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Abstract
We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over C with a triangular de-
composition and a character 𝜁 of the nilpotent radical, the associated Backelin functor Γ𝜁 sends Verma modules
to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the
problem of determining the composition factors of the standard Whittaker modules in terms of composition fac-
tors of Verma modules in the category O. In the case of the ortho-symplectic Lie superalgebras, we show that the
Backelin functor Γ𝜁 and its target category, respectively, categorify a q-symmetrizing map and the corresponding
q-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type 𝐴𝐼𝐼 𝐼.
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1. Introduction and description of results

1.1. Background and motivation

Let 𝔤 be a finite-dimensional quasi-reductive Lie superalgebra over C with a triangular decomposition

𝔤 = 𝔫− ⊕ 𝔥 ⊕ 𝔫+ (1.1)

in the sense of [Ma] (see also [CCC]). Here, 𝔥 is a purely even Cartan subalgebra with nil- and opposite
radical 𝔫±, respectively. Let 𝑍 (𝔤0̄) be the center of the universal enveloping algebra 𝑈 (𝔤0̄) of 𝔤0̄.
Motivated by earlier results of Kostant [Ko], Miličić-Soergel [MSo] and Backelin [Bac], Mazorchuk
and the authors [Ch1, Ch2, CCM2] studied the category N consisting of finitely generated 𝔤-modules
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that are locally finite over 𝑍 (𝔤0̄) and𝑈 (𝔫+), which we refer to as Whittaker modules over 𝔤. The category
N decomposes into a direct sum of the full subcategories N (𝜁), with 𝜁 ∈ ch𝔫+

0̄ : =
(
𝔫+

0̄/[𝔫
+
0̄ , 𝔫

+
0̄ ]

)∗
,

consisting of modules 𝑀 ∈ N on which 𝑥 − 𝜁 (𝑥) acts locally nilpotently, for any 𝑥 ∈ 𝔫+
0̄ . Furthermore,

the category N (𝜁) is a union of certain full subcategories N (𝜁)𝑛, for 𝑛 ≥ 1, in the sense of [Ch1,
Section 4.1.2], which extends the definition in [MSo, Section 5] for Lie algebras. In particular, N (𝜁)1

contains all simple objects in N (𝜁), and N (0)1 coincides with the Bernstein-Gelfand-Gelfand (BGG)
category O. Therefore, the category N (𝜁)1 provides a suitable framework for the study of Whittaker
modules. In the present paper, we introduce an integral block W (𝜁) of N (𝜁)1 (see Section 2.6). In
particular, W (0) coincides with the integral BGG category OZ.

For Lie superalgebras, the standard Whittaker modules 𝑀 (𝜆, 𝜁) ∈ N (𝜁) were introduced in [BCW,
Ch1], 𝜆 ∈ 𝔥∗. These modules were initially studied by McDowell [Mc1, Mc2] and Miličić-Soergel
[MSo] for Lie algebras. They are generalizations of Verma modules and play an analogous role in the
representation theory of W (𝜁).

A quasi-reductive Lie superalgebra 𝔤 is said to be of type I if 𝔤 has a Z2-compatible Z-gradation of
the form 𝔤 = 𝔤−1 ⊕ 𝔤0 ⊕ 𝔤1. In this case, the standard Whittaker modules and the Whittaker category
W (𝜁) have been investigated by the first author [Ch1], and then by Mazorchuk and the authors [CCM2].
In particular, for the general linear Lie superalgebra 𝔤𝔩(𝑚 |𝑛), the composition multiplicity of standard
Whittaker modules is controlled by the Brundan-Kazhdan-Lusztig polynomials from [Br2, CLW].
Furthermore, it was shown in [CCM2] that W (𝜁) categorifies a q-symmetrized Fock space over a
quantum group of type A in the case 𝔤 = 𝔤𝔩(𝑚 |𝑛).

A main motivation for the present paper is to study the multiplicities of composition factors of
standard Whittaker modules and a corresponding categorification picture using the Whittaker categories
W (𝜁) for Lie superalgebras beyond type I.

1.2. Setup

Throughout this paper, we let 𝔤 be an arbitrary finite-dimensional quasi-reductive Lie superalgebra.
This means that 𝔤0̄ is a reductive Lie algebra and 𝔤1̄ is semisimple as a 𝔤0̄-module. We fix a triangular
decomposition of 𝔤 as given in (1.1). The corresponding Borel subalgebra is defined to be 𝔟 := 𝔥 ⊕ 𝔫+.
We are mainly interested in the following examples of quasi-reductive Lie superalgebras in Kac’s list
[Kac]:

𝔤𝔩(𝑚 |𝑛), 𝔰𝔩(𝑚 |𝑛), 𝔬𝔰𝔭(𝑚 |2𝑛), 𝐷 (2, 1; 𝛼), 𝐺 (3), 𝐹 (4), 𝔭(𝑛). (1.2)

We refer to, for example, [CW, Mu2] for more details on the structure of these Lie superalgebras.
For each root 𝛼 of 𝔤, we denote by 𝔤𝛼 := {𝑥 ∈ 𝔤| ℎ𝑥 = 𝛼(ℎ)𝑥, for all ℎ ∈ 𝔥}, the corresponding root

space. For 𝜁 ∈ ch𝔫+

0̄ , we denote by Π𝜁 the set of all roots 𝛼 in 𝔫+

0̄ with 𝜁 (𝔤𝛼) ≠ 0. This leads to a Levi
subalgebra 𝔩𝜁 of 𝔤0̄; that is, 𝔩𝜁 is generated by 𝔥 and 𝔤±𝛼 for 𝛼 ∈ Π𝜁 .

In this paper, unless otherwise specified, we shall assume that 𝔩𝜁 is a Levi subalgebra in a parabolic
decomposition in the sense of [Ma, Section 2.4] (in particular, 𝜁 can be extended trivially to a character
of 𝔫+):

𝔤 = 𝔲− ⊕ 𝔩𝜁 ⊕ 𝔲+, (1.3)

which is compatible with the triangular decomposition given in (1.1) – namely, 𝔲± ⊆ 𝔫±. That is, there
exists 𝐻 ∈ 𝔥 such that

𝔩𝜁 :=
⊕

Re𝛼(𝐻 )=0
𝔤𝛼, 𝔲+ :=

⊕
Re𝛼(𝐻 )>0

𝔤𝛼, 𝔲− :=
⊕

Re𝛼(𝐻 )<0
𝔤𝛼, (1.4)

such that Re𝛼(𝐻) ≥ 0, for any root 𝛼 in 𝔫+, where Re(𝑧) denotes the real part of 𝑧 ∈ C; see also [Ch1,
Section 3.3] for examples. We let 𝔭 := 𝔩𝜁 + 𝔲+ be the corresponding parabolic subalgebra. We remark
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that if one starts with a character 𝜁 ∈ ch𝔫+
0̄ which leads to a parabolic decomposition in (1.4), then there

exists a compatible triangular decomposition of 𝔤; see [CCC, Lemma 1.3]. We note that H lies in the
center of 𝔩𝜁 . In this article, we exclude the family of queer Lie superalgebras.

Motivated by the equivalences of categories in the earlier works of Bernstein-Gelfand [BG] and
Miličić-Soergel [MSo], which connect modules in O and Whittaker modules in N , an equivalence is
established in [Ch1, Ch2] between W (𝜁) and a certain full subcategory O𝜁 -pres of OZ (see Section 2.4).
The objects in O𝜁 -pres admit a two step resolution by projective modules whose simple quotients are
free 𝑈 (𝔤−𝛼)-modules, for any 𝛼 ∈ Π𝜁 .

1.3. Goal

An important task in the study of Whittaker modules is to find the composition factors of a given standard
Whittaker module. In the case of reductive Lie algebras, Miličić and Soergel developed in [MSo] an
equivalence between N (𝜁) and certain category of Harish-Chandra bimodules to provide an answer for
the composition multiplicity of 𝑀 (𝜆, 𝜁) for regular and integral weights 𝜆. Subsequently, Backelin in
[Bac] introduced an exact functor Γ𝜁 from O to N (𝜁), sending Verma modules to standard Whittaker
modules, to give a complete solution in terms of Kazhdan-Lusztig polynomials.

Standard Whittaker modules for Lie superalgebras of type I, which are of finite length, were originally
considered in [BCW]. However, as a complete classification of simple Whittaker modules was not
available at that time, limited effort had been made to resolve the problem of finding composition
multiplicity for standard Whittaker modules over Lie superalgebras until recently. It is proved in [Ch1]
that in type I case, this multiplicity problem reduces to that of Verma modules in O; see also [BrG] for a
special nonsingular case. In particular, in the case of 𝔤 = 𝔤𝔩(𝑚 |𝑛), these multiplicities can be computed
by means of Brundan-Kazhdan-Lusztig polynomials [Br3, CLW]; see also [CCM2].

When the Lie superalgebra is not of type I, standard Whittaker modules similarly as in McDowell
[Mc1, Mc2] can also be defined under the assumption that 𝜁 satisfies the assumption in Section 1.2.
This is done in [Ch1] and also in the present paper.

By [Ch1, Theorem 6], for any 𝜆 ∈ 𝔥∗, the top of the standard Whittaker 𝑀 (𝜆, 𝜁) is simple, which
we denote by 𝐿(𝜆, 𝜁). These simple Whittaker modules are classified in terms of orbits in 𝔥∗ under the
dot-action of the Weyl group 𝑊𝜁 of 𝔩𝜁 , and they constitute all simple objects in N (𝜁). One of the main
objectives of this paper is to provide a complete answer to the composition multiplicity problem for
standard Whittaker modules over quasi-reductive Lie superalgebras beyond type I.

1.4. Main results

For each 𝑀 ∈ O, we denote the completion of M with respect to its weight spaces by 𝑀 :=
∏
𝜆∈𝔥∗ 𝑀𝜆.

Then, the module Γ𝜁 (𝑀) is defined to be the submodule of 𝑀 consisting of vectors annihilated by a
power of 𝑥 − 𝜁 (𝑥), for all 𝑥 ∈ 𝔫+

0̄ . Then Γ𝜁 defines an exact functor from O to N (𝜁), which we refer to
as the Backelin functor associated to 𝜁 for 𝔤. Let 𝑀 (𝜆) be the Verma module of highest weight 𝜆 with
respect to the triangular decomposition (1.1) and 𝐿(𝜆) its unique simple quotient. Our first main result
is the following.
Theorem 1 (Proposition 4, Theorem 6-(ii)). For any weight 𝜆 ∈ 𝔥∗, the Backelin functor Γ𝜁 (−) sends
𝑀 (𝜆) to 𝑀 (𝜆, 𝜁). Furthermore, Γ𝜁 (−) sends 𝐿(𝜆) to 𝐿(𝜆, 𝜁), if 𝜆 is 𝑊𝜁 -anti-dominant, and to zero
otherwise.

Consequently, we have the following multiplicity formula:

[𝑀 (𝜆, 𝜁) : 𝐿(𝜇, 𝜁)] = [𝑀 (𝜆) : 𝐿(𝜇)], (1.5)

for 𝑊𝜁 -anti-dominant weights 𝜆, 𝜇.
Any Lie superalgebra from the series 𝔤𝔩(𝑚 |𝑛), 𝔰𝔩(𝑚 |𝑛), 𝔬𝔰𝔭(2|2𝑛) and 𝔭(𝑛) in (1.2) admits a Z2-

compatible gradation 𝔤 = 𝔤−1 ⊕ 𝔤0 ⊕ 𝔤1 (i.e., they are Lie superalgebras of type I). In this case, Theorem
1 recovers (and provides a uniform proof of) [Ch1, Thoerem C].
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Recently, an 𝚤-canonical basis theory based on a quantum symmetric pair (𝑈,𝑈𝚤) has been system-
atically developed by Bao and Wang starting with the pioneering work [BW], which extends Lusztig’s
canonical basis theory for quantum groups [Lu1, Lu2]. The main motivation of [BW] was to resolve the
irreducible character problem in the integral BGG category OZ for the ortho-symplectic Lie superalge-
bra. For 𝔬𝔰𝔭(2𝑚 + 1|2𝑛), the 𝚤-canonical basis theory of the associated 𝚤-quantum group 𝑈𝚤 (see Section
5.1) on a completed Fock space T̂𝑚 |𝑛 (see Section 5.2) provides a complete solution to this problem
in subcategory Oint

Z
of integer weight modules (see Section 6). In this case, the corresponding quan-

tum symmetric pair (𝑈,𝑈𝚤) is quasi-split of type 𝐴𝐼𝐼 𝐼. In particular, the linear isomorphism 𝜓 from
T̂𝑚 |𝑛 to a corresponding completed Grothendieck group 𝐾 (Oint

Z
)Q, sending standard monomial basis

elements to Verma modules, match the 𝚤-canonical and dual 𝚤-canonical bases with tilting and simple
objects, respectively. A similar solution to the irreducible character problem in the subcategory Ohf

Z
of

half-integer weight modules (see again Section 6) is given in terms of so-called 𝚥-canonical basis [BW,
Chapter 12]. Note that this together solves the irreducible character problem in OZ, as other integral
weights are typical.

