a sub-group with irreducible representations

Lµν(R) =
(

1 0
0 Ri j

)
, (9.72)

and similarly that boosts in a single direction also form a sub-group. General
boosts in multiple directions do not form a group, however.

The form of a general boost can be derived as a generalization of the formulae
in eqns. (9.68) on the basis of general covariance. We can write a general form
based on figure 9.1 and eqns. (9.68)

dx0′ = γ (dx0 − β i dxi )

dxi ′ = γ
(

c1 δ
i
j + c2

β iβ j

β2

)
dx j − γ β i dx0. (9.73)

The unknown coefficients label projection operators for longitudinal and trans-
verse parts with respect to the n-component velocity vector β i . By squaring the
above expressions and using the invariance of the line element

ds2 = −(dx0)2 + (dxi )2 = −(dx0′)2 + (dxi ′)2, (9.74)

giving

−(dx0′)2 = −γ 2
(
(dx0)2 − 2(β i dxi )dx0 + (β i dxi )

2
)
, (9.75)

and

(dx0′)2 =
(

c2
1 δ jk + (2c1c2 + c2

2)
β jβk

β2

)
dx j dxk

+ γ 2β2(dx0)2 − 2γ (c1 + c2)(β
i dxi )dx0, (9.76)

one compares the coefficients of similar terms with the untransformed ds2 to
obtain

c1 = 1

c2 = γ − 1. (9.77)

Thus, in 1+ n block form, a general boost may be written as

Lµν(B) =
(

γ −γβ i

−γβ i δi j + (γ − 1)βiβ j

β2

)
. (9.78)
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222 9 Spacetime transformations

9.4.3 The homogeneous Lorentz group: SO(1, n)

It is convenient to divide the formal discussion of the Lorentz group into two
parts. In the first instance, we shall set the inhomogeneous term, aµ, to zero. A
homogeneous coordinate transformation takes the form

xµ→ x ′µ = Lµνx
ν, (9.79)

where Lµν is a constant matrix. It does not include translations. After a
transformation of the line element, one has

ds ′2 = g′µν(x
′)dxµ′dxν ′

= gµν(x)L
µ
ρLνλdxρdxλ. (9.80)

The metric must compensate for this change by transforming like this:

gµν(x) = L ρ
µ L λ

ν g′ρλ(x
′). (9.81)

This follows from the above transformation property. We can see this in matrix
notation by considering the constant metric tensor ηµν = diag(−1, 1, 1, 1, . . .),
which must be invariant if the scalar product is to be preserved. In a Cartesian
basis, we have

xµyµ = ηµν xµyν = ηµν (Lx)µ(Ly)ν

xT η y = (Lx)T η (Ly)

= xTLT η Ly. (9.82)

Comparing the left and right hand sides, we have the matrix form of eqn. (9.81)
in a Cartesian basis:

η = LT η L . (9.83)

The matrices L form a group called the homogeneous Lorentz group. We
can now check the group properties of the transformation matrices L . The
existence of an associative combination rule is automatically satisfied since ma-
trix multiplication has these properties (any representation in terms of matrices
automatically belongs to the general linear group G(n, R)). Thus we must show
the existence of an inverse and thus an identity element. Acting on the left of
eqn. (9.83) with the metric

η LT η L = η2 = I = L−1 L , (9.84)

where I is the identity matrix belonging to GL(n, R). Thus, the inverse of L is

L−1 = η LT η. (9.85)

In components we have

(L−1)µν = ηµλLρληρν = L µ
ν . (9.86)

Since the transpose matrix is the inverse, we can write the Lorentz group as
SO(1, 3).
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Dimension and structure of the group The symmetry in (n+1)2 components of
Lµν implies that not all of the components may be chosen independently. The
fact that only half of the off-diagonal components are independent means that
there are

dG = (n + 1)2 − (n + 1)

2
(9.87)

independent components in n+1 dimensions, given by the independent elements
of ω̃µν to be defined below. Another way of looking at this is that there are (n+
1)2 components in the matrix L ν

µ , but the number of constraints in eqn. (9.83)
limits this number. Eqn. (9.83) tells us that the transpose of the equation is
the same, thus the independent components of this equation are the diagonal
pieces plus half the off-diagonal pieces. This is turn means that the other half of
the off-diagonal equations represent the remaining freedom, or dimensionality
of the group. dG is the dimension of the inhomogeneous Lorentz group. The
components of

gµνLµαLνβ = gαβ

may be written out in 1+ n form, µ = (0, i) form as follows:

L0
0L0

0 g00 + Li
0L j

0 gi j = g00

L0
i L0

0 g00 + Lk
i Ll

0 gkl = gi0 = 0

L0
i L0

j g00 + Lk
i Ll

j gi j = gi j . (9.88)

This leads to the extraction of the following equations:

(L0
0)

2 = 1+ Li
0Li

0

L0
0L0

i = Lk
i Lk0

L0
i L j0 + Lki Lk j = δi j . (9.89)

These may also be presented in a schematic form in terms of a scalar S, a vector
V and an n × n matrix M :

Lµν =
(

S VT
i

V j Mi j

)
, (9.90)

giving

S2 = 1+ Vi Vi

SVT = VT M

I = MT M + VVT. (9.91)
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It is clear from eqn. (9.90) how the n-dimensional group of rotations, SO(n),
is a sub-group of the homogeneous Lorentz group acting on only the spatial
components of spacetime vectors:

Lµν(R) =
(

1 0
0 Ri j

)
. (9.92)

Notice that it is sufficient to know that L 0
0 = 1 to be able to say that a Lorentz

transformation is a rotation, since the remaining equations then imply that

MT M = RT R = I, (9.93)

i.e. that the n-dimensional sub-matrix is orthogonal. The discussion of the
Lorentz group can, to a large extent, be simplified by breaking it down into
the product of a continuous, connected sub-group together with a few discrete
transformations. The elements of the group for which det L = +1 form a
sub-group which is known as the proper or restricted Lorentz group. From
the first line of eqn. (9.89) or (9.91), we have that L0

0 ≥ 1 or L0
0 ≤ −1.

The group elements with L0
0 ≥ 1 and det L = +1 form a sub-group called

the proper orthochronous Lorentz group, or the restricted Lorentz group. This
group is continuously connected, but, since there is no continuous change of
any parameter that will deform an object with det L = +1 into an object with
det L = −1 (since this would involve passing through det L = 0), this sub-group
is not connected to group elements with negative determinants. We can map
these disconnected sub-groups into one another, however, with the help of the
discrete or large Lorentz transformations of parity (space reflection) and time
reversal.

Group parametrization and generators The connected part of the homogeneous
Lorentz group may be investigated most easily by considering an infinitesimal
transformation in a representation which acts directly on spacetime tensors, i.e.
a transformation which lies very close to the identity and whose representation
indices A, B are spacetime indices µ, ν. This is the form which is usually
required, and the only form we have discussed so far, but it is not the only
representation of the group, as the discussion in the previous chapter should
convince us. We can write such an infinitesimal transformation, L(ε), in terms
of a symmetric part and an anti-symmetric part, without loss of generality:

L(ε) = I + ε(ω̃ + ω), (9.94)

where ω̃ is an anti-symmetric matrix, and I and ω together form the symmetric
part. ε is a vanishingly small (infinitesimal) number. Thus we write, with
indices,

L ρ
µ (ε) = δ ρµ + ε(ω̃ ρ

µ + ω ρ
µ ). (9.95)
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Note that, for general utility, the notation commonly appearing in the literature
is used here, but beware that the notation is used somewhat confusingly. Some
words of explanation are provided below. Substituting this form into eqn. (9.81)
gives, to first order in ε,

gµν(x)L
µ
ρLνλ = gρλ + ε(ω̃ρλ + ωρλ + ω̃λρ + ωλρ)+ · · · + O(ε2).