In the present paper, we study a certain q-symmetrized Fock space T̂𝑚 |𝑛
𝜁 , depending on the character

𝜁 ∈ ch𝔫+
0̄ , which can be regarded either as a 𝑈𝚤-submodule or as a 𝑈𝚤-quotient of T̂𝑚 |𝑛. There is a

canonical q-symmetrizer map 𝜙𝜁 : T̂𝑚 |𝑛 → T̂
𝑚 |𝑛
𝜁 . Building on the works of [BW], we construct in a

natural way 𝚤-canonical and dual 𝚤-canonical bases on this q-symmetrized Fock space. We show that the
𝑈𝚤-module T̂𝑚 |𝑛

𝜁 is categorified by an ‘integer weight’ subcategory W (𝜁)int (see Section 7.2) of our
categoryW (𝜁), when 𝔤 is the ortho-symplectic Lie superalgebra 𝔬𝔰𝔭(2𝑚+1|2𝑛). The linear action of𝑈𝚤

on the Fock space at 𝑞 = 1 translates to action of certain translation functors on the category. We denote
by 𝜓𝜁 the induced isomorphism from T̂𝑚 |𝑛

𝜁 ,𝑞=1 to the completed Grothendieck group 𝐾 (W (𝜁)int)Q. We
can now state our second main result, which is equivalent to Theorem 31 below.

Theorem 2. Let 𝔤 be 𝔬𝔰𝔭(2𝑚 + 1|2𝑛). Let 𝛾𝜁 : 𝐾 (Oint
Z

)Q → 𝐾 (W (𝜁)int)Q be the map induced by the
Backelin functor Γ𝜁 . We have the following commutative diagram of 𝑈𝚤

𝑞=1-homomorphisms:

T̂
𝑚 |𝑛
𝑞=1

𝜓 ��

𝜙𝜁

��

𝐾 (Oint
Z

)Q

𝛾𝜁

��
T̂
𝑚 |𝑛
𝜁 ,𝑞=1

𝜓𝜁 �� 𝐾 (W (𝜁)int)Q

(1.6)

Furthermore, the map 𝜓𝜁 matches 𝚤-canonical and dual 𝚤-canonical basis with the tilting and simple
objects in W (𝜁)int, respectively.

There is also an analogue of Theorem 2 in the case of half-integer weight subcategory W (𝜁)hf of
W (𝜁) formulated in Theorem 32. In this case, it is formulated in terms of so-called 𝚥-canonical basis.
Also, we have counterparts for the Lie superalgebra 𝔬𝔰𝔭(2𝑚 |2𝑛). Therefore, Theorem 2, its half-integer
and their type D counterparts together give an ortho-symplectic analogue of the results in [CCM2,
Section 3.7] for type A Lie superalgebras.

1.5. Additional results

1.5.1. Homomorphisms from 𝑀 (𝜆, 𝜁) to full dual of Verma modules
Suppose that 𝔤 is a Lie superalgebra in Kac’s list (1.2) with 𝔤 ≠ 𝔭(𝑛). For any 𝜆 ∈ 𝔥∗, we define 𝑁 (𝜆)
to be the Verma module of lowest weight 𝜆 with respect to 𝔟 – namely, 𝑁 (𝜆) := Ind𝔤𝔥+𝔫− C𝜆. We note
that 𝑁 (−𝜆)∗ � Coind𝔤𝔥+𝔫−C𝜆; see, for example, [Sch, Chapter 4]. Also, we let 𝑀 (𝜆)∗,𝜏 be the full dual
of the Verma module 𝑀 (𝜆) with the action of 𝔤 twisted by the Chevalley antiautomorphism 𝜏 on 𝔤.
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In Theorem 6(i), we prove that, for 𝜆, 𝜇 ∈ 𝔥∗ and 𝑀 = 𝑁 (−𝜇)∗ or 𝑀 (𝜇)∗,𝜏 , we have

Hom𝔤 (𝑀 (𝜆, 𝜁), 𝑀) =

{
C, for 𝜇 ∈ 𝑊𝜁 · 𝜆;
0, otherwise. (1.7)

Here, 𝑊𝜁 ·𝜆 denotes the orbit of 𝜆 under the dot-action · of the Weyl group 𝑊𝜁 of 𝔩𝜁 on 𝔥∗. In particular,
this extends [BR, Theorem 5.2], where the case of semisimple Lie algebras with regular weight 𝜆 was
considered.

1.5.2. A realization of the Serre quotient functor
The categories W (𝜁) and O𝜁 -pres fit naturally into the framework of the Serre quotient category O in the
sense of Gabriel [Ga], which is a localization of OZ with the canonical quotient functor 𝜋 : OZ → O
with respect to the set of homomorphisms with kernels and cokernels lying in a given Serre subcategory.
In the case of Lie superalgebras of type I, it is proved in [CCM2] that the Backelin functor Γ𝜁 (−) is a
realization of the quotient functor 𝜋. In this paper, we extend this result to any Lie superalgebras 𝔤 in
Kac’s list (1.2).

1.5.3. Annihilator ideals of simple Whittaker modules
It is proved that every primitive ideal of a quasi-reductive Lie superalgebra is the annihilator of some
simple highest weight modules; see, for example, [Du, Le1, Mu1, CC]. In the case of 𝑊𝜁 = 𝑊 , Kostant
[Ko, Theorem 3.9] gives a description of the annihilator ideals for simple Whittaker modules over
semisimple Lie algebras. This has been extended to Lie superalgebras of type I in [Ch2, Theorem B].
In this paper, we will prove an analogue for any Lie superalgebra 𝔤 in Kac’s list (1.2).

1.6. Organization

The paper is organized as follows. In Section 2, we provide the necessary preliminaries. In particular, we
introduce various (equivalent) abelian categories, including the Whittaker categories W (𝜁). In Section
3, we give a proof of Theorem 1. Section 4 is devoted to a description of the stratified structure on W (𝜁).
In particular, we describe explicitly the tilting modules in W (𝜁) and prove a BGG type reciprocity for
W (𝜁). In Section 5, we study a q-symmetrized Fock space over the 𝚤-quantum group mentioned earlier
and construct its 𝚤-canonical and the dual 𝚤-canonical bases on this space. We briefly recall in Section 6
the solution of the irreducible character problem for the ortho-symplectic Lie superalgebras in category
O, which we then use in Section 7 to complete the proof of Theorem 2.

2. Preliminaries

In this section, we review the necessary background and definitions that will be used in the remainder
of the paper.

2.1. Root systems and Weyl group

Let Φ be the set of all roots. Denote by Π, Φ±, Φ0̄ and Φ1̄ the sets of simple, positive/negative, even
and odd roots of 𝔤, respectively. Define Φ±

𝜖 := Φ𝜖 ∩ Φ±, 𝜖 = 0̄, 1̄. Set Π0̄ to be the simple system for
Φ+

0̄ . For each 𝛼 ∈ Φ, we denote by 𝔤𝛼 the root space of 𝔤 corresponding to 𝛼. The corresponding Borel
subalgebra is 𝔟 = 𝔥 ⊕ 𝔫+, with 𝔫+ =

⊕
𝛼∈Φ+ 𝔤𝛼.

Recall that we fixed a character 𝜁 that gives rise to a Levi subalgebra 𝔩𝜁 of 𝔤 as given in Section 1.2.
Also, recall that the set of all simple roots of 𝔩𝜁 is denoted as follows

Π𝜁 := {𝛼 ∈ Π0̄ | 𝜁 (𝔤𝛼) ≠ 0}.

We note that 𝜁 ([𝔫+
1̄ , 𝔫

+
1̄ ]) = 0, the latter implies that 𝜁 extends trivially to a one-dimensional 𝔫+-module.

We also denote by 𝜁 the induced algebra homomorphism from 𝑈 (𝔫+) to C.
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The Weyl group W is defined to be the Weyl group of 𝔤0̄, and it acts naturally on 𝔥∗. For each 𝛼 ∈ Π0̄,
let 𝑠𝛼 ∈ 𝑊 be the simple reflection corresponding to 𝛼. We consider the dot-action of W on 𝔥∗; that is,
𝑤 · 𝜆 := 𝑤(𝜆 + 𝜌0̄) − 𝜌0̄, for any 𝑤 ∈ 𝑊 and 𝜆 ∈ 𝔥∗. Here, 𝜌0̄ denotes the half-sum of all positive even
roots. Also, we let 𝑊𝜁 denote the Weyl group of 𝔩𝜁 . We denote by 𝑤0 and 𝑤

𝜁
0 the longest elements in

W and 𝑊𝜁 , respectively.
Fix a W-invariant nondegenerate bilinear form (·, ·) on 𝔥∗. For each 𝛼 ∈ Φ+

0̄ , we set 𝛼∨ := 2𝛼/(𝛼, 𝛼).
A weight 𝜆 is called integral if (𝜆, 𝛼∨) ∈ Z for all roots 𝛼 ∈ Φ0̄. Let Λ be the set of integral weights. For
any given 𝛼 ∈ Φ+

0̄ , a weight 𝜆 is called 𝛼-dominant (respectively, 𝛼-anti-dominant) if (𝜆+ 𝜌0̄, 𝛼
∨) ∉ Z<0

(respectively, (𝜆 + 𝜌0̄, 𝛼
∨) ∉ Z>0). We denote by Λ(𝜁) the set of all integral weights that are 𝛼-anti-

dominant, for all 𝛼 ∈ Π𝜁 .

2.2. Induction and restriction functors

We denote by 𝑈 (𝔤) the universal enveloping algebra of 𝔤 and 𝑍 (𝔤) its center. For any 𝜆 ∈ 𝔥∗, we
denote by 𝜒𝜆 : 𝑍 (𝔤) → C the central character associated with 𝜆. Denote by 𝔤 -mod the category of all
𝔤-modules. For any subalgebra 𝔰 ⊆ 𝔤, we have the exact restriction, induction and coinduction functors

Res𝔤𝔰 (−) : 𝔤 -mod → 𝔰 -mod, Ind𝔤𝔰 (−), Coind𝔤𝔰 (−) : 𝔰 -mod → 𝔤 -mod . (2.1)

In the case 𝔤0̄ = 𝔰, we use the notations Res(−) := Res𝔤𝔤0̄
(−), Ind(−) := Ind𝔤𝔤0̄

(−) and Coind(−) :=
Coind𝔤𝔤0̄

(−). By [BF, Theorem 2.2] (see also [Go1]), Ind(−) is isomorphic to Coind(−) up to tensoring
with the one-dimensional 𝔤0̄-module ∧dim𝔤1̄ (𝔤1̄).

For any module M having a composition series, we will use [𝑀 : 𝐿] to denote the Jordan-Hölder
multiplicity of the simple module L in a composition series of M.

2.3. BGG category O
We denote by O the BGG category with respect to the triangular decomposition (1.1). Namely, O
consists of finitely-generated 𝔤-modules that are semisimple over 𝔥 and locally finite over 𝔫+. We shall
denote the corresponding BGG category of 𝔤0̄-modules by O0̄. For 𝜆 ∈ 𝔥∗, we denote by 𝑀 (𝜆) the
Verma module of 𝔟-highest weight 𝜆 and by 𝐿(𝜆) its unique simple quotient. Denote by 𝑃(𝜆) the
projective cover of 𝐿(𝜆) in O. We will use the 0-subscript convention to denote the respective objects
in O0̄ (e.g., 𝑃0 (𝜆) is the projective cover of 𝐿0 (𝜆) in O0̄).