(9.96)

Comparing the left and right hand sides of this equation, we find that

ω̃µν = −ω̃νµ
ωµν = −ωνµ = 0. (9.97)

Thus, the off-diagonal terms in L(ε) are anti-symmetric. This property survives
exponentiation and persists in finite group elements with one subtlety, which is
associated with the indefinite metric. We may therefore identify the structure of
a finite Lorentz transformation, L , in spacetime block form. Note that a Lorentz
transformation has one index up and one down, since it must map vectors to
vectors of the same type:

L ν
µ =

(
L 0

0 L i
0

L 0
j L j

i

)
. (9.98)

There are two independent (reducible) parts to this matrix representing boosts
µ, ν = 0, i and rotations µ, ν = i, j . Although the generator ω̃µν is purely
anti-symmetric, the 0, i components form a symmetric matrix under transpose
since the act of transposition involves use of the metric:

(
L i

0

)T = −L i
0 = L 0

i . (9.99)

The second, with purely spatial components, is anti-symmetric since the gen-
erator is anti-symmetric, and the metric leaves the signs of spatial indices
unchanged:

(
L j

i

)T
= −L i

j . (9.100)

Thus, the summary of these two may be written (with both indices down)

Lµν = −Lνµ. (9.101)
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The matrix generators in a (3 + 1) dimensional representation for the Lorentz
group in (3+ 1) spacetime dimensions, T AB = T µν , are given explicitly by

T3+1
01 =




0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0




T3+1
02 =




0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0




T3+1
03 =




0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0




T3+1
12 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0




T3+1
23 =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0




T3+1
31 =




0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 . (9.102)

Note that, because of the indefinite metric, only the spatial components of these
generators are Hermitian. This will lead us to reparametrize the components in
terms of positive definite group indices below. It is now conventional, if not a
little confusing, to write a general infinitesimal Lorentz transformation in the
form

UR = L R(ω) = IR + 1

2
iωµνT

µν

R , (9.103)

where IR and TR are the identity and generator matrices of a given representation
G R . In terms of their components A, B,

U A
B = L A

B(ω) = δA
B +

i

2
ωρσ [T ρσR ]A

B . (9.104)
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The second term here corresponds to the second term in eqn. (9.95), but the
spacetime-specific indices µ in eqn. (9.95) have now been replaced by repre-
sentation indices A, B, anticipating a generalization to other representations.
A general finite element of the group in a representation G R is obtained by
exponentiation,

L A
B = exp

(
i

2
ωρσ

[
TR
ρσ
]A

B

)
(9.105)

Let us take a moment to understand this form, since it appears repeatedly in the
literature without satisfactory explanation. The ωµν which appears here is not
the same as εω̃µν a priori (but see the next point). In fact, it plays the role of
the group parameters θa in the previous chapter. Thus, in the language of the
previous chapter, one would write

U A
B = L A

B(ε) = δA
B +

i

2
θa[T a

R ]A
B

L A
B = exp

(
i

2
θa

[
TR

a
]A

B

)
. (9.106)

It is easy to see that the use of two indices is redundant notation, since most
of the elements of the generators are zeros. It is simply a convenient way to
count to the number of non-zero group dimensions dG in terms of spacetime
indicesµ, ν = 0, . . . , n+1 rather than positive definite a, b = 1, . . . , dG indices
of the group space. The factor of 1

2 in eqn. (9.105) accounts for the double
counting due to the anti-symmetry in the summation over all µ, ν indices. The
fact that two indices are used in this summation, rather than the usual one index
in T a , should not lead to confusion. To make contact with the usual notation for
generators, we may take the (3+ 1) dimensional case as an example. In (3+ 1)
dimensions, the homogeneous Lorentz group has dG = 6, and its complement
of generators may be written:

T a = {
T3+1

10, T3+1
20, T3+1

30, T3+1
12, T3+1

23, T3+1
31
}
, (9.107)

where a = 1, . . . , 6 and the group elements in eqn. (9.105) have the form

exp
(
iθaT a

)
. (9.108)

The first three T a are the generators of boosts (spacetime rotations), while the
latter three are the generators of spatial rotations. The anti-symmetric matrix of
parameters ωµν contains the components of the rapidity αi from eqn. (9.68) as
well as the angles θ i which characterize rotations. Eqn. (9.105) is general for
any representation of the Lorentz group in n+1 dimensions with an appropriate
set of matrix generators Tµν .
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Lie algebra in 3 + 1 dimensions The generators above satisfy a Lie algebra
relation which can be written in several equivalent forms. In terms of the
two-index parametrization, one has

[TR
µν, TR

ρσ ] = i (ηνσTR
µρ + ηµσTR

νρ − ηµρTR
νσ − ηρνTR

µσ ) .

(9.109)

This result applies in any number of dimensions. To see this, it is necessary to
tie up a loose end from the discussion of the parameters ωµν and εω̃µν above.
While these two quantities play formally different roles, in the way they are
introduced above they are in fact equivalent to one another and can even be
defined to be equal. This is not in contradiction with what is stated above, where
pains were made to distinguish these two quantities formally. The resolution of
this point comes about by distinguishing carefully between which properties
are special for a specific representation and which properties are general for all
representations. Let us try to unravel this point.

The Lorentz transformation is defined in physics by the effect it has on
spacetime reference frames (see figure 9.1). If we take this as a starting
point, then we must begin by dealing with a representation in which the
transformations act on spacetime vectors and tensors. This is the representation
in which A, B → µν, and we can write an infinitesimal transformation as in
eqn. (9.95). The alternative form in eqn. (9.104) applies for any representation.
If we compare the two infinitesimal forms, it seems clear that ω̃µν plays the
role of a generator TAB , and in fact we can make this identification complete by
defining

εω̃µν =
i

2

[
ωρλT

ρλ

3+1

]µ
ν
. (9.110)

This is made clearer if we make the identification again, showing clearly the
representation specific indices:

εω̃A
B =

i

2

[
ωρλT

ρλ

3+1

]A

B
. (9.111)

This equation is easily satisfied by choosing[
T ρσ3+1

] ∼ ηρAησB . (9.112)

However, we must be careful about preserving the anti-symmetry of T3+1, so we
have [

T ρσ3+1

]A

B
= 2

i
× 1

2

(
ηρAησB − ηρBησ A

)
. (9.113)

Clearly, this equation can only be true when A, B representation indices belong
to the set of (3 + 1) spacetime indices, so this equation is only true in one
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representation. Nevertheless, we can use this representation-specific result to
determine the algebra relation which is independent of representation as follows.
By writing [

T µν3+1

]A

B
= i

(
ηµAηνB − ηµBηνA

)
[
T ρσ3+1

]B

C
= i

(
ηρBησC − ηρCησ B

)
, (9.114)

it is straightforward to compute the commutator,

[T µνR , T ρσR ]A
C , (9.115)

in terms of η tensors. Each contraction over B leaves a new η with only
spacetime indices. The remaining η’s have mixed A, µ indices and occur in
pairs, which can be identified as generators by reversing eqn. (9.113). The result
with A,C indices suppressed is given by eqn. (9.109). In fact, the expression is
uniform in indices A,C and thus these ‘cancel’ out of the result; more correctly
they may be generalized to any representation.

The representations of the restricted homogeneous Lorentz group are the
solutions to eqn. (9.109). The finite-dimensional, irreducible representations can
be labelled by two discrete indices which can take values in the positive integers,
positive half-integers and zero. This may be seen by writing the generators in
a vector form, analogous to the electric and magnetic components of the field
strength Fµν in (3+ 1) dimensions:

J i ≡ T i
B =

1

2
εi jk T jk = (T 32, T 13, T 21)

K i ≡ T i
E/c = T 0i = (T 01, T 02, T 03). (9.116)

These satisfy the Lie algebra commutation rules

[T i
B, T j

B ] = iεi jk T k
B

[T i
E , TE

j ] = −iεi jk T k
E/c

2

[T i
E , T j

B ] = iεi jk T k
E . (9.117)

Also, as with electromagnetism, one can construct the invariants

T aT a = 1

2
TRµνT

µν

R = T 2
B − T 2

E/c
2

1

8
εµνρσT µνR T ρσR = −T i

E TBi/c. (9.118)

These quantities are Casimir invariants. They are proportional to the identity
element in any representation, and thus their values can be used to label the
representations. From this form of the generators we obtain an interesting
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perspective on electromagnetism: its form is an inevitable expression of the
properties of the Lorentz group for vector fields. In other words, the constraints
of relativity balanced with the freedom in a vector field determine the form of
the action in terms of representations of the restricted group.