Denote by OZ the integral BGG subcategory (i.e., the full subcategory of O consisting of all modules
having integral weight spaces).

We denote by O(𝔩𝜁 ) the BGG category of 𝔩𝜁 -modules with respect to the Borel subalgebra 𝔩𝜁 ∩ 𝔟.
Similarly, we shall use the 𝔩𝜁 -subscript to denote respective 𝔩𝜁 -modules (e.g., we define the Verma
module 𝑀𝔩𝜁 (𝜆) and its simple quotient 𝐿𝔩𝜁 (𝜆) in the category O(𝔩𝜁 )). Denote by 𝑃𝔩𝜁 (𝜆) the projective
cover of 𝐿𝔩𝜁 (𝜆) in O(𝔩𝜁 ). Similarly, we denote by O(𝔩𝜁 )Z the integral BGG subcategory of O(𝔩𝜁 ).

2.4. The category O𝜁 -pres

A projective module in O (respectively, O0̄) is called admissible if any of its simple quotients are of
the form 𝐿(𝜆) (respectively, 𝐿0 (𝜆)) with 𝜆 ∈ Λ(𝜁). We denote by O𝜁 -pres the full subcategory of OZ
consisting of modules M that have a two-step resolution of the form

𝑃1 → 𝑃2 → 𝑀 → 0, (2.2)

where 𝑃1, 𝑃2 are admissible projective modules in O. Similarly, we define the full subcategory O𝜁 -pres
0̄

of O0̄ consisting of all modules that have 2-step resolutions by direct sums of projective modules of the
form 𝑃0 (𝜆) with 𝜆 ∈ Λ(𝜁).
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Fix 𝛼 ∈ Π𝜁 . A 𝔤-module M is said to be 𝛼-finite (respectively, 𝛼-free) if the action of non-zero
root vectors in 𝔤−𝛼 on M is locally finite (respectively, injective). For 𝛼 ∈ Π𝜁 , we have (𝜆 + 𝜌, 𝛼∨) =
(𝜆 + 𝜌𝔩𝜁 , 𝛼

∨) = (𝜆 + 𝜌0̄, 𝛼
∨), where 𝜌𝔩𝜁 denotes the half-sum of positive roots in 𝔩𝜁 , and hence, 𝐿(𝜆) is

𝛼-free if and only if 𝐿0 (𝜆) is 𝛼-free if and only if 𝜆 ∈ Λ(𝜁), see, for example, [CM, Lemma 2.1].

Lemma 3. If 𝑃(𝜆) is admissible, then Res 𝑃(𝜆) is admissible. Conversely, if 𝑃0 (𝜆) is admissible, then
Ind 𝑃0 (𝜆) is admissible. Thus, the functors Ind(−) and Res(−) form an adjoint pair of additive functors
between the full subcategories O𝜁 -pres

0̄ and O𝜁 -pres.

Proof. Suppose that 𝑃(𝜆) is admissible. We have 0 ≠ HomO0̄ (𝑃0 (𝜆), Res 𝐿(𝜆)) �
HomO (Ind 𝑃0 (𝜆), 𝐿(𝜆)), and hence 𝑃(𝜆) is a direct summand of Ind 𝑃0 (𝜆). Since Res Ind 𝑃0 (𝜆) is
admissible, so is Res 𝑃(𝜆).

Conversely, suppose that 𝑃0 (𝜆) is admissible. Now, if HomO (Ind 𝑃0 (𝜆), 𝐿(𝜇)) ≠ 0, then
HomO0̄ (𝑃0 (𝜆), Res 𝐿(𝜇)) ≠ 0. Thus, there is a 𝔤0̄-composition factor in 𝐿(𝜇) that is 𝛼-free, for all
𝛼 ∈ Π𝜁 . Since 𝐿(𝜇) is irreducible, this implies that it is also 𝛼-free, for all 𝛼 ∈ Π𝜁 and so 𝜇 ∈ Λ(𝜁).
Thus, Ind 𝑃0 (𝜆) is admissible. �

2.5. Serre quotient category O
Let I𝜁 denote the Serre subcategory of OZ generated by simple modules 𝐿(𝜆) with 𝜆 ∉ Λ(𝜁); that is,
𝐿(𝜆) ∈ OZ is 𝛼-finite for some 𝛼 ∈ Π𝜁 . There is an associated abelian quotient category O := OZ/I𝜁
in the sense of [Ga, Chapter III] which has the same objects as OZ and morphisms given by

HomO (𝑋,𝑌 ) := lim
→

HomO (𝑋 ′, 𝑌/𝑌 ′), (2.3)

where the limit is taken over all 𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 such that 𝑋/𝑋 ′, 𝑌 ′ ∈ I𝜁 . There is an exact
canonical quotient functor 𝜋 : OZ → O, which is the identity on objects and is the canonical map from
HomO (𝑋,𝑌 ) to lim

→
HomO (𝑋 ′, 𝑌/𝑌 ′). We refer to 𝜋 as the associated Serre quotient functor.

By [CCM2, Lemma 12], the functor 𝜋 gives rise to an equivalence from O𝜁 -pres to O. In particular,
O𝜁 -pres inherits an abelian category structure, and {𝜋(𝐿(𝜆)) | 𝜆 ∈ Λ(𝜁)} is an exhaustive list of simple
objects in O. Furthermore, 𝜋(𝑃(𝜆)) is the indecomposable projective cover of 𝜋(𝐿(𝜆)) in O, for any
𝜆 ∈ Λ(𝜁).

With respect to the inherited abelian category structure, the induced functors Ind(−) and Res(−)
between O𝜁 -pres

0̄ and O𝜁 -pres are exact since Ind(−) is also right adjoint to Res(−), up to an auto-
equivalence on O𝜁 -pres

0̄ .

2.6. The Whittaker category W (𝜁)

Let 𝜆 ∈ 𝔥∗. We set 𝜒
𝔩𝜁
𝜆 : 𝑍 (𝔩𝜁 ) → C to be the central character associated with 𝜆. We recall from [Ch1,

Section 3.1] that the standard Whittaker module is defined as follows:

𝑀 (𝜆, 𝜁) := 𝑈 (𝔤) ⊗𝑈 (𝔭) 𝑌𝜁 (𝜆, 𝜁),

where 𝑌𝜁 (𝜆, 𝜁) := 𝑈 (𝔩𝜁 )/(Ker𝜒𝔩𝜁
𝜆 )𝑈 (𝔩𝜁 ) ⊗𝑈 (𝔫+∩𝔩𝜁 ) C𝜁 denotes Kostant’s simple Whittaker modules

from [Ko]. We denote by 𝐿(𝜆, 𝜁) the (simple) top of 𝑀 (𝜆, 𝜁). Furthermore, we have

𝐿(𝜆, 𝜁) � 𝐿(𝜇, 𝜁) ⇔ 𝑀 (𝜆, 𝜁) � 𝑀 (𝜇, 𝜁) ⇔ 𝑊𝜁 · 𝜆 = 𝑊𝜁 · 𝜇,

for any 𝜇 ∈ 𝔥∗. We refer to [Ch1, Theorem 6] for more details. In particular, we have 𝑀 (𝜆, 0) =
𝑀 (𝜆). We denote by N0 (𝜁) the corresponding Whittaker category of 𝔤0̄-modules and by 𝑀0 (𝜆, 𝜁) the
corresponding standard Whittaker module over 𝔤0̄.
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Recall that N (𝜁) denotes the category of finitely generated 𝔤-modules M that are locally finite
over 𝑍 (𝔤0̄) and 𝑈 (𝔫+) such that 𝑥 − 𝜁 (𝑥) acts on M locally nilpotently, for any 𝑥 ∈ 𝔫+

0̄ . The set
{𝐿(𝜆, 𝜁) |𝜆 ∈ 𝔥∗/𝑊𝜁 } is a complete and nonredundant set of representatives of the isomorphism classes
of simple objects in N (𝜁).

We consider the category W (𝜁) introduced in [CCM2, Section 4.4.4], which is a deformation of the
category O and contains the modules 𝑀 (𝜆, 𝜁) and 𝐿(𝜆, 𝜁) for all 𝜆 ∈ Λ; see also [Ch1, Theorem 16,
Proposition 33]. The category W (𝜁) is defined as the full subcategory of N (𝜁) consisting of modules
M that have a two step resolution of modules of the form 𝐸 ⊗ Ind(𝑀0 (𝜈, 𝜁)), where E is a finite-
dimensional 𝔤-module and 𝜈 is a dominant (i.e., 𝜈 is 𝛼-dominant for any 𝛼 ∈ Φ+

0̄ ) and integral weight
such that its stabilizer subgroup of W under the dot-action is equal to 𝑊𝜁 .

Let us conclude this section with some remarks on equivalences of categories. There is an equivalence
betweenO𝜁 -pres andW (𝜁); see Section 7.1. As a consequence, we have equivalencesO𝜁 -pres � W (𝜁) �
O. In the case that 𝔤 is one from Kac’s list (1.2), a description of objects in O𝜁 -pres and O corresponding
to Whittaker modules 𝑀 (𝜆, 𝜁) and 𝐿(𝜆, 𝜁) can be found in Remark 30.

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1.

3.1. Backelin functor Γ𝜁
Recall that the image Γ𝜁 (𝑀) of the exact Backelin functor Γ𝜁 : O → N (𝜁) on a module 𝑀 ∈ O is
defined as the submodule consisting of vectors in 𝑀 :=

∏
𝜆∈𝔥∗ 𝑀𝜆 annihilated by a power of 𝑥 − 𝜁 (𝑥),

for all 𝑥 ∈ 𝔫+
0̄ . Let Γ0

𝜁 : O0̄ → N0(𝜁) denote the Backelin functor for 𝔤0̄-modules from [Bac]. Similarly,

we denote by Γ
𝔩𝜁
𝜁 the Backelin functor for 𝔩𝜁 -modules. We note that Res(−) intertwines Γ𝜁 and Γ0

𝜁 . The
following proposition is crucial.
Proposition 4. For any 𝜆 ∈ 𝔥∗, we have

Γ𝜁 (𝑀 (𝜆)) � 𝑀 (𝜆, 𝜁). (3.1)

In particular, for any 𝑤 ∈ 𝑊𝜁 , we have

Γ𝜁 (𝑀 (𝜆)) = Γ𝜁 (𝑀 (𝑤 · 𝜆)).

Proof. By the PBW basis theorem, we may regard 𝑀 (𝜆) as the vector space 𝑈 (𝔲−
1̄ ) ⊗ 𝑈 (𝔲−

0̄ )𝑀𝔩𝜁 (𝜆) =

𝑈 (𝔲−
1̄ ) ⊗ 𝑀0 (𝜆). Therefore, Γ𝜁 (𝑀 (𝜆)) consists of vectors v in 𝑈 (𝔲−

1̄ ) ⊗ 𝑀0 (𝜆) such that 𝑥 − 𝜁 (𝑥) acts
nilpotently on v, for each 𝑥 ∈ 𝔫+

0̄ . There is an embedding 𝑈 (𝔲−
1̄ ) ⊗Γ0

𝜁 (𝑀0 (𝜆)) ↩→ Γ𝜁 (𝑀 (𝜆)) induced by
the inclusion Γ0

𝜁 (𝑀0 (𝜆)) ↩→ 𝑀0 (𝜆). Now by [Bac, Proposition 6.9], one has Γ0
𝜁 (𝑀0 (𝜆)) = 𝑀0 (𝜆, 𝜁),

and hence, we get an inclusion

𝑈 (𝔲−
1̄ )𝑋 ↩→ Γ𝜁 (𝑀 (𝜆)), (3.2)

such that 𝑈 (𝔲−
1̄ )𝑋 = 𝑈 (𝔲−

1̄ ) ⊗ 𝑋 , where 𝑋 ⊂ 𝑀0 (𝜆) is a 𝔤0̄-submodule isomorphic to 𝑀0 (𝜆, 𝜁).
We claim that the inclusion (3.2) is an equality. We can argue as follows: For 𝑀 ∈ N (𝜁), we have

Res𝔤𝔩𝜁 Γ𝜁 (𝑀) = Γ
𝔩𝜁
𝜁 Res𝔤𝔩𝜁 (𝑀). For 𝜆 ∈ 𝔥∗, we now compute

Res𝔤𝔩𝜁 Γ𝜁 (𝑀 (𝜆)) =Res𝔤𝔩𝜁 Γ𝜁 (𝑈 (𝔲−) ⊗ 𝑀𝔩𝜁 (𝜆)) = Res𝔤𝔩𝜁 𝑈 (𝔲−) ⊗ Γ
𝔩𝜁
𝜁 (𝑀𝔩𝜁 (𝜆))

=Res𝔤𝔩𝜁 𝑈 (𝔲−) ⊗ 𝑀𝔩𝜁 (𝜆, 𝜁) = Res𝔤𝔩𝜁 𝑀 (𝜆, 𝜁).
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The third identity above follows from [MSo, Lemma 5.12] and the fact that 𝑈 (𝔲−) is a weight module
and at the same time a direct sum of finite-dimensional irreducible 𝔩𝜁 -modules. Thus, we conclude that
𝑈 (𝔲−

1̄ )𝑋 ↩→ Γ𝜁 (𝑀 (𝜆)) is an isomorphism.
We also provide an alternative proof of the subjectivity of the inclusion in (3.2) as follows. For any 𝑀 ∈

N (𝜁) and 𝑐 ∈ C, with respect to the operator H from (1.4), we denote by 𝑀𝑐 the generalized eigenspace
of M, which lies in N𝔩𝜁 and so has finite length as an 𝔩𝜁 -module. We note that 𝑈 (𝔲−

1̄ )𝑋 ↩→ Γ𝜁 (𝑀 (𝜆)) is
surjective if and only if the 𝔩𝜁 -modules (𝑈 (𝔲−

1̄ )𝑋)𝑐 and Γ𝜁 (𝑀 (𝜆))𝑐 have the same composition factors
for any 𝑐 ∈ C. Recall that Res 𝑀 (𝜆) has filtration subquotients of which are isomorphic to 𝑀0̄ (𝜆 + 𝛾)
with 𝛾 ∈ Φ(∧(𝔲−

1̄ )). Here, 𝛾 ∈ Φ(∧(𝔲−

1̄ )) denotes the set of roots in the space ∧(𝔲−

1̄ ). Also, for any
finite-dimensional weight module E over 𝔩𝜁 , the tensor product 𝐸 ⊗ 𝑌𝜁 (𝜆, 𝜁) has filtration subquotients
of which are𝑌𝜁 (𝜆+𝛾, 𝜁) with 𝛾 being weights of E by [MSo, Lemma 5.12]. Since the restriction functor
intertwines Γ𝜁 and Γ0

𝜁 , it follows that the 𝔩𝜁 -modules Γ𝜁𝑀 (𝜆)𝑐 , (𝑈 (𝔲−
0̄ ) ⊗ 𝑈 (𝔲−

1̄ ) ⊗ 𝑌𝜁 (𝜆, 𝔩𝜁 ))𝑐 and
𝑀 (𝜆, 𝜁)𝑐 have the same composition factors. As a consequence, (𝑈 (𝔲−

1̄ )𝑋)𝑐 and Γ𝜁 (𝑀 (𝜆))𝑐 have the
same composition factors for any 𝑐 ∈ C.

Recall again 𝐻 ∈ 𝔥 from the parabolic decomposition (1.4). Since the inclusion in (3.2) is an equality,
it follows that H acts on 𝑈 (𝔲−

1̄ )𝑋 = Γ𝜁 (𝑀 (𝜆)) semisimply with the highest eigenvalue 𝜒
𝔩𝜁
𝜆 (𝐻). Let

𝑉 ⊆ Res𝔤0̄
𝔩𝜁

𝑋 isomorphic to𝑌𝜁 (𝜆, 𝜁), which is the 𝜒
𝔩𝜁
𝜆 (𝐻)-eigenspace inΓ𝜁 (𝑀 (𝜆)). Then𝔲+𝑉 = 0. Thus,

by Frobenius reciprocity, we have an isomorphism 𝑀 (𝜆, 𝜁) to Γ𝜁 (𝑀 (𝜆)). The conclusion follows. �

3.2. Proof of Theorem 1

For a given 𝔤-module M, we denote the subspace of Whittaker vectors associated to 𝜁 by 𝑊ℎ𝜁 (𝑀) –
namely,

𝑊ℎ𝜁 (𝑀) := {𝑚 ∈ 𝑀 | 𝑥𝑚 = 𝜁 (𝑥)𝑚, for any 𝑥 ∈ 𝔫+}. (3.3)

We have the following generalization of [BM, Lemma 37] to quasi-reductive Lie superalgebras with
a similar proof.
Lemma 5. Let M be either 𝑁 (−𝜇)∗ or 𝑀 (𝜇)∗,𝜏 . Then dim𝑊ℎ𝜁 (𝑀) = 1.
Proof. We observe that 𝑁 (−𝜇)∗ as an 𝑈 (𝔫+)-module is isomorphic to the (full) dual 𝑈 (𝔫+)∗, which
in turn can be identified with the space of linear functions on 𝑈 (𝔫+). The 𝔫+-character 𝜁 determines
a unique linear function of 𝑈 (𝔫+), and hence, the Whittaker vectors corresponding to 𝜁 form a one-
dimensional subspace in 𝑁 (−𝜇)∗. The argument for 𝑀 (𝜇)∗,𝜏 is analogous. �

A weight is called 𝑊𝜁 -anti-dominant if it is 𝛼-anti-dominant for any root 𝛼 in 𝔩𝜁 ∩𝔫+. The following
theorem completes the proof of Theorem 1 and determines homomorphisms from standard Whittaker
modules to the full dual of Verma modules:
Theorem 6. For any 𝜆, 𝜇 ∈ 𝔥∗, we have

(i) For 𝑀 = 𝑁 (−𝜇)∗ or 𝑀 (𝜇)∗,𝜏 , Hom𝔤 (𝑀 (𝜆, 𝜁), 𝑀) =

{
C, for 𝜆 ∈ 𝑊𝜁 · 𝜇;
0, otherwise;

(ii) Γ𝜁 (𝐿(𝜆)) =

{
𝐿(𝜆, 𝜁), if 𝜆 𝑖𝑠 𝑊𝜁 -𝑎𝑛𝑡𝑖-𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡;
0, otherwise;

(iii) dim𝑊ℎ𝜁 (𝐿(𝜆, 𝜁)) = 1.
Proof. With Proposition 4 at our disposal, we can now follow the strategy of the proof of [Ch1, Theorem
20]. We shall prove Part (i) for the case when 𝑀 = 𝑁 (−𝜇)∗. The case when 𝑀 = 𝑀 (𝜇)∗,𝜏 can be proved
in a similar fashion.

Since 𝑊ℎ𝜁 (𝑁 (−𝜇)∗) � C by Lemma 5, there exists a unique (up to a scalar) Whittaker vector
corresponding to 𝜁 in 𝑁 (−𝜇)∗. Now, if 𝜇 ∈ 𝑊𝜁 · 𝜆, then we can define a nonzero 𝔩𝜁 -homomorphism
from 𝑀𝔩𝜁 (𝜆, 𝜁) to 𝑁 (−𝜇)∗ by sending a nonzero Whittaker vector of 𝑀𝔩𝜁 (𝜆, 𝜁) to a nonzero scalar
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multiple of the Whittaker vector of 𝑁 (−𝜇)∗ corresponding to 𝜁 . Since 𝔲+ annihilates the Whittaker
vector in 𝑁 (−𝜇)∗, this map induces a 𝔤-homomorphism from 𝑀 (𝜆, 𝜁) to 𝑁 (−𝜇)∗. By Lemma 5 again,
it follows that Hom𝔤 (𝑀 (𝜆, 𝜁), 𝑁 (−𝜇)∗) � C. However, if 𝜇 ∉ 𝑊𝜁 · 𝜆, then there exists 𝑧 ∈ 𝑍 (𝔤0̄) that
acts on the generating Whittaker vectors of 𝑀 (𝜆, 𝜁) and 𝑁 (−𝜇)∗ with different scalars. Hence, in this
case, we have Hom𝔤 (𝑀 (𝜆, 𝜁), 𝑁 (−𝜇)∗) = 0. This proves Part (i).

Since 𝜇 is a highest weight of 𝑁 (−𝜇)∗, we get a nonzero homomorphism 𝑓 : 𝑀 (𝜇) → 𝑁 (−𝜇)∗.
Let 𝑆 ⊆ 𝑁 (−𝜇)∗ be the image of f. We note that 𝑆 ⊂ 𝑁 (−𝜇)∗ and so Γ𝜁 (𝑆) can be regarded as a 𝔤-
submodule of 𝑁 (−𝜇)∗. Since Γ𝜁 (−) is exact, we get an epimorphism from 𝑀 (𝜇, 𝜁) to Γ𝜁 (𝑆) ⊂ 𝑁 (−𝜇)∗

by Proposition 4. Now, the module Γ𝜁 (𝑆) is generated by a Whittaker vector since it is a quotient of
Γ𝜁 (𝑀 (𝜇)) � 𝑀 (𝜇, 𝜁) by Proposition 4. By Lemma 5, we have 𝑊ℎ𝜁 (Γ𝜁 (𝑆)) � C which implies that
Γ𝜁 (𝑆) is simple, and hence, Γ𝜁 (𝑆) � 𝐿(𝜇, 𝜁).

The exactness of Γ𝜁 together with the fact that Γ𝜁 sends a quotient of 𝑀 (𝜆) to 𝐿(𝜆, 𝜁) implies that
either Γ𝜁 (𝐿(𝜆)) � 0 or Γ𝜁 (𝐿(𝜆)) � 𝐿(𝜆, 𝜁). Now, if 𝜆 is 𝑊𝜁 -anti-dominant, then Res Γ𝜁 (𝐿(𝜆)) =
Γ0
𝜁 (Res 𝐿(𝜆)) ≠ 0 since Res 𝐿(𝜆) has a composition factor isomorphic to 𝐿0 (𝜆). If 𝜆 is not 𝑊𝜁 -anti-

dominant, then there is a 𝑊𝜁 -anti-dominant weight 𝜆′ ∈ 𝑊𝜁 · 𝜆 such that 𝑀𝔩𝜁 (𝜆
′) ⊆ 𝑀𝔩𝜁 (𝜆). Using

parabolic induction, we have 𝑀 (𝜆′) ⊆ 𝑀 (𝜆). Also, we have Γ𝜁 (𝑀 (𝜆′) = Γ𝜁 (𝑀 (𝜆)) by Proposition 4.
As 𝐿(𝜆) is a composition factor of 𝑀 (𝜆)/𝑀 (𝜆′), this implies that Γ𝜁 (𝐿(𝜆)) = 0, and so Part (ii) follows.

Part (iii) follows from the isomorphism 𝐿(𝜇, 𝜁) � Γ𝜁 (𝑆). �

4. Stratified structure of O𝜁 -𝑝𝑟𝑒𝑠

In this section, we show that the category O𝜁 -pres admits a properly stratified structure in the sense of
[Dl, MSt]. This extends the results in [CCM2, Section 5], where the case of type I Lie superalgebras
was considered.

4.1. Relation with the category O(𝔩𝜁 )

Recall that O(𝔩𝜁 ) denotes the BGG category of 𝔩𝜁 -modules with respect to the Borel subalgebra 𝔩𝜁 ∩ 𝔟.
Also, O(𝔩𝜁 )Z denotes the integral BGG subcategory of 𝔩𝜁 -modules. In this subsection, we provide a
characterization of objects in O𝜁 -pres in terms of projective-injective modules in O(𝔩𝜁 )Z. In [KMa,
Theorem 2], König and Mazorchuk have shown that objects in O𝜁 -pres

0̄ are modules in O0̄ which, as
𝔩𝜁 -modules, are presented by projective-injective modules in O(𝔩𝜁 )Z. The following is a generalization
to Lie superalgebras.

Proposition 7. Let 𝑀 ∈ OZ. Then the following are equivalent:

(1) 𝑀 ∈ O𝜁 -pres.
(2) Res 𝑀 ∈ O𝜁 -pres

0̄ .
(3) Res𝔤𝔩𝜁 𝑀 is a direct sum of modules having a two-step presentation by projective-injective modules

in O(𝔩𝜁 ).