The structure of the group can be further unravelled and related to earlier
discussions of the Cartan–Weyl basis by forming the new Hermitian operators

Ei = 1

2
χh (TB + iTE/c)

Fi = 1

2
χh (TB − iTE/c) (9.119)

which satisfy the commutation rules

[Ei , E j ] = iχh εi jk Ek

[Fi , Fj ] = iχh εi jk Fk

[Ei , Fj ] = 0. (9.120)

The scale factor, χh , is included for generality. It is conventional to discuss
angular momentum directly in quantum mechanics texts, for which χh → h̄.
For pure rotation, we can take χh = 1. As a matter of principle, we choose
to write χh rather than h̄, since there is no reason to choose a special value
for this scale on the basis of group theory alone. The special value χh = h̄ is
the value which is measured for quantum mechanical systems. The restricted
Lorentz group algebra now has the form of two copies of the rotation algebra
su(2) in three spatial dimensions, and the highest weights of the representations
of these algebras will be the two labels which characterize the full representation
of the Lorentz group representations.

From the commutation rules (and referring to section 8.5.10), we see that the
algebra space may be spanned by a set of basis vectors ((2 max+1)(2 ′max+1)
of them). It is usual to use the notation

 c = χh (me,m f )

 max = χh (e, f ) (9.121)

in physics texts, where they are referred to as quantum numbers rather than
algebra eigenvalues. Also, the labels j1, j2 are often used for e, f , but, in the
interest of a consistent and unique notation, it is best not to confuse these with
the eigenvalues of the total angular momentum Ji which is slightly different.
In terms of these labels, the Lorentz group basis vectors may be written as
|e,me; f,m f 〉, where −e ≤ me ≤ e, − f ≤ m f ≤ f , and e,me, f,m f take
on integer or half-integer values. The Cartan–Weyl stepping operators are then,
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by direct transcription from section 8.5.10,

E±|e,me; f,m f 〉 = (E1 ± iE2)|e,me; f,m f 〉
= χh

√
(e ∓ me)(e ± me + 1) |e,me ± 1; f,m f 〉

E3|e,me; f,m f 〉 = χh me|e,me; f,m f 〉 (9.122)

and

F±|e,me; f,m f 〉 = (F1 ± iF2)|e,me; f,m f 〉
= χh

√
( f ∓ m f )( f ± m f + 1) |e,me; f,m f ± 1〉

F3|e,m j ; e,me〉 = χh m f |e,me; f,m f 〉. (9.123)

The algebra has factorized into two su(2) sub-algebras. Each irreducible repre-
sentation of this algebra may be labelled by a pair (e, f ), which corresponds to
boosts and rotations, from the factorization of the algebra into E and F parts.
The number of independent components in such an irreducible representation
is (2e + 1)(2 f + 1) since, for every e, f can run over all of its values, and
vice versa. The physical significance of these numbers lies in the extent to
which they may be used to construct field theories which describe a real physical
situations. Let us round off the discussion of representations by indicating how
these irreducible labels apply to physical fields.

9.4.4 Different representations of the Lorentz group in 3 + 1 dimensions

The explicit form of the Lorentz group generators given in eqns. (9.102) is
called the defining representation. It is also the form which applies to the
transformation of a spacetime vector. Using this explicit form, we can compute
the Casimir invariants for Ei and Fi to determine the values of e and f which
characterize that representation. It is a straightforward exercise to perform the
matrix multiplication and show that

E2 = Ei Ei = 1

4
χh

2(T 2
B − T 2

E/c
2) = 3

4
χh

2 I3+1, (9.124)

where I3+1 is the identity matrix for the defining representation. Now, this
value can be likened to the general form to determine the highest weight of
the representation e:

E2 = 3

4
χh

2 I3+1 = e(e + 1) χh
2 I3+1, (9.125)

whence we deduce that e = 1
2 . The same argument may be applied to F2, with

the same result. Thus, the defining representation is characterized by the pair of
numbers (e, f ) = ( 1

2 ,
1
2).
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The Lorentz transformations have been discussed so far in terms of tensors,
but the independent components of a tensor are not always in an obvious form.
A vector, for instance, transforms as

Aµ→ Lµν Aν, (9.126)

but a rank 2-tensor transforms with two such Lorentz transformation matrices

Aµν → LµρLνσ Aρσ . (9.127)

The independent components of a rank 2-tensor might be either diagonal or
off-diagonal, and there might be redundant zeros or terms which are identical
by symmetry or anti-symmetry, but one could think of re-writing eqn. (9.127)
in terms of a single larger matrix acting on a new vector where only the
independent components were present, rather than two smaller matrices acting
on a tensor. Again, this has to do with a choice of representations. We just pick
out the components and re-write the transformations in a way which preserves
their content, but changes their form.

Suppose then we do this: we collect all of the independent components of any
tensor field into a column vector,

Aµνλ...ρσ ...→




a1

a2
...

aN


 , (9.128)

where N is the total number of independent components in the object being
acted upon, and is therefore the dimension of this representation. The array of
matrices L ν

µ (one for each index) can now be replaced by a single matrix L⊕
which will have as many independent components as the product of the L’s.
Often such a single matrix will be reducible into block-diagonal form, i.e. a
direct sum of irreducible representations.

The irreducible blocks of any (3+1) spacetime-dimensional Lorentz transfor-
mation of arbitrary representation dR are denoted D(e, f )(G R). A tensor trans-
formation of rank N might therefore decompose into a number of irreducible
blocks in equivalent-vector form:

L⊕A
B = D(e1, f1) ⊕ D(e2, f2) . . .⊕ D(eN , fN ). (9.129)

The decomposition of a product of transformations as a series of irreducible
representations

D(A) ⊗ D(B) =
∑
⊕

cM DM (9.130)

is called the Clebsch–Gordon series. The indices A, B run over 1, . . . , (2e +
1)(2 f + 1) for each irreducible block. For each value of e, we may take all the
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Table 9.1. Spin/helicity properties of some representations of the Lorentz group in
(3+ 1) dimensions.

The number of degrees of freedom (D.F.) φ = (2e + 1)(2 f + 1). Note that the
electromagnetic field Fµν lacks the longitudinal mode ms = 0 of the massive vector
field Aµ.

Representation ‘Spin’ D.F. Description
(e, f ) ms = e + f φ

( 1
2 , 0)

1
2 2 Weyl 2-spinor

(0, 1
2)

1
2 2 Weyl 2-spinor

(0, 0) 0 1 trivial scalar

( 1
2 , 0)⊕ (0, 1

2) ± 1
2 4 Dirac 4-spinor

( 1
2 ,

1
2) 0,±1 4 4-vector Aµ

(1, 0)⊕ (0, 1) ±1 6 anti-symm. Fµν
(1, 1)⊕ (1, 0)⊕ (0, 1)⊕ (0, 0) 0,±1,±2 16 rank 2-tensor

values of f in turn, and vice versa. So which representation applies to which
field? We can look at this in two ways.

• We see that e, f are allowed by the general solution of the Lorentz
symmetry. The values are 0, 1

2 , 1, . . . . We then simply construct fields
which transform according to these representations and match them with
physical phenomena.

• We look at fields which we know about (φ, Aµ, gµν, . . .) and determine
what e, f these correspond to.

Some common values of ‘spin’ are listed in table 9.1. Counting the highest
weights of the blocks is not difficult, but to understand the difference between a
massless vector field and a massive vector field, for example (both with highest
spin weight 1), we must appreciate that these fields have quite different space-
time transformation properties. This is explained by the fact that there are two
ways in which a spin 1 field can be constructed from irreducible representations
of the Lorentz group, and they form inequivalent representations. Since we are
dealing with the homogeneous Lorentz group in a given frame, the spin is the
same as the total intrinsic angular momentum of the frame, and is defined by a
sum of the two vectors

Si ≡ Ji = Ei + Fi , (9.131)
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with maximum helicity s given by e + f ; the range of allowed values follows
in integer steps from the rules of vector addition (see section 11.7.4). The
maximum value is when the vectors are parallel and the minimum value is when
they are anti-parallel. Thus

s = ±(e + f ),±(e + f − 1), . . . ,±|e − f |. (9.132)

The spin s is just the highest weight of the Lorentz representation. Of all
the representations which one might construct for physical models, we can
narrow down the possibilities by considering further symmetry properties. Most
physical fields do not change their properties under parity transformations
or spatial reflection. Under a spatial reflection, the generators Ei , Fi are
exchanged:

PEiP−1 = Fi

PFiP−1 = Ei . (9.133)

In order to be consistent with spatial reflections, the representations of parity-
invariant fields must be symmetrical in (e, f ). This means we can either make
irreducible representations of the form

(e, e) (9.134)

or symmetrized composite representations of the form

(e, f )⊕ ( f, e), (9.135)

such that exchanging e ↔ f leaves them invariant.

Helicity values for spin 1 For example, a spin 1 field can be made in two ways
which correspond to the massless and massive representations of the Poincaré
algebra. In the first case, a spin 1 field can be constructed with the irreducible
transformational properties of a vector field,(

1

2
,

1

2

)
. (9.136)

A field of this type would exist in nature with spin/helicities s = 0,±1. These
correspond to: (i) 2s+1 = 1, i.e. one longitudinal scalar component A0, and (ii)
2s+1 = 3, a left or right circularly polarized vector field. This characterizes the
massive Proca field, Aµ, which describes W and Z vector bosons in the electro-
weak theory. However, it is also possible to construct a field which transforms
as

(1, 0)⊕ (0, 1). (9.137)
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The weight strings from this representation have only the values ms = ±1, the
left and right circular polarizations. There is no longitudinal zero component.
The values here apply to the photon field, Fµν . The symmetrization corre-
sponds to the anti-symmetry of the electromagnetic field strength tensor. The
anti-symmetry is also the key to understanding the difference between these two
representations.

One reason for looking at this example is that, at first glance, it seems
confusing. After all, the photon is also usually represented by a vector potential
Aµ, but here we are claiming that a vector formulation is quite different from
an anti-symmetric tensor formulation. There is a crucial difference between the
massive vector field and the massless vector field, however. The difference can
be expressed in several equivalent ways which all knit together to illuminate the
theme of representations nicely.

The physical photon field, Fµν , transforms like a tensor of rank 2. Because
of its anti-symmetry, it can also be written in terms of a massless 4-vector
potential, which transforms like a gauge-invariant vector field. Thus, the
massless vector field is associated with the anti-symmetric tensor form. The
massive Proca field only transforms like a vector field with no gauge invariance.
The gauge invariance is actually a direct manifestation of the difference in trans-
formation properties through a larger invariance group with a deep connection
to the Lorentz group. The true equation satisfied by the photon field is

∂µFµν = ( δµν − ∂µ∂ν)Aµ = 0, (9.138)

while the Proca field satisfies

(− + m2)Aµ = 0. (9.139)

This displays the difference between the fields. The photon field has a degree
of freedom which the Proca field does not; namely, its vector formulation is
invariant under

Aµ→ Aµ + (∂µs), (9.140)

for any scalar function s(x). The Proca field is not. Because of the gauge
symmetry, for the photon, no coordinate transformation is complete without an
associated, arbitrary gauge transformation. A general coordinate variation of
these fields illustrates this (see section 4.5.2).

Photon field δx Aµ = ενFνµ

Proca field δx Aµ = εν(∂ν Aµ).

The difference between these two results is a gauge term. This has the
consequence that the photon’s gauge field formulation behaves like an element
of the conformal group, owing to the spacetime-dependent function s(x). This
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is very clearly illustrated in section 11.5. The gauge field Aµ must transform
like this if the tensor Fµν = ∂µAν − ∂ν Aµ which derives from it is to transform
like an element of the Lorentz group. The same is not true of the Proca field,
Aµ, which is simply a vector field without complication.

Appearances can therefore be deceptive. The spin 1 vector fields might
look the same, but the gauge invariance of the gauge field associates it with
an anti-symmetric second-rank tensor. The anti-symmetric property of the
photon tensor endows it with a property called transversality, which means
that the physical excitations of the field Ei , Bi are transverse to the direction
of propagation (i.e. to the direction of its momentum or wavenumber) ki . This
is not the case for the Proca field. It has components of its field in the direction
of motion, i.e. longitudinal components. The extra s = 0 mode in the helicity
values for the Proca field corresponds to a longitudinal mode.

For a massless field travelling in the x3 direction, kµ = (k, 0, 0, k). Transver-
sality means that

ki Fiµ = ∂ i Fiµ = 0, (9.141)

which is guaranteed by Maxwell’s equations away from sources. In gauge form,

ki Ai = 0, (9.142)

which can always be secured by a gauge transformation. For the massive vector
field, the lack of gauge invariance means that this condition cannot be secured.

9.4.5 Other spacetime dimensions

In a different number of spacetime dimensions n + 1, the whole of the above
(3 + 1) dimensional procedure for finding the irreducible representations must
be repeated, and the spin labels must be re-evaluated in the framework of a new
set of representations for the Lorentz group. This will not be pursued here.

9.4.6 Factorization of proper Lorentz transformations

From the discussion of the Lie algebra above, one sees that an arbitrary element
of the proper or restricted Lorentz group can be expressed as a product of a
rotation and a boost. This only applies to the restricted transformations, and
is only one possible way of parametrizing such a transformation. The result
follows from the fact that a general boost may be written as

L(B) =
(

γ −γβ i

−γβ i δi j + (γ − 1)βiβ j

β2

)
, (9.143)
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and a rotation may be written

L(R) =
(

1 0
0 Ri j

)
. (9.144)

The result can be shown starting from a general Lorentz transformation as in
eqn. (9.98). Suppose we operate on this group element with an inverse boost (a
boost with β i →−β i :

L−1(B)L =
(

γ −γβ i

−γβ i δi j + (γ − 1)βiβ j

β2

)(
L 0

0 L i
0

L 0
j L j

i

)
, (9.145)

where we define the velocity to be

β i = −
(

Li
0

L0
0

)
. (9.146)

This makes

γ = L0
0, (9.147)

and it then follows from eqns. (9.89) that this product has the form

L−1(B)L =
(

1 0
0 M j

i

)
= L(R). (9.148)

This result is clearly a pure rotation, meaning that we can rearrange the formula
to express the original arbitrary proper Lorentz transformation as a product of a
boost and a rotation,

L = L(B)L(R). (9.149)

9.4.7 The inhomogeneous Lorentz group or Poincaré group in 3 + 1
dimensions

If the inhomogeneous translation term, aµ, is not set to zero in eqn. (9.66), one
is led to a richer and more complex group structure [137]. This is described by
the so-called inhomogeneous Lorentz group, or Poincaré group. It is a synthesis
of the physics of translations, from earlier in this chapter, and the fixed origin
behaviour of the homogeneous Lorentz group. The most general transformation
of this group can be written

x ′µ = Lµν xν + aµ, (9.150)

where aµ is an xµ-independent constant translation vector. These transfor-
mations cannot be represented by a dR = 4 representation by direct matrix
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multiplication, but a dR = 5 representation is possible, by analogy with
eqn. (9.14), by embedding in one extra dimension:

U3+1+1xµ =
(

Lµν aµ
0 1

)(
xµ

1

)
= xµ + aµ. (9.151)