Before we prove Proposition 7, we need some preparatory results. Recall that a projective module
𝑀 ∈ O is said to be admissible if M is a direct sum of projective modules of the form 𝑃(𝜆) with
𝜆 ∈ Λ(𝜁). For any 𝑀 ∈ O, we let𝑇𝑟 (𝑀) and𝑇𝑟0 (Res 𝑀) denote the sum of images of homomorphisms
from admissible projective modules in O (respectively, in O0̄) to M (respectively, to Res 𝑀). Recall the
coapproximation functor 𝔧0 : O0̄ → O𝜁 -pres

0̄ with respect to admissible projective modules studied in
[MSt, Section 2.4]; see also [Au, Section 3]. In general, we define the coapproximation functor 𝔧 : O →

O𝜁 -pres for Lie superalgebras in the same fashion. Let 𝑀 ∈ O with an epimorphism 𝑓 : 𝑃𝑀 � 𝑇𝑟 (𝑀)

from a projective module 𝑃𝑀 ∈ O. Then, 𝔧(𝑀) is defined to be the quotient module 𝑃𝑀/𝑇𝑟 (ker( 𝑓 )).
This definition is independent of the choices made. We refer to [Au, Section 3] and [KM, Section 2.4]
for more details.

We need the following auxiliary lemma.
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Lemma 8. We have Res 𝔧(𝑀) � 𝔧0 Res(𝑀), for any 𝑀 ∈ O.

Proof. It suffices to show that Res𝑇𝑟 (𝑀) = 𝑇𝑟0 (Res 𝑀) for any 𝑀 ∈ O. To see this, let 𝜙 : 𝑄 → Res 𝑀
be a homomorphism from an admissible projective module 𝑄 ∈ O0̄ to Res 𝑀 . This gives rise to
Ind 𝜙 : Ind𝑄 → 𝑀 with Ind𝑄 admissible in O by Lemma 3. Now, the image of 𝜙 is contained
in the image of Res Ind(𝜙) : Res Ind𝑄 → Res 𝑀 since 𝑄 is a direct summand of the admissible
projective module Res Ind𝑄, which shows that 𝑇𝑟 (𝑀) ⊇ 𝑇𝑟0 (Res 𝑀). Conversely, let 𝜓 : 𝑃 → 𝑀
be a homomorphism from an admissible projective module 𝑃 ∈ O. Since the image of 𝜓 is equal to
that of Res(𝜓) and Res 𝑃 is admissible in O0̄ by Lemma 3 again, it follows that they are contained in
𝑇𝑟0 (Res 𝑀). This completes the proof. �

Proof of Proposition 7. The equivalence between (2) and (3) is a consequence of [KMa, Theorem 2].
Also, (1) ⇒ (2) is a direct consequence of Lemma 3. So it remains to show that (2) ⇒ (1). Since
Res 𝑀 ∈ O𝜁 -pres

0̄ , it follows that every simple quotient of M is 𝛼-free for any 𝛼 ∈ Π𝜁 . This implies
that the top of M is a direct sum of modules of the form 𝐿(𝜆) with 𝜆 ∈ Λ(𝜁). Therefore, there is an
epimorphism 𝑓 : 𝑃 � 𝑀 for some admissible projective module 𝑃 ∈ O. Consequently, we obtain an
epimorphism from 𝔧(𝑀) to M.

However, we note that Res 𝑀 ∈ O𝜁 -pres
0̄ if and only if 𝔧0(Res 𝑀) � Res 𝑀 . It follows that Res 𝔧(𝑀) �

Res 𝑀 by Lemma 8. Consequently, the epimorphism from 𝔧(𝑀) to M is an isomorphism, as desired. �

Remark 9. We remark that there is an analogue of Lemma 8 for the full subcategory of injectively
copresentable modules of O in [Ch2, Theorem 10], which is proved by means of Deodhar-Mathieu’s
version of Enright completion functors. In fact, these functors are isomorphic to certain approximation
functors, which are the dual version of the coapproximation functors introduced above; see also [KMa,
Section 2, Theorem 2], [KM, Theorem 5].

4.2. Standard and proper standard objects.

Recall that 𝑃(𝜆) and 𝑃0 (𝜆) denote the projective covers of 𝐿(𝜆) and 𝐿0 (𝜆) in O and O0̄, respectively.
For 𝜆 ∈ Λ(𝜁), we define the proper standard object Δ (𝜆) for O𝜁 -pres to be 𝑃(𝜆)/𝑇𝑟 (𝐾𝜆), where 𝐾𝜆 is
the kernel of the canonical quotient 𝑃(𝜆) → 𝑀 (𝜆). Note that the proper standard objects indeed lie in
O𝜁 -pres and furthermore,

[Δ (𝜆)/𝑀 (𝜆) : 𝐿(𝛾)] = 0, for 𝛾 ∈ Λ(𝜁). (4.1)

We also define the standard object Δ (𝜆) for O𝜁 -pres by

Δ (𝜆) := Ind𝔤𝔭 𝑃𝔩𝜁 (𝜆). (4.2)

Here, 𝑃𝔩𝜁 (𝜆) is regarded as a 𝔭-module by letting 𝔲+ act trivially. Similarly, we define Δ0(𝜆) :=
Ind𝔤0̄

𝔭0̄
𝑃𝔩𝜁 (𝜆). It follows from Proposition 7 that Δ (𝜆) is an object in O𝜁 -pres. We will provide an

alternative proof in Corollary 15 below.
We set F (Δ) to be the full subcategory of O consisting of modules which admit a Δ-flag. Similarly,

we define F (Δ0) ⊂ O0̄.

Lemma 10. For any 𝑉 ∈ F (Δ0), we have Ind(𝑉) ∈ F (Δ).

Proof. It is sufficient to prove this for 𝑉 = Δ0(𝜆) with 𝜆 ∈ Λ(𝜁). We note that

IndΔ0 (𝜆) � Ind𝔤𝔤0̄
Ind𝑔0̄

𝔭0̄
𝑃𝔩𝜁 (𝜆) � Ind𝔤𝔭 Ind𝔭𝔭0̄

𝑃𝔩𝜁 (𝜆). (4.3)

We claim that the 𝔭-module Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆) has a filtration any subquotient S of which is of the form

Res𝔭𝔩𝜁 𝑆 � 𝑃𝔩𝜁 (𝛾) with 𝛾 ∈ Λ(𝜁) and 𝔲+𝑆 = 0. To see this, we recall the grading operator 𝐻 ∈ 𝔥
introduced in (1.4).
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Set 𝐸 := 𝑈 (𝔲+
1̄ ), which is an 𝔩𝜁 -submodule of 𝑈 (𝔤) under the adjoint action. For each complex

number 𝑐 ∈ C, we let 𝐸𝑐 denote the c-eigenspace of H under the adjoint action. Since H lies in the center
of 𝔩𝜁 , it follows that each 𝐸𝑐 is an 𝔩𝜁 -submodule of E. Then, E decomposes into a sum of 𝔩𝜁 -submodules

𝐸 = ⊕𝑘𝑖=1𝐸𝑐𝑖 , (4.4)

for some 𝑐1, . . . , 𝑐𝑘 ∈ C such that Re(𝑐1) < Re(𝑐2) < · · · < Re(𝑐𝑘 ).
We may note that

Res𝔭𝔩𝜁 Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆) � 𝐸 ⊗ 𝑃𝔩𝜁 (𝜆) =

𝑘⊕
𝑖=1

(𝐸𝑐𝑖 ⊗ 𝑃𝔩𝜁 (𝜆)) (4.5)

is a direct sum of projective-injective 𝔩𝜁 -modules in the category O(𝔩𝜁 ), each of which is of the form
𝑃𝔩𝜁 (𝛾) with 𝛾 ∈ Λ(𝜁). Furthermore, we define a filtration

0 = Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆)𝑘+1 ⊂ Ind𝔭𝔭0̄

𝑃𝔩𝜁 (𝜆)𝑘 ⊂ Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆)𝑘−1 ⊂ · · · ⊂ Ind𝔭𝔭0̄

𝑃𝔩𝜁 (𝜆)1 = Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆). (4.6)

by letting

Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆) 𝑗 :=

𝑘⊕
𝑖= 𝑗

(𝐸𝑐𝑖 ⊗ 𝑃𝔩𝜁 (𝜆)), (4.7)

for 𝑗 = 1, . . . , 𝑘 . Fix 1 ≤ 𝑗 ≤ 𝑘 . We note that both 𝔲+

1̄ 𝐸𝑐 𝑗 and [𝔲+

0̄ , 𝐸𝑐 𝑗 ] are subspaces of
⊕

𝑖> 𝑗 𝐸𝑐𝑖 .
Consequently, we have

𝔲+(Ind𝔭𝔭0̄
𝑃𝔩𝜁 (𝜆)) 𝑗 ⊂ (Ind𝔭𝔭0̄

𝑃𝔩𝜁 (𝜆)) 𝑗+1. (4.8)

Therefore, the filtration (4.6) gives rise to the desired filtration. This completes the proof. �

Lemma 11. Suppose that 𝑀 ∈ O and 𝑐 ∈ C. Let 𝑀𝑐 be the c-eigenspace with respect to the action of
the grading operator H from (1.4). Then we have

(1) There is 𝑑 ∈ C such that 𝑀𝑑 ≠ 0 and 𝑀𝑐 = 0 for Re(𝑐) > Re(𝑑).
(2) 𝑀𝑐 is an object in O(𝔩𝜁 ).
(3) If M is a (possibly infinite) direct sum of projective-injective modules in O(𝔩𝜁 ), then so is 𝑀𝑐 .

Proof. Since H acts on any 𝔥-weight subspace of M as a scalar and M is finitely generated as an 𝔫−-
module, the conclusion in Part (1) follows.

For the proof of Part (2), we note that 𝑀𝑐 is an 𝔩𝜁 -module, locally finite over 𝔩𝜁 ∩ 𝔟 and semisimple
over 𝔥. Now, if M is simple, then M is an epimorphic image of Ind𝔤𝔭0̄

𝐿𝔩𝜁 (𝜆), for some 𝜆 ∈ 𝔥∗. Since
Ind𝔤𝔭0̄

𝐿𝔩𝜁 (𝜆)𝑐 is finitely generated, so is 𝑀𝑐 . Consequently, 𝑀𝑐 ∈ O(𝔩𝜁 ) by induction on the length of
the module M in O.

Finally, suppose that Res𝔤𝔩𝜁 𝑀 =
⊕

𝜆∈X 𝑋𝜆, where 𝑋𝜆 � 𝑃𝔩𝜁 (𝜆) are projective-injective modules
in O(𝔩𝜁 ) for some 𝜆 lying in some index set X . Since each 𝑋𝜆 is indecomposable and H acts on 𝑋𝜆

semisimply, it follows that (𝐻 − 𝜒
𝔩𝜁
𝜆 (𝐻))𝑋𝜆 = 0. Therefore, 𝑀𝑐 is projective-injective in O(𝔩𝜁 ). This

completes the proof. �

Lemma 12. Let 𝑀 ∈ F (Δ). Then we have

(1) Res𝔤𝔩𝜁 𝑀 is a direct sum of projective-injective 𝔩𝜁 -modules in O(𝔩𝜁 ).

(2) Res 𝑀 ∈ F (Δ0).
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Proof. It suffices to prove the assertions for 𝑀 = Δ (𝜆), for a given 𝜆 ∈ Λ(𝜁).
We have Res𝔤𝔩𝜁 Δ (𝜆) � 𝑈 (𝔲−) ⊗ 𝑃𝔩𝜁 (𝜆), and hence, Res𝔤𝔩𝜁 Δ (𝜆) is a direct sum of projective-injective

𝔩𝜁 -modules in O(𝔩𝜁 ). This proves Part (1).
Since Δ (𝜆) has a 𝔤0̄-Verma flag as well, Part (2) now follows from [MSt, Proposition 2.13(i),(ii)]. �

The following is a generalization of [MSt, Corollary 2.14], where the case of Lie algebras was
considered. Here, we provide an alternative proof.

Proposition 13. The full subcategory F (Δ) is closed under taking direct summands.