The generic infinitesimal Poincaré transformation may be written

U = 1+ i

2
ωµνT

µν

R + iερ kρR, (9.152)

for some scale χh with dimensions of action. Inspired by the differential
representation for the translation group, we find a differential form for the
homogeneous Lorentz group, which might be combined with the translation
group in a straightforward way. These are:

T µνdiff = −i(xµ∂ν − xν∂µ)

Ji = 1

2
εi jk T jk = − i

2
χh εi jk(x j∂k − xk∂ j )

Ki = T0i

pµ = χh kµ = −iχh ∂µ. (9.153)

An important difference between the inhomogeneous Lorentz group and the
homogeneous Lorentz group is that the total angular momentum generator, Ji ,
is no longer just the intrinsic angular momentum of a field, but it can include
orbital angular momentum about a point displaced from the origin. This means
that we have to be more careful than before in distinguishing spin s from
j = e + k by defining it only in an inertial rest frame with zero momentum.
It is easily verified that these representations satisfy the algebra relations. Using
these forms, it is a matter of simple algebra to evaluate the full algebraic content
of the Poincaré group:

[kµ, Tρσ ] = −i(ηµρkσ − ηµσ kρ), (9.154)

or equivalently

[k0, Ji ] = 0

[ki , Jl] = −iχh εilmkm . (9.155)

These relations are trivial statements about the transformation properties of k0

(scalar) and ki (vector) under rotations. Using the definitions above, we also find
that

[k0, Ki ] = iki

[ki , K j ] = −iχh ηi j k0. (9.156)

These relations show that a boost Ki affects k0, ki , but not k j for j �= i.
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Massive fields It is a curious feature of the Poincaré group, which comes about
because it arises in connection with the finite speed of light, that the mass of
fields plays a role in their symmetry properties. Physically, massless fields are
bound to move at the speed of light so they have no rest frame about which to
define intrinsic properties, like spin, which depend on coordinate concepts. It
is therefore necessary to find another way to characterize intrinsic rotation. We
can expect mass to play a role since it is linked to the momentum, which is the
generator of translations.

The Poincaré group leaves invariant the relation

p2c2 + m2c4 = const, (9.157)

where pµ = (mc, pi ). This is, in fact, a Casimir invariant, pµ pµ, up
to dimensional factors. Recall from the discussion of translations that the
momentum may be written

pµ = χh kµ, (9.158)

where kµ is the wavenumber or reciprocal lattice vector. As in the case of the
other groups, we can label the field by invariant quantities. Here we have the
quadratic Casimir invariants

J 2 = j ( j + 1) χh
2

p2 = p2c2 + m2c4, (9.159)

which commute with the group generators and are thus independent of symme-
try basis:

[p2, pµ] = 0

[p2, Ji ] = 0

[p2, Ki ] = 0. (9.160)

A covariant rotation operator can be identified which will be useful for dis-
cussing intrinsic in chapter 11. It is called the Pauli–Lubanski vector, and it is
defined by

Wµ = 1

2
χh εµνλρT νλ pρ. (9.161)

The quadratic form, W 2, is Lorentz- and translation-invariant:

[W 2, pµ] = 0

[W 2, Tµν] = 0. (9.162)

W satisfies

Wµ pµ = 0 (9.163)
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and

[Wµ,Wν] = iεµνρσW ρ pσ (9.164)

W 2 = −1

2
χh

2 T µνTµν p2 + χh
2 T µνT λ

ν pν pλ. (9.165)

If we consider Wµ in a rest frame where pi = 0, we have

Wµ
rest = −mc(0, J1, J2, J3)rest = −1

2
mc(0, S1, S2, S3), (9.166)

where Si may be thought of as the intrinsic (non-orbital) rotation of the field
(called spin of the representation), which is defined by

Si = Ji

∣∣∣
rest
. (9.167)

Thus, Wµ is clearly a 4-vector with the properties of intrinsic rotations in a rest
frame. Indeed, evaluating eqn. (9.164) in a rest frame, we find that

[Wi ,W j ] = −imc εi jk W k . (9.168)

Or setting Wi = −mc Ji , we recover the rotational algebra

[Ji , Jj ] = iχh εi jk J k . (9.169)

Thus the Poincaré-invariant quadratic form is

W 2
rest = m2c2 J 2 = m2c2 j ( j + 1) χh

2 IR. (9.170)

For classifying fields, we are interested in knowing which of the properties of
the field can be determined independently (or which simultaneous eigenvalues
of the symmetry operators exist). Since the rest mass m is fixed by observation,
we need only specify the 3-momentum, pi , to characterize linear motion. From
eqns. (9.155), we find that Ji and p j do not commute so they are not (non-
linearly) independent, but there is a rotation (or angular momentum) which does
commute with p j . It is called the helicity and is defined by

λ ≡ Ji p̂i , (9.171)

where p̂i is a unit vector in the direction of the spatial 3-momentum. The
commutator then becomes

[pi , Jj ]p j = iχh εi jk pk p j = 0. (9.172)

Thus, λ can be used to label the state of a field. A state vector is therefore
characterized by the labels (‘quantum numbers’ in quantum mechanics)

|&〉 ≡ |m, j, pi , λ〉, (9.173)
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i.e. the mass, the linear momentum, the highest weight of the rotational
symmetry and the helicity. In a rest frame, the helicity becomes ill defined, so
one must choose an arbitrary component of the spin, usually m j as the limiting
value.

We would like to know how these states transform under a given Poincaré
transformation. Since the states, as constructed, are manifestly eigenstates of
the momentum, a translation simply incurs a phase

|&〉 → exp
(
ipµaµ

) |&〉. (9.174)

Homogeneous Lorentz transformations can be used to halt a moving state.
The state |m, j, pi , λ〉 can be obtained from |m, j, 0, si 〉 by a rotation into the
direction of pi followed by a boost exp(iθ i Ki ) to set the frame in motion. Thus

|m, j, pi , λ〉 = L |m, j, 0, si 〉. (9.175)

The sub-group which leaves the momentum pµ invariant is called the little group
and can be used to classify the intrinsic rotational properties of a field. For
massive fields in 3+1 dimensions, the little group is covered by SU (2), but this
is not the case for massless fields.

Massless fields For massless fields, something special happens as a result of
motion at the speed of light in a special direction. It is as though a field is
squashed into a plane, and the rotational behaviour becomes two-dimensional
and Abelian. The direction of motion decouples from the two orthogonal
directions. Consider a state of the field

&π 〉 = |m, s, π, λ〉, (9.176)

where the momentum πµ = π(1, 0, 0, 1) is in the x3 direction, and the Lorentz
energy condition becomes p2c2 = 0 or p0 = |pi |. This represents a ‘particle’
travelling in the x3 direction at the speed of light. The little group, which leaves
pµ invariant, may be found and is generated by

 1 = J1 + K1

 2 = J1 − K1

 3 = J3. (9.177)

Clearly, the x3 direction is privileged. These are the generators of the two-
dimensional Euclidean group of translations and rotations called I SO(2) or
E2. It is easily verified from the Poincaré group generators that the little group
generators commute with the momentum operator

[ i , pµ] |&π 〉 = 0. (9.178)
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The commutation relations for  i are

[ 3, 1] = i 2

[ 3, 2] = −i 1

[ 1, 2] = 0. (9.179)

The last line signals the existence of an invariant sub-group. Indeed, one can
define a Cartan–Weyl form and identify an invariant sub-algebra H ,

E± =  1 ± i 2

H =  3, (9.180)

with Casimir invariant

C2 =  2
1 + 2

2

0 = [C2, i ]. (9.181)

The stepping operators satisfy

[H, E±] = ± E±, (9.182)

i.e.  c = ±1. This looks almost like the algebra for su(2), but there is
an important difference, namely the Casimir invariant.  3 does not occur in
the Casimir invariant since it would spoil its commutation properties (it has
decoupled). This means that the value of  c = m j is not restricted by the
Schwarz inequality, as in section 8.5.10, to less than± max = ± j . The stepping
operators still require the solutions for  c = m j to be spaced by integers, but
there is no upper or lower limit on the allowed values of the spin eigenvalues.
In order to make this agree, at least in notation, with the massive case, we label
physical states by  3 only, taking

 1|&π 〉 =  2|&π 〉 = 0. (9.183)

Thus, we may take the single value H =  3 =  c = m j = λ to be the angular
momentum in the direction x3, which is the helicity, since we have taken the
momentum to point in this direction. See section 11.7.5 for further discussion
on this point.

9.4.8 Curved spacetime: Killing’s equation

In a curved spacetime, the result of an infinitesimal translation from a point can
depend on the local curvature there, i.e. the translation is position-dependent.
Consider an infinitesimal inhomogeneous translation εµ(x), such that

xµ→ Lµνx
ν + εµ(x). (9.184)
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Then we have

∂x ′µ

∂xν
= Lµν + (∂νεµ), (9.185)

and

ds ′2 = gµν
(
Lµρ + (∂ρεµ)

)(
Lνσ + (∂σ εν)

)
dxρdxλ

= gµν
[
LµρLνλ + Lµρ(∂σ ε

ν)+ (∂ρεµ)Lνσ + · · · + O(ε2)
]

dxρdxλ.

(9.186)

The first term here vanishes, as above, owing to the anti-symmetry of ω ρ
µ .

Expanding the second term using eqn. (9.95), and remembering that both
ωµν and εµ(x) are infinitesimal so that εµωρσ is second-order and therefore
negligible, we have an additional term, which must vanish if we are to have
invariance of the line element:

∂µεν + ∂νεµ = 0. (9.187)

The covariant generalization of this is clearly

∇µεν + ∇νεµ = 0. (9.188)

This equation is known as Killing’s equation, and it is a constraint on the
allowed transformations, εµ(x), which preserve the line element, in a spacetime
which is curved. A vector, ξµ(x), which satisfies Killing’s equation is called
a Killing vector of the metric gµν . Since this equation is symmetrical, it has
1
2(n+1)2+(n+1) independent components. Since ξµ has only n+1 components,
the solution is over-determined. However, there are 1

2(n + 1)2 − (n + 1)
anti-symmetric components in Killing’s equation which are unaffected; thus
there must be

m = (n + 1)+ 1

2
(n + 1)2 − (n + 1) (9.189)

free parameters in the Killing vector, in the form:

∇µξν + ∇νξµ = 0

ξµ(x) = aµ + ωµνxν, (9.190)

where ωµν = −ωνµ. A manifold is said to be ‘maximally symmetric’ if it has the
maximum number of Killing vectors, i.e. if the line element is invariant under
the maximal number of transformations.

9.5 Galilean invariance

The relativity group which describes non-Einsteinian physics is the Galilean
group. Like the Poincaré group, it contains translations, rotations and boosts.
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As a group, it is no smaller, and certainly no less complicated, than the Lorentz
group. In fact, it may be derived as the c →∞ limit of the Poincaré group. But
there is one conceptual simplification which makes Galilean transformations
closer to our everyday experience: the absence of a cosmic speed limit means
that arbitrary boosts of the Galilean transformations commute with one another.
This alters the algebra of the generators.

9.5.1 Physical basis

The Galilean group applies physically to objects moving at speeds much less
than the speed of light. For this reason, it cannot describe massless fields at
all. The care required in distinguishing massless from massive concepts in the
Poincaré algebra does not arise here for that simple reason. An infinitesimal
Galilean transformation involves spatial and temporal translations, now written
separately as

xi ′ = xi + δxi

t ′ = t + δt, (9.191)

rotations by θ i = 1
2ε

i jkω jk and boosts by incremental velocity δvi

x i ′ = xi − δvi t. (9.192)

This may be summarized by the standard infinitesimal transformation form

xi ′ =
(

1+ i

2
ωlm T lm

)i

j

x j

x i ′ = (1+ i&)i j x j , (9.193)

where the matrix

& ≡ kiδx
i − ω̃δt + θi T

i
B + δvi T i

E . (9.194)

The exponentiated translational part of this is clearly a plane wave:

U ∼ exp i(k · δx− ω̃δt). (9.195)

Galilean transformations preserve the Euclidean scalar product

x · y = xi yi . (9.196)

9.5.2 Retardation and boosts

Retardation is the name given to the delay experienced in observing the effect of
a phenomenon which happened at a finite distance from the source. The delay is
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caused by the finite speed of the disturbance. For example, the radiation at great
distances from an antenna is retarded by the finite speed of light. A disturbance
in a fluid caused at a distant point is only felt later because the disturbance
travels at the finite speed of sound in the fluid. The change in momentum felt by
a ballistic impulse in a solid or fluid travels at the speed of transport, i.e. the rate
of flow of the fluid or the speed of projectiles emanating from the source.

Retardation expresses causality, and it is important in many physical prob-
lems. In Galilean physics, it is less important than in Einsteinian physics
because cause and effect in a Galilean world (where v ( c) are often assumed
to be linked instantaneously. This is the Galilean approximation, which treats
the speed of light as effectively infinite. However, retardation transformations
become a useful tool in systems where the action is not invariant under boosts.
This is because they allow us to derive a covariant form by transforming a
non-covariant action. For example, the action for the Navier–Stokes equation
can be viewed as a retarded snapshot of a particle field in motion. It is a snapshot
because the action is not covariant with respect to boosts. We also derived a
retarded view of the electromagnetic field arising from a particle in motion in
section 7.3.4.

Retardation can be thought of as the opposite of a boost transformation. A
boost transformation is characterized by a change in position due to a finite
speed difference between two frames. In a frame x ′ moving with respect to a
frame x we have

xi (t)
′ = xi (t)+ vi t. (9.197)

Rather than changing the position variable, we can change the way we choose to
measure time taken for the moving frame to run into an event which happened
some distance from it:

tret = t − (x
′ − x)i

vi
. (9.198)

Whereas the idea of simultaneity makes this idea more complicated in the
Einsteinian theory, here the retarded time is quite straightforward for constant
velocity, vi , between the frames. If we transform a system into a new frame,
it is sometimes convenient to parametrize it in terms of a retarded time. To do
this, we need to express both coordinates and derivatives in terms of the new
quantity. Considering an infinitesimal retardation

tret = t − dxi

vi
, (9.199)

it is possible to find the transformation rule for the time derivative, using the
requirement that

dtret

dtret
= 1. (9.200)
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It may be verified that

[
∂t + vi ∂i

] [
t − dx j

v j

]
= 1. (9.201)

Thus, one identifies

d

dtret
= ∂t + vi ∂ j . (9.202)

This retarded time derivative is sometimes called the substantive derivative. In
fluid dynamics books it is written

D

Dt
≡ d

dtret
. (9.203)

It is simply the retarded-time total derivative. Compare this procedure with the
form of the Navier–Stokes equation in section 7.5.1 and the field of a moving
charge in section 7.3.4.