Proof. Let 𝑀 ∈ F (Δ). Set N to be a direct summand of M. We shall show that 𝑁 ∈ F (Δ). Let

0 = 𝑀𝑘+1 ⊂ 𝑀𝑘 ⊂ 𝑀𝑘−1 ⊂ · · · ⊂ 𝑀1 = 𝑀 (4.9)

be a Δ-flag.
We decompose Res𝔤𝔩𝜁 𝑀 into a direct sum

𝑀 =
⊕
𝑐∈C

𝑀𝑐 , (4.10)

where 𝑀𝑐 is the c-eigenspace with respect to the action of the grading operator H from (1.4). By
Lemmas 11 and 12, each 𝑀𝑐 is a projective-injective module in O(𝔩𝜁 ). Also, there is a complex number
𝑑 ∈ C such that 𝑀𝑑 ≠ 0 and 𝑀𝑐 = 0 for any 𝑐 ∈ C with Re(𝑐) > Re(𝑑).

Note that 𝑈 (𝔤)𝑉 = 𝑈 (𝔲−)𝑉 , for any direct summand V of 𝑀𝑑 . We claim that both 𝑈 (𝔤)𝑉 and
𝑀/(𝑈 (𝔤)𝑉) lie in F (Δ). We shall prove by induction on the length k. The conclusion for the case 𝑘 = 1
holds since 𝑈 (𝔤)𝑀𝑑 = 𝑀 in this case.

Since (4.9) is a Δ-flag, there is 1 ≤ 𝑖 < 𝑘 + 1 with the canonical quotient 𝑝 : 𝑀 𝑖 � 𝑀 𝑖/𝑀 𝑖+1 such
that

(𝑀 𝑖/𝑀 𝑖+1)𝑑 � (Ind𝔤𝔭 𝑃𝔩𝜁 (𝜆))𝑑 � 𝑃𝔩𝜁 (𝜆), (4.11)

for some 𝜆 ∈ Λ(𝜁). Consider the following split short exact sequence induced by p and the inclusion
𝑀 𝑖+1 ↩→ 𝑀 𝑖

0 → (𝑀 𝑖+1)𝑑 → (𝑀 𝑖)𝑑 → (𝑀 𝑖/𝑀 𝑖+1)𝑑 → 0

inO(𝔩𝜁 ). We get an 𝔩𝜁 -submodule S of 𝑀𝑑 such that 𝑝 |𝑆 : 𝑆 → 𝑃𝔩𝜁 (𝜆) is an isomorphism of 𝔩𝜁 -modules.
Since 𝑈 (𝔤)𝑆 = 𝑈 (𝔲−)𝑆, as observed above, it follows that p restricts to a 𝔤-module isomorphism from
𝑈 (𝔤)𝑆 to 𝑀 𝑖/𝑀 𝑖+1 � Ind𝔤𝔭 𝑃𝔩𝜁 (𝜆). Consequently, we get a split short exact sequence

0 → 𝑀 𝑖+1 → 𝑀 𝑖 → 𝑀 𝑖/𝑀 𝑖+1 → 0 (4.12)

in O.
Put 𝐾 := 𝑈 (𝔤)𝑆, and so 𝑀 𝑖 = 𝐾 ⊕ 𝑀 𝑖+1. Consider the exact sequence

0 → 𝑀 𝑖+1 → 𝑀/𝐾 → 𝑀/𝑀 𝑖 → 0. (4.13)

Since both 𝑀 𝑖+1 and 𝑀/𝑀 𝑖 lie in F (Δ), it follows that 𝑀/𝐾 is an object in F (Δ). By induction, it
follows that 𝑈 (𝔤)𝑀𝑑 = 𝑈 (𝔲−)𝑀𝑑 � Ind𝔤𝔭 𝑀𝑑 is a direct sum of standard objects Δ (𝜇), for 𝜇 ∈ Λ(𝜁),
and 𝑀/(𝑈 (𝔤)𝑀𝑑) lies in F (Δ). Let V be a direct summand of 𝑀𝑑 . Then 𝑈 (𝔤)𝑉 � Ind𝔤𝔭 𝑉 ∈ F (Δ) and
𝑈 (𝔤) (𝑀/𝑉) � Ind𝔤𝔭 (𝑀/𝑉) ∈ F (Δ). Consequently, we have 𝑀/(𝑈 (𝔤)𝑉) ∈ F (Δ), as desired.

Finally, let 𝑀 = 𝑁 ⊕ 𝑁 ′. Then, either 𝑁𝑑 ≠ 0 or 𝑁 ′
𝑑 ≠ 0. Without loss of generality, we may

assume that 𝑁𝑑 ≠ 0, and then 𝑀/(𝑈 (𝔤)𝑁𝑑) = (𝑁/𝑈 (𝔤)𝑁𝑑) ⊕ 𝑁 ′ has a Δ-flag by the argument above.
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By induction on the length of M, it follows that 𝑁/(𝑈 (𝔤)𝑁𝑑) and 𝑁 ′ have Δ-flags, and hence N as well.
This completes the proof. �

4.3. Stratified structure and BGG reciprocity

We denote by ≤ the partial order on 𝔥∗ induced by the triangular decomposition (1.1). Namely, it is the
transitive closure of the relations {

𝜆 − 𝛼 ≤ 𝜆, for a positive root 𝛼,

𝜆 + 𝛼 ≤ 𝜆, for a negative root 𝛼.

Recall the Serre quotient category O and the canonical quotient functor 𝜋 : OZ → O associated to 𝜁
from Section 2.5. Lemma 10, combined with Proposition 13, has the following consequence. Namely,
the category O𝜁 -pres is stratified.

Theorem 14. For any 𝜆 ∈ Λ(𝜁), we have the following.

(1) There is a short exact sequence in O of the form

0 → 𝐾 (𝜆) → 𝑃(𝜆) → Δ (𝜆) → 0, (4.14)

such that 𝐾 (𝜆) has a Δ-flag, subquotients of which are isomorphic to Δ (𝜇) with 𝜆 < 𝜇.
(2) The object 𝜋Δ (𝜆) surjects onto 𝜋𝐿(𝜆), and its kernel has a composition series, subquotients of

which are isomorphic to 𝜋𝐿(𝜇) with 𝜇 ∈ Λ(𝜁) and 𝜇 < 𝜆.
(3) The object 𝜋(Δ (𝜆)) has a filtration, subquotients of which are isomorphic to Δ (𝜆).

Proof. Since Res 𝑃(𝜆) is admissible by Lemma 3, it follows that Res 𝑃(𝜆) ∈ F (Δ0) by [KMa, Lemma
4] and [MSt, Propositions 2.9 and 2.13]. Alternatively, this also follows from the fact that Res 𝑃(𝜆) is a
direct summand of a sum of translations of a module of the form Ind𝔤0̄

𝔭0̄
𝑃𝔩𝜁 (𝛾) with 𝛾 ∈ Λ(𝜁); see also

the proof of [KMa, Lemma 4]. By Lemma 10, we have Ind Res 𝑃(𝜆) ∈ F (Δ). Since 𝑃(𝜆) is a direct
summand of Ind Res 𝑃(𝜆), Part (1) follows from Proposition 13 and the BGG reciprocity for O.

The exactness of 𝜋 and (4.1) imply that 𝜋Δ (𝜆) = 𝜋(𝑀 (𝜆)), and hence, Part (2) follows.
Finally, we prove Part (3). We note that, for a given 𝛾 ∈ Λwith 𝛾 ∉ Λ(𝜁), we have 𝜋(Ind𝔤𝔭 𝐿𝔩𝜁 (𝛾)) = 0.

The conclusion of Part (3) follows. This completes the proof. �

Set 𝑄(𝜆) to be the quotient of 𝑃(𝜆) modulo the sum of the images of all homomorphisms 𝑃(𝜇) →
𝑃(𝜆), where 𝜇 ∈ Λ(𝜁) and 𝜇 > 𝜆. Observe that 𝑄(𝜆) ∈ O𝜁 -pres.

Corollary 15. For any 𝜆 ∈ Λ(𝜁), we have Δ (𝜆) � 𝑄(𝜆).

Proof. Let 𝐾 (𝜆) ∈ F (Δ) be the module given in Theorem 14(1). Then 𝐾 (𝜆) has a Δ-flag, subquotients
of which are Δ (𝜇) with 𝜇 ∈ Λ(𝜁) and 𝜇 > 𝜆. Therefore, 𝐾 (𝜆) is the image of a homomorphism from
an admissible projective module, and hence, we have an epimorphism Δ (𝜆) � 𝑄(𝜆). Now, to complete
the proof, we note that for any 𝜇 ∈ Λ(𝜁) with 𝜇 > 𝜆, HomO (𝑃(𝜇),Δ (𝜆)) = [Δ (𝜆) : 𝐿(𝜇)] = 0 by
Theorem 14. �

For any 𝑀 ∈ F (Δ), we denote by (𝑀 : Δ (𝜆)) the multiplicity of a standard object Δ (𝜆) in a Δ-flag
of M. The following corollary determines the multiplicities of standard objects of the projective cover
in O𝜁 -pres.

Corollary 16 (BGG reciprocity). For any 𝜆, 𝜇 ∈ Λ(𝜁), we have

(𝑃(𝜆) : Δ (𝜇)) = [Δ (𝜇) : 𝐿(𝜆)] = [𝑀 (𝜇) : 𝐿(𝜆)] .
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Proof. Let 𝛾 ∈ 𝔥∗ be an integral weight with 𝛾 ∉ Λ(𝜁). Then Ind𝔤𝔭 𝐿𝔩𝜁 (𝛾) is 𝛼-finite for some 𝛼 ∈ Π𝜁 ,
which implies that [Ind𝔤𝔭 𝐿𝔩𝜁 (𝛾) : 𝐿(𝜆)] = 0 since 𝐿(𝜆) is 𝛼-free; see also Section 2.4. Therefore, for
any 𝑤 ∈ 𝑊𝜁 , we have [𝑀 (𝑤 · 𝜇)/𝑀 (𝜇) : 𝐿(𝜆)] = 0 and hence

[𝑀 (𝑤 · 𝜇) : 𝐿(𝜆)] = [𝑀 (𝜇) : 𝐿(𝜆)] . (4.15)

By BGG reciprocity for category O, we have (𝑃(𝜆) : 𝑀 (𝑤 · 𝜇)) = (𝑃(𝜆) : 𝑀 (𝜇)). Finally, noting that
the multiplicity of Δ (𝜇) in a Δ-flag of Δ (𝜇) is |𝑊𝜁 · 𝜇 |, the conclusion follows. �

4.4. Tilting modules

In this subsection, we assume that 𝔤 is a basic Lie superalgebra (i.e., 𝔤 is one from (1.2) with 𝔤 ≠ 𝔭(𝑛)).
There is a simple-preserving duality D on O; that is, D is a contravariant auto-equivalence such that
𝐷2 � Id and 𝐷 (𝐿(𝜆)) � 𝐿(𝜆), for each 𝜆 ∈ 𝔥∗.

For 𝜆 ∈ Λ(𝜁), we define the co-standard object ∇(𝜆) for O𝜁 -pres by

∇(𝜆) := 𝐷 Ind𝔤𝔭 𝑃𝔩𝜁 (𝜆). (4.16)

It follows from Proposition 7 that ∇(𝜆) ∈ O𝜁 -pres; see also [MSt, Corollary 2.11]. Similarly, we define
co-standard object ∇0(𝜆) for O𝜁 -pres

0̄ . If O𝜁 -pres = O, then we arrive at the usual definition of dual Verma
modules.

A module 𝑀 ∈ O𝜁 -pres is referred to as a tilting module if M has both a Δ-flag and a ∇-flag. In the
case thatO𝜁 -pres = O, for each 𝜆 ∈ 𝔥∗, there is a unique indecomposable tilting module of highest weight
𝜆, which we denote by 𝑇O (𝜆); namely, 𝑇O (𝜆) has both a Verma flag and a dual Verma flag; see, for
example, [Br1]. We also denote by𝑇O0̄ (𝜆) the indecomposable tilting module of highest weight 𝜆 in O0̄.