9.5.3 Generator algebra

The generators TB and TE are essentially the same generators as those which
arise in the context of the Lorentz group in eqn. (9.116). The simplest way
to derive the Galilean group algebra at this stage is to consider the c → ∞
properties of the Poincaré group. The symbols TB and TE help to identify
the origins and the role of the generators within the framework of Lorentzian
symmetry, but they are cumbersome for more pedestrian work. Symbols for the
generators, which are in common usage are

J i = T i
B

N i = T i
E . (9.204)

These are subtly different from, but clearly related to, the symbols used for
rotations and boosts in the Poincaré algebra. The infinitesimal parameters, θa ,
of the group are

θa = {
δt, δxi , θ i , δvi

}
. (9.205)

In 3+ 1 dimensions, there are ten such parameters, as there are in the Poincaré
group. These are related to the symbols of the Lorentz group by

δvi = 1

2
ω0i

δxi = εi

δt = ε0/c, (9.206)
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and

H + mc2 = cp0 = χh c k0

H = χh ω̃ (= h̄ω̃). (9.207)

Note that the zero point is shifted so that the energy H does not include the rest
energy mc2 of the field in the Galilean theory. This is a definition which only
changes group elements by a phase and the action by an irrelevant constant.
The algebraic properties of the generators are the c →∞ limit of the Poincaré
algebra. They are summarized by the following commutators:

[ki , k j ] = 0

[Ni , N j ] = 0

[H, ki ] = 0

[H, Ji ] = 0

[H, Ni ] = iχh ki

[ki , Jl] = −iχh εilmkm

[ki , N j ] = im χh δi j

[Ji , Nl] = iεilm Nm

[Ji , Jj ] = iεi jk Jk, (9.208)

where p0/c → m is the mass, having neglected H/c = χh ω̃/c. The Casimir
invariants of the Galilean group are

J i Ji , k
i Ki , N i Ni . (9.209)

The energy condition is now the limit of the Poincaré Casimir invariant, which
is singular and asymmetrical:

pi pi

2m
= E (9.210)

(see section 13.5).

9.6 Conformal invariance

If we relax the condition that the line element ds2 must be preserved, and require
it only to transform isotropically (which preserves ds2 = 0), then we can allow
transformations of the form

ds2 = −dt2 + dx2 + dy2 + dz2

→ '2(x)
(−dt2 + dx2 + dy2 + dz2

)
, (9.211)
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248 9 Spacetime transformations

where '(x) is a non-singular, non-vanishing function of xµ. In the action, we
combine this with a similar transformation of the fields, e.g. in n+1 dimensions,

φ(x)→ '(1−n)/2φ(x). (9.212)

This transformation stretches spacetime into a new shape by deforming it with
the function '(x) equally in all directions. For this reason, the conformal
transformation preserves the angle between any two lines which meet at a vertex,
even though it might bend straight lines into curves or vice versa.

Conformal transformations are important in physics for several reasons. They
represent a deviation from systems of purely Markov processes. If a translation
in spacetime is accompanied by a change in the environment, then the state
of the system must depend on the history of changes which occurred in the
environment. This occurs, for instance, in the curvature of spacetime, where
parallel transport is sensitive to local curvature; it also occurs in gauge theories,
where a change in a field’s internal variables (gauge transformation) accompa-
nies translations in spacetime, and in non-equilibrium statistical physics where
the environment changes alongside dynamical processes, leading to conformal
distortions of the phase space. Conformal symmetry has many applications.

Because the conformal transformation is a scaling of the metric tensor, its
effect is different for different kinds of fields and their interactions. The number
of powers of the metric which occurs in the action (or, loosely speaking, the
number of spacetime indices on the fields) makes the invariance properties of the
action and the field equations quite different. Amongst all the fields, Maxwell’s
free equations (a massless vector field in) in 3 + 1 dimensions stand out for
their general conformal invariance. This leads to several useful properties of
Maxwell’s equations, which many authors unknowingly take for granted. Scalar
fields are somewhat different, and are conformally invariant in 1+1 dimensions,
in the massless case, in the absence of self-interactions. We shall consider these
two cases below.

Consider now an infinitesimal change of coordinates, as we did in the case of
Lorentz transformations:

xµ→  µνx
ν + εµ(x). (9.213)

The line element need not be invariant any longer; it may change by

ds2′ = '2(x) ds2. (9.214)

Following the same procedure as in eqn. (9.186), we obtain now a condition for
eqn. (9.214) to be true. To first order, we have:

'2(x)gµν = gµν + ∂µεν + ∂νεµ. (9.215)

Clearly, εµ and '(x) must be related in order to satisfy this condition. The
relationship is easily obtained by taking the trace of this equation, multiplying
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through by gµν . This gives, in n + 1 dimensions,

('2 − 1)(n + 1) = 2(∂λε
λ). (9.216)

Using this to replace '(x) in eqn. (9.215) gives us the equation analogous to
eqn. (9.187), but now for the full conformal symmetry:

∂µεν + ∂νεµ = 2

(n + 1)
(∂λε

λ)gµν. (9.217)

This is the Killing equation for the conformal symmetry. Its general solution in
n + 1 dimensions, for n > 1, is

εµ(x) = aµ + bxµ + ωµνxν + 2xµcνxν − cµx2, (9.218)

where ωµν = −ωνµ. In (1 + 1) dimensional Minkowski space, eqn. (9.217)
reduces to two equations

∂0ε0 = −∂1ε1

∂0ε1 = −∂1ε0. (9.219)

In two-dimensional Euclidean space, i.e. n = 1, followed by a Wick rotation to
a positive definite metric, this equation reduces simply to the Cauchy–Riemann
relations for εµ(x), which is solved by any analytic function in the complex
plane. After a Wick rotation, one has

∂0ε0 = ∂1ε1

∂0ε1 = −∂1ε0. (9.220)

To see that this is simply the Cauchy–Riemann relations,

d

dz∗
f (z) = 0, (9.221)

we make the identification

z = x0 + ix1

f (z) = ε0 + iε1 (9.222)

and note that

d

dz∗
= 1

2
(∂0 + i∂1) . (9.223)

This property of two-dimensional Euclidean space reflects the well known
property of analytic functions in the complex plane, namely that they all are
conformally invariant and solve Laplace’s equation:

∇2 f (xi ) = 4
d

dz

d

dz∗
f (z) = 0. (9.224)
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250 9 Spacetime transformations

It makes two-dimensional, conformal field theory very interesting. In particular
it is important for string theory and condensed matter physics of critical
phenomena, since the special analyticity allows one to obtain Green functions
and conservation laws in the vicinity of so-called fixed points.

9.6.1 Scalar fields in n + 1 dimensions

We begin by writing down the action, making the appearance of the metric
explicit:

S =
∫

dn+1x
√

g
1

c

{
1

2
(∂µφ)g

µν(∂νφ)+ V (φ)− Jφ

}
. (9.225)

Note the factor of the determinant of the metric in the volume measure: this will
also scale in the conformal transformation. We now let

gµν → '2(x)gµν

g → '2(n+1)(x) g

φ(x)→ '(1−n)/2(x)φ(x)

J → 'α(x)J , (9.226)

where α is presently unknown. It is also useful to define the ‘connection’ �µ =
'−1∂µ'. We now examine the variation of the action under this transformation:

δS =
∫

dn+1x
√

g'n+1 1

c

{
(∂µ'

(1−n)/2δφ)
gµν

'2
(∂ν'

(1−n)/2φ)

+ δV −'(1−n)/2+α J δφ
}
. (9.227)

Integrating by parts to separate δφ gives

δS =
∫

dn+1x
√

g 'n+1 1

c{
−(1+ n − 2)�µ '

(1−n)/2−2δφgµν(∂ν'
(1−n)/2φ)

− '(1−n)/2−2δφgµν(∂µ∂ν'
(1−n)/2φ)+ δV

}
. (9.228)

Notice how the extra terms involving �µ, which arise from derivatives acting
on ', are proportional to (1 + n − 2) = n − 1. These will clearly vanish
in n = 1 dimensions, and thus we see how n = 1 is special for the scalar
field. To fully express the action in terms of barred quantities, we now need
to commute the factors of ' through the remaining derivatives and cancel them
against the factors in the integration measure. Each time'(1−n)/2 passes through
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a derivative, we pick up a term containing 1
2(1 − n)�µ, thus, provided we have

α = −(n + 3)/2 and δV = 0, we may write

δS =
∫

dn+1x
√

g
1

c

{− φ − J
}
δφ + terms× (n − 1). (9.229)

Clearly, in 1 + 1 dimensions, this equation is conformally invariant, provided
the source J transforms in the correct way, and the potential V vanishes. The
invariant equation of motion is

− φ(x) = J . (9.230)