In the case that 𝔤 = 𝔤0̄, the classification of indecomposable tilting modules in O𝜁 -pres
0̄ is given

in [FKM, Section 6]; see also [MSt, Section 5.4]. In particular, the list {𝑇O0̄ (𝑤
𝜁
0 · 𝜆) | 𝜆 ∈ Λ(𝜁)}

forms a complete set of non-isomorphic indecomposable tilting modules in O𝜁 -pres
0̄ , and each 𝑇0 (𝜆) :=

𝑇O0̄ (𝑤
𝜁
0 · 𝜆) is the unique indecomposable tilting module containing Δ0 (𝜆) such that 𝑇0 (𝜆)/Δ0(𝜆) has

a Δ0-flag. Here, we recall that 𝑤𝜁
0 denotes the longest element in 𝑊𝜁 . We set

𝑇 (𝜆) := 𝑇O (𝑤
𝜁
0 · 𝜆), (4.17)

for each 𝜆 ∈ Λ(𝜁). Below we give a classification of indecomposable tilting objects in O𝜁 -pres. We
remark that the type I case was considered in [CCM2, Section 6.1].

Proposition 17. The modules {𝑇 (𝜆) | 𝜆 ∈ Λ(𝜁)} constitute an exhaustive list of indecomposable tilting
modules in O𝜁 -pres. In particular, each 𝑇 (𝜆) is the unique indecomposable tilting module in O𝜁 -pres

containing Δ (𝜆) such that 𝑇 (𝜆)/Δ (𝜆) has a Δ-flag.

Proof. Let 𝜆 ∈ Λ(𝜁), and set 𝜇 = 𝜆−2𝜌1 ∈ Λ(𝜁), where 𝜌1 denotes the half-sum of roots in 𝔫+

1̄ . We have

IndΔ0 (𝜇) = Ind𝔤𝔤0̄
Ind𝔤0̄

𝔭0̄
𝑃𝔩𝜁 (𝜇) � Ind𝔤𝔭 Ind𝔭𝔭0̄

𝑃𝔩𝜁 (𝜇) � Ind𝔤𝔭
(
𝑈 (𝔫+

1̄ ) ⊗ 𝑃𝔩𝜁 (𝜇)
)
.

Now, 𝑃𝔩𝜁 (𝜇) has an 𝔩𝜁 -Verma flag with highest term 𝑀𝔩𝜁 (𝑤
𝜁
0 · 𝜇), and hence, 𝑈 (𝔫+

1̄ ) ⊗ 𝑃𝔩𝜁 (𝜇) has a
𝔩𝜁 -Verma flag with highest term 𝑀𝔩𝜁 (𝑤

𝜁
0 · 𝜇 + 2𝜌1) = 𝑀𝔩𝜁 (𝑤

𝜁
0 · (𝜇 + 2𝜌1)) = 𝑀𝔩𝜁 (𝑤

𝜁
0 · 𝜆). Therefore,

IndΔ0 (𝜇) has a Verma flag with highest term 𝑀 (𝑤
𝜁
0 · 𝜆). This implies that Ind𝑇0 (𝜇) has a Verma

flag with highest term 𝑀 (𝑤
𝜁
0 · 𝜆) and hence, by Lemma 10, a Δ-flag with Δ (𝜆) as a highest term.

Therefore, the indecomposable direct summand of Ind𝑇0 (𝜇) containing Δ (𝜆) is (isomorphic to) 𝑇 (𝜆).
By Proposition 13, 𝑇 (𝜆) has a Δ-flag. Also, by Lemma 3, Ind𝑇0 (𝜇) ∈ O𝜁 -pres, and therefore, 𝑇 (𝜆) lies
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in O𝜁 -pres. Since 𝑇 (𝜆) is self-dual, it follows that 𝑇 (𝜆) has both a Δ-flag and a ∇-flag. Therefore, 𝑇 (𝜆)
is an indecomposable tilting module in O𝜁 -pres.

Now, if T is an indecomposable tilting module in O𝜁 -pres with a Δ-flag starting at Δ (𝜆), then
by uniqueness of tilting module (see, for example, [Soe, Proposition 5.6]), we have 𝑇 � 𝑇 (𝜆). This
completes the proof. �

Corollary 18. (Ringel duality) For 𝜆, 𝜇 ∈ Λ(𝜁), we have

(𝑇 (𝜆) : Δ (𝜇)) = [Δ (−𝑤
𝜁
0 · 𝜇) : 𝐿(−𝑤

𝜁
0 · 𝜆)] = (𝑃(−𝑤

𝜁
0 · 𝜆) : Δ (−𝑤

𝜁
0 · 𝜇)). (4.18)

Proof. Let 𝜆, 𝜇 ∈ Λ(𝜁). By (4.15), the BGG reciprocity and the Ringel-Soergel duality in O [Br1] (see
also [CCC, Theorem 3.7]), we have

(𝑇O (𝑤
𝜁
0 · 𝜆) : 𝑀 (𝜇)) = (𝑇O (𝑤

𝜁
0 · 𝜆) : 𝑀 (𝑤 · 𝜇)), ∀𝑤 ∈ 𝑊𝜁 .

Thus, it follows from Proposition 17 that

(𝑇 (𝜆) : Δ (𝜇)) =(𝑇O (𝑤
𝜁
0 · 𝜆) : 𝑀 (𝑤

𝜁
0 · 𝜇))

=[𝑀 (−𝑤
𝜁
0 · 𝜇) : 𝐿(−𝑤

𝜁
0 · 𝜆)] = [Δ (−𝑤

𝜁
0 · 𝜇) : 𝐿(−𝑤

𝜁
0 · 𝜆)] .

The second identity in (4.18) follows from Corollary 16. �

5. 𝚤-Canonical bases on symmetrized Fock space

In this section, we introduce a quasi-split quantum symmetric pair (𝑈,𝑈𝚤) of type 𝐴𝐼𝐼 𝐼 and study a
q-symmetrized Fock space which carries an action of the 𝚤-quantum group 𝑈𝚤 . We construct 𝚤-canonical
and dual 𝚤-canonical bases on this space. In Section 7.2, we shall relate these bases in a natural way to
tilting and simple objects, respectively, in the category W (𝜁) in the case when 𝔤 is an ortho-symplectic
Lie superalgebra.

5.1. Quantum symmetric pair (𝑈,𝑈𝚤)

Let U denote the infinite-rank quantum group of type A with Chevalley generators {𝐸𝛼𝑖 , 𝐹𝛼𝑖 , 𝐾±1
𝛼𝑖 |𝑖 ∈ Z}

(i.e., U is the associative algebra over Q(𝑞) generated by these generators subject to certain well-known
relations; see, for example, [CLW, Section 2.1]). The anti-linear (𝑞 → 𝑞−1) map 𝜓 preserving 𝐸𝛼𝑖 and
𝐹𝛼𝑖 and sending 𝐾𝛼𝑖 to 𝐾−1

𝛼𝑖 induces the well-known bar involution on U. The algebra U is a Hopf
algebra with co-multiplication Δ [Kas]:

Δ (𝐸𝛼𝑖 ) = 1 ⊗ 𝐸𝛼𝑖 + 𝐸𝛼𝑖 ⊗ 𝐾−1
𝛼𝑖 ,

Δ (𝐹𝛼𝑖 ) = 𝐹𝛼𝑖 ⊗ 1 + 𝐾𝛼𝑖 ⊗ 𝐹𝛼𝑖 ,

Δ (𝐾𝛼𝑖 ) = 𝐾𝛼𝑖 ⊗ 𝐾𝛼𝑖 .

Now let 𝑈𝚤 be the associative algebra over Q(𝑞) generated by {𝑒𝛼𝑖 , 𝑓𝛼𝑖 , 𝑘
±1
𝛼𝑖 , 𝑡 |𝑖 > 0} subject to the

relations in [BW, Chapter 2.1]. Then, the anti-linear map 𝜓𝚤 that preserves the generators 𝑒𝛼𝑖 , 𝑓𝛼𝑖 , 𝑡,
and that sends 𝑘𝛼𝑖 to 𝑘−1

𝛼𝑖 , for 𝑖 > 0, defines an anti-linear involution on 𝑈𝚤 .
According to [BW, Proposition 2.2], there is an embedding of associative algebras 𝚤 : 𝑈𝚤 → 𝑈 given

by

𝚤(𝑘𝛼𝑖 ) = 𝐾𝛼𝑖𝐾
−1
𝛼−𝑖 , 𝚤(𝑡) = 𝐸𝛼0 + 𝑞𝐹𝛼0𝐾

−1
𝛼0 + 𝐾−1

𝛼0 ,

𝚤(𝑒𝛼𝑖 ) = 𝐸𝛼𝑖 + 𝐾−1
𝛼𝑖 𝐹𝛼−𝑖 , 𝚤( 𝑓𝛼𝑖 ) = 𝐹𝛼𝑖𝐾

−1
𝛼−𝑖 + 𝐸𝛼−𝑖 ,
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so that 𝑈𝚤 may be regarded as a subalgebra of U. We note that 𝑈𝚤 is not a Hopf subalgebra, but rather a
right coideal subalgebra of U. The pair (𝑈,𝑈𝚤) forms a quantum symmetric pair, in the sense of [Le2],
corresponding to a quasi-split symmetric pair of Satake type AIII. The subalgebra 𝑈𝚤 is referred to as
an 𝚤-quantum group.

We observe that the involutions 𝜓 and 𝜓𝚤 are not compatible with the embedding 𝚤. However, there
is a remarkable element Υ [BW, Chapter 2.3] that lies in a certain topological completion of U and that
intertwines these involutions in the following sense:

𝚤(𝜓𝚤 (𝑢))Υ = Υ𝜓(𝚤(𝑢)), 𝚤(𝑢)Υ = Υ𝜓(𝚤(𝜓𝚤 (𝑢))), 𝑢 ∈ 𝑈𝚤 . (5.1)

This element Υ, referred to as the intertwiner, plays a crucial role in the Bao-Wang 𝚤-canonical basis
theory of quantum symmetric pairs.

Following [BW], a U-module equipped with an anti-linear bar involution compatible with the bar
involution 𝜓 will be called a U-involutive module. We shall denote such an involution on the module
also by 𝜓. Similarly, a 𝑈𝚤-involutive 𝑈𝚤-module is defined.

Given a U-involutive module with involution 𝜓, we can define

𝜓𝚤 (𝑚) := Υ(𝜓(𝑚)), 𝑚 ∈ 𝑀. (5.2)

It follows from (5.1) that M is 𝑈𝚤-involutive with involution 𝜓𝚤 . We note that the element Υ is invertible
in a completion of U.

5.2. Fock space T𝑚 |𝑛

Let V be the natural U-module with linear basis 𝑣𝑟 , 𝑟 ∈ 1
2 + Z 𝑟 ∈ 1

2 + Z. The action of U is given by

𝐸𝛼𝑖𝑣𝑟 = 𝛿𝑖+ 1
2 ,𝑟

𝑣𝑟−1, 𝐹𝛼𝑖𝑣𝑟 = 𝛿𝑖− 1
2 ,𝑟

𝑣𝑟+1, 𝐾𝛼𝑖𝑣𝑟 = 𝑞
𝛿
𝑖− 1

2 ,𝑟
−𝛿

𝑖+ 1
2 ,𝑟 𝑣𝑟 .

LetW be the restricted dual with normalized dual basis {𝑤𝑟 |𝑟 ∈ 1
2 + Z} and U-action given by

𝐸𝛼𝑖𝑤𝑟 = 𝛿𝑖− 1
2 ,𝑟

𝑤𝑟+1, 𝐹𝛼𝑖𝑤𝑟 = 𝛿𝑖+ 1
2 ,𝑟

𝑤𝑟−1, 𝐾𝛼𝑖𝑤𝑟 = 𝑞
−𝛿

𝑖− 1
2 ,𝑟

+𝛿
𝑖+ 1

2 ,𝑟𝑤𝑟 .

A fundamental property of Lusztig’s canonical basis theory for (finite rank) quantum groups is
that tensor products of involutive modules can be made into involutive modules [Lu3, Chapter 27] by
means of the quasi-R-matrix Θ [Lu3, Chapter 4]. (For the infinite-rank quantum group U, such a Θ is
constructed in [CLW, Section 3.1] based on [Lu3].) To be precise, for U-involutive U-modules M and
N with involutions 𝜓𝑀 and 𝜓𝑁 , respectively, the U-module 𝑀 ⊗ 𝑁 is U-involutive with involution:

𝜓(𝑚 ⊗ 𝑛) := Θ(𝜓𝑀 (𝑚) ⊗ 𝜓𝑁 (𝑛)).