9.6.2 The Maxwell field in n + 1 dimensions

The conformal properties of the Maxwell action are quite different to those of
the scalar field, since the Maxwell action contains two powers of the inverse
metric, rather than one. Moreover, the vector source coupling JµAµ contains
a power of the inverse metric because of the indices on Aµ. Writing the action
with metric explicit, we have

S =
∫

dn+1x
√

g
1

c

{
1

4
Fµνg

µρgνλFρλ + Jµgµν Aν

}
. (9.231)

We now re-scale, as before, but with slightly different dimensional factors

gµν → '2(x)gµν

g → '2(n+1)(x) g

Aµ(x)→ '(3−n)/2(x)Aµ(x)

Jµ→ 'α Jµ, (9.232)

and vary the action to find the field equations:

δS =
∫

dn+1x
√

g'n+1 1

c

{
∂µ(δAν'

(3−n)/2)
gµρgνλ

'4
Fρλ

+ Jµgµν'(3−n)/2−2+αδAν
}
. (9.233)

Integrating by parts, we obtain

δS =
∫

dn+1x
1

c

√
g '(n−3)/2 δAν

{
(n − 3)�µgµρgνλFρλ

− ∂µFρλg
µρgνλ + Jµgµν'α−2

}
. (9.234)

On commuting the scale factor through the derivatives using

∂µFρλ = 1

2
(3− n)∂µ

[
�ρ Aλ − �λAρ

]+ ∂µFρλ, (9.235)
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252 9 Spacetime transformations

we see that we acquire further terms proportional to n − 3. Three dimensions
clearly has a special significance for Maxwell’s equations, so let us choose n = 3
now and use the notation ∂µ to denote the fact that the derivative is contracted
using the transformed metric gµν . This gives

δS =
∫

dn+1x
1

c

√
g
{
−∂µF

µν + J
ν
'α−2

}
δAν = 0. (9.236)

Notice that the invariance of the equations of motion, in the presence of a
current, depends on how the current itself scales. Suppose we couple to the
current arising from a scalar field which has the general form Jµ ∼ φ∗∂µφ,
then, from the previous section, this would scale by 'n−1. For n = 1, this
gives precisely α = n − 1 = 2. Note, however, that the matter field itself
is not conformally invariant in n = 3. As far as the electromagnetic sector
is concerned, however, n = 3 gives us the conformally invariant equation of
motion

∂µF
µν = J

ν
. (9.237)

The above treatment covers only two of the four Maxwell’s equations. The
others arise from the Bianchi identity,

εµνλρ∂µFλρ = 0. (9.238)

The important thing to notice about this equation is that it is independent of the
metric. All contractions are with the metric-independent, anti-symmetric tensor;
the other point is precisely that it is anti-symmetric. Moreover, the field scale
factor '3−n/2 is simply unity in n = 3, thus the remaining Maxwell equations
are trivially invariant.

In non-conformal dimensions, the boundary terms are also affected by the
scale factor, '. The conformal distortion changes the shape of a boundary,
which must be compensated for by the other terms. Since the dimension
in which gauge fields are invariant is different to the dimension in which
matter fields are invariant, no gauge theory can be conformally invariant in flat
spacetime. Conformally improved matter theories can be formulated in curved
spacetime, however, in any number of dimensions (see section 11.6.3).

9.7 Scale invariance

Conformal invariance is an exacting symmetry. If we relax the x-dependence of
'(x) and treat it as a constant, then there are further possibilities for invariance
of the action. Consider

S =
∫
(dx)

{
1

2
(∂µφ)(∂µφ)+

∑
l

1

l!
al φ

l

}
. (9.239)
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Table 9.2. Scale-invariant potentials.

n = 1 n = 2 n = 3

All 1
6! gφ6 1

4!λφ
4

Let us scale

gµν → gµν '
2

φ(x)→ φ(x) '−α, (9.240)

where α is to be determined. Since the scale factors now commute with the
derivatives, we can secure the invariance of the action for certain l which satisfy,

'n+1'−2−2α = 1 = '−lα, (9.241)

which solves to give α = n+1
2 − 1, and hence,

l = n + 1

(n + 1)/2− 1
. (9.242)

For n = 3, l = 4 solves this; for n = 2, l = 6 solves this; and for n = 1, it is not
solved for any l since the field is dimensionless. We therefore have the globally
scale-invariant potentials in table 9.2.

9.8 Breaking spacetime symmetry

The breakdown of a symmetry means that a constraint on the uniformity of
a system is lost. This sometimes happens if systems develop structure. For
example, if a uniformly homogeneous system suddenly becomes lumpy, perhaps
because of a phase transition, then translational symmetry will be lost. If a
uniform external magnetic field is applied to a system, rotational invariance
is lost. When effects like these occur, one or more symmetry generators
are effectively lost, together with the effect on any associated eigenvalues
of the symmetry group. In a sense, the loss of a constraint opens up the
possibility of more freedom or more variety in the system. In the opposite
sense, it restricts the type of transformations which leave the system unchanged.
Symmetry breakdown is often associated with the lifting of degeneracy of group
eigenvalues, or quantum numbers.

There is another sense in which symmetry is said to be broken. Some
calculational procedures break symmetries in the sense that they invalidate the

https://doi.org/10.1017/9781009289887.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.012


254 9 Spacetime transformations

assumptions of the original symmetry. For example, the imposition of periodic
boundary conditions on a field in a crystal lattice is sometimes said to break
Lorentz invariance,

ψ(x + L) = ψ(x). (9.243)

The existence of a topological property such as periodicity does not itself break
the Lorentz symmetry. If there is a loss of homogeneity, then translational
invariance would be lost, but eqn. (9.243) does not imply this in any way: it
is purely an identification of points in the system at which the wavefunction
should have a given value. The field still transforms faithfully as a spacetime
scalar. However, the condition in eqn. (9.243) does invalidate the assumptions
of Lorentz invariance because the periodicity length L is a constant and we know
that a boost in the direction of that periodicity would cause a length contraction.
In other words, the fact that the boundary conditions themselves are stated in a
way which is not covariant invalidates the underlying symmetry.

Another example is the imposition of a finite temperature scale β = 1/kT .
This is related to the last example because, in the Euclidean representation, a
finite temperature system is represented as being periodic in imaginary time
(see section 6.1.5). But whether we use imaginary time or not, the idea of
a constant temperature is also a non-covariant concept. If we start in a heat
bath and perform a boost, the temperature will appear to change because of
the Doppler shift. Radiation will be red- and blue-shifted in the direction of
travel, and thus it is only meaningful to measure a temperature at right angles to
the direction of travel. Again, the assumption of constant temperature does not
break any symmetry of spacetime, but the ignorance of the fact that temperature
is a function of the motion leads to a contradiction.

These last examples cannot be regarded as a breakdown of symmetry, because
they are not properties of the system which are lost, they are only a violation of
symmetry by the assumptions of a calculational procedure.

9.9 Example: Navier–Stokes equations

Consider the action for the velocity field:

S = τ
∫
(dx)

{
1

2
ρvi (Dtv

i )+ ρviv j (Dk
i jvk)+ µ

2
(∂iv

i )2 + Jiv
i

}
, (9.244)

where

Ji ≡ Fi + ∂i P, (9.245)
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and

Dt = ∂t + � = ∂t + 1

2

(
∂tρ

ρ

)
Dk

i j = δl
lδ

m
j ∂

k + �k
i j = δl

lδ
m
j ∂

k + viv j

v4
∂m(v

mvk), (9.246)

ρ
Dvi

Dt
+ (∂i P)− µ∇2vi = Fi , (9.247)

where P is the pressure and F is a generalized force. This might be the effect
of gravity or an electric field in the case of a charged fluid.

These connections result from the spacetime dependence of the coordinate
transformation. They imply that our transformation belongs to the conformal
group rather than the Galilean group, and thus we end up with connection terms

Dui

Dt
= (∂t + v j∂ j )v

i , (9.248)

where

∂µNµ = 0 (9.249)

and Nµ = (N , Nvi ).
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