The U-modules V andW are both U-involutive with anti-linear involutions 𝜓V and 𝜓W determined
by 𝜓V(𝑣𝑟 ) = 𝑣𝑟 and 𝜓W (𝑤𝑟 ) = 𝑤𝑟 , 𝑟 ∈ 1

2 + Z, respectively. It follows, therefore, that the U-module
T𝑚 |𝑛 := V⊗𝑚⊗W⊗𝑛, or rather a certain topological completion T̂𝑚 |𝑛, is U-involutive. Using the formula
(5.2), we can therefore make T̂𝑚 |𝑛 into a 𝑈𝚤-involutive 𝑈𝚤-module. We shall denote the involution on
T̂𝑚 |𝑛 also by 𝜓𝚤 so that we have 𝜓𝚤 (𝑢𝑣) = 𝜓𝚤 (𝑢)𝜓𝚤 (𝑣), for 𝑢 ∈ 𝑈𝚤 and 𝑣 ∈ T̂𝑚 |𝑛.

5.3. 𝚤-Canonical bases

Let I𝑚 |𝑛 denote the set of functions from {1, 2, · · · , 𝑚, 1̄, · · · , �̄�} to 1
2 + Z. For each 𝑓 ∈ I𝑚 |𝑛, we define

𝑀 𝑓 := 𝑣 𝑓 (1) ⊗ · · · ⊗ 𝑣 𝑓 (𝑚) ⊗ 𝑤 𝑓 (1̄) ⊗ · · · ⊗ 𝑤 𝑓 (�̄�) .

The set {𝑀 𝑓 | 𝑓 ∈ I𝑚 |𝑛} is a topological basis for T̂𝑚 |𝑛.
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We have a bijection between I𝑚 |𝑛 and Λint, the set of integer weights for the Lie superalgebra
𝔬𝔰𝔭(2𝑚 + 1|2𝑛) (see (6.1)). This bijection allows us to transfer notions that make sense for weights such
as typical, dominant, anti-dominant, Bruhat order � etc. to corresponding notions on I𝑚 |𝑛. The precise
bijection is not important for the subsequent discussion in this section. In this section, we shall only
need the fact that the Bruhat order on weights induces a partial order � on I𝑚 |𝑛.

As we have seen earlier, T𝑚 |𝑛 is a 𝑈𝚤-involutive 𝑈𝚤-module. Recall that we have a right action of the
Hecke algebra H𝐵𝑚 (corresponding to the Weyl group 𝑊𝐵𝑚 of the Lie algebra of type 𝐵𝑚) onV⊗𝑚 (see,
for example, [BW, (5.2)] for the explicit action). According to [BW, Theorem 5.8], this action commutes
with the action of 𝑈𝚤 on V⊗𝑚. There is also a right action of the Hecke algebra H𝐴𝑛 (corresponding to
the symmetric group𝔖𝑛) onW⊗𝑛 (see, for example, [CLW, (2.9)]) that commutes with the action of U
by [Ji, Proposition 3]. We recall that Hecke algebras have natural anti-linear bar involutions determined
by 𝐻𝑖 := 𝐻−1

𝑖 , where the 𝐻𝑖 are the usual generators satisfying (𝐻𝑖 − 𝑞−1) (𝐻𝑖 + 𝑞) = 0 and the
corresponding braid relations. Furthermore, in [BW, Theorem 5.8] and [Ji, Proposition 3], it is shown
that the involutive module structures on V⊗𝑚 andW⊗𝑛 are compatible with the bar involutions on the
respective Hecke algebras. We have the following.

Proposition 19. The action of𝑈𝚤 and that ofH𝐵𝑚×H𝐴𝑛 onT𝑚 |𝑛 commute with each other. Furthermore,
these actions are compatible with their respective involutions; that is, we have for 𝑢 ∈ 𝑈𝚤 , 𝑡 ∈ T𝑚 |𝑛, and
𝐻 ∈ H𝐵𝑚 ×H𝐴𝑛 :

𝜓𝚤 (𝑢𝑡𝐻) = 𝜓𝚤 (𝑢)𝜓𝚤 (𝑡)𝐻.

Proof. Let 𝑥 ∈ V⊗𝑚, 𝑦 ∈ W⊗𝑛, 𝑢 ∈ 𝑈𝚤 , ℎ1 ∈ H𝐵𝑚 and ℎ2 ∈ H𝐴𝑛 . We have Δ (𝑢) =
∑
𝑖 𝑢

𝑖
1 ⊗ 𝑢𝑖2, with

𝑢𝑖1 ∈ 𝑈𝚤 and 𝑢𝑖2 ∈ 𝑈. We have

(Δ (𝑢) (𝑥 ⊗ 𝑦))(ℎ1 ⊗ ℎ2) =

(∑
𝑖

𝑢𝑖1𝑥 ⊗ 𝑢𝑖2𝑦

)
(ℎ1 ⊗ ℎ2) =

∑
𝑖

(
𝑢𝑖1𝑥

)
ℎ1 ⊗

(
𝑢𝑖2𝑦

)
ℎ2

=
∑
𝑖

𝑢𝑖1(𝑥ℎ1) ⊗ 𝑢𝑖2(𝑦ℎ2) = Δ (𝑢) ((𝑥 ⊗ 𝑦) (ℎ1 ⊗ ℎ2)),

where the penultimate identity above follows from [BW, Theorem 5.8] and [Ji, Proposition 3]. This
implies that the actions of 𝑈𝚤 and H𝐵𝑚 ⊗ H𝐴𝑛 on T𝑚 |𝑛 commute.

By [BW, Proposition 3.7 and Remark 3.14], the involution 𝜓𝚤 on T𝑚 |𝑛 can be written in the following
form as an involution on the tensor product of the 𝑈𝚤-involutive module V⊗𝑚 and the U-involutive
moduleW⊗𝑛 using the quasi-K-matrix Θ𝚤:

𝜓𝚤 (𝑥 ⊗ 𝑦) = Θ𝚤 (𝜓𝚤 (𝑥) ⊗ 𝜓(𝑦)), (5.3)

where Θ𝚤 := Δ (Υ)Θ(Υ−1 ⊗ 1). It is shown in [BW, Chapter 3.3] that Θ𝚤 is an element in (the completion
of) 𝑈𝚤 ⊗ 𝑈. We shall write Θ𝚤 =

∑
𝑖 𝜃
𝑖
1 ⊗ 𝜃𝑖2, with 𝜃𝑖1 ∈ 𝑈𝚤 and 𝜃𝑖2 ∈ 𝑈.

Now, for 𝑢 ∈ 𝑈𝚤 , we have clearly 𝜓𝚤 (𝑢 · 𝑥 ⊗ 𝑦) = 𝜓𝚤 (𝑢) · 𝜓𝚤 (𝑥 ⊗ 𝑦), since T𝑚 |𝑛 is a 𝑈𝚤-involutive
module by [BW, Proposition 3.13].

However, for x, y, ℎ1 and ℎ2 as above, we have, again using [BW, Theorem 5.8] and [Ji, Proposition
3], the following:

𝜓𝚤 ((𝑥 ⊗ 𝑦) (ℎ1 ⊗ ℎ2)) = Θ𝚤 (𝜓𝚤 (𝑥ℎ1) ⊗ 𝜓(𝑦ℎ2)) = Θ𝚤
(
𝜓𝚤 (𝑥)ℎ1 ⊗ 𝜓(𝑦)ℎ2

)
=

∑
𝑖

𝜃𝑖1 (𝜓
𝚤 (𝑥)ℎ1) ⊗ 𝜃𝑖2(𝜓(𝑦)ℎ2) =

∑
𝑖

(
𝜃𝑖1𝜓

𝚤 (𝑥)
)
ℎ1 ⊗

(
𝜃𝑖2𝜓(𝑦)

)
ℎ2

= Θ𝚤 (𝜓𝚤 (𝑥) ⊗ 𝜓(𝑦)) (ℎ1 ⊗ ℎ2) = 𝜓𝚤 (𝑥 ⊗ 𝑦) (ℎ1 ⊗ ℎ2).

This concludes the proof. �
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One has the following important property of the involution 𝜓𝚤 : T̂𝑚 |𝑛 → T̂𝑚 |𝑛 [BW, Lemma 9.7]:

𝜓𝚤 (𝑣 𝑓 ) ∈ 𝑣 𝑓 +
∑
𝑔≺ 𝑓

Z[𝑞, 𝑞−1]𝑣𝑔 ⊆ T̂𝑚 |𝑛.

Since the partial order � satisfies the finite interval property by [BW, Lemma 8.4], we can apply [Lu3,
Lemma 24.2.1] and conclude the existence of 𝜓𝚤-invariant bases:

Proposition 20. There exist unique 𝜓𝚤-invariant bases {𝑇 𝑓 | 𝑓 ∈ I𝑚 |𝑛} and {𝐿 𝑓 | 𝑓 ∈ I𝑚 |𝑛} of the form

𝑇 𝑓 = 𝑀 𝑓 +
∑
𝑔≺ 𝑓

𝑡𝑔 𝑓 (𝑞)𝑀𝑔, 𝑡𝑔 𝑓 (𝑞) ∈ 𝑞Z[𝑞],

𝐿 𝑓 = 𝑀 𝑓 +
∑
𝑔≺ 𝑓

ℓ𝑔 𝑓 (𝑞)𝑀𝑔, ℓ𝑔 𝑓 (𝑞) ∈ 𝑞−1Z[𝑞−1] .

We set 𝑡 𝑓 𝑓 = ℓ 𝑓 𝑓 = 1 and 𝑡𝑔 𝑓 = ℓ𝑔 𝑓 = 0, for 𝑔 � 𝑓 .

5.4. q-symmetric tensors

For a finite Weyl group W of a simple Lie algebra, we recall the well-known Chevalley-Solomon formula
[Sol, Corollary 2.3]:

∑
𝜏∈𝑊

𝑞ℓ (𝜏) =
𝑟∏
𝑖=1

(1 + 𝑞 + · · · + 𝑞𝑒𝑖 ),

where r is the rank of W and 𝑒1, · · · , 𝑒𝑟 are the exponents of the corresponding Lie algebra. This implies
the following formula:

∑
𝜏∈𝑊

𝑞ℓ (𝑤0)−ℓ (𝜏) =
𝑟∏
𝑖=1

[𝑒𝑖 + 1],

where [𝑠] is the quantum integer 𝑞𝑠−𝑞−𝑠

𝑞−𝑞−1 , for 𝑠 ∈ N. We shall write [𝑊] :=
∏𝑟
𝑖=1 [𝑒𝑖 + 1]. Now, suppose

that W is a Weyl group of a reductive Lie algebra so that 𝑊 = 𝑊1 × · · · ×𝑊 𝑡 , where each 𝑊 𝑗 , 1 ≤ 𝑗 ≤ 𝑡,
is a Weyl group of a simple Lie algebra. We shall use the following notation:

[𝑊] :=
𝑡∏
𝑗=1

[𝑊 𝑗 ] .

Let 𝑊𝜁 be a (parabolic) subgroup of 𝑊𝐵𝑚 ×𝔖𝑛 generated by simple reflections. Indeed, 𝑊𝜁 is a
product of Weyl groups of the form 𝑊𝜁 = 𝑊1 × · · · ×𝑊 𝑠 ×𝑊 𝑠+1 × · · · ×𝑊 𝑠+𝑡 , where 𝑊1 is either of
type A or B, and the remaining 𝑊 𝑖s are all of type A. Furthermore, the sum of the ranks of the 𝑊 𝑖s,
𝑖 = 1, · · · , 𝑠 (respectively, 𝑖 = 𝑠 + 1, · · · , 𝑠 + 𝑡) equals m (respectively, equals n). Let H𝜁 be the Hecke
subalgebra of the Hecke algebra H𝐵𝑚 ×H𝐴𝑛 associated with 𝑊𝜁 . Let

𝑆𝜁 :=
∑
𝜎∈𝑊𝜁

𝑞ℓ (𝑤
𝜁
0 )−ℓ (𝜎)𝐻𝜎 =

𝑠+𝑡∏
𝑖=1

𝑆𝑖 , (5.4)

where 𝑤
𝜁
0 is the longest element in 𝑊𝜁 , 𝑆𝑖 =

∑
𝜏∈𝑊 𝑖 𝑞ℓ (𝑤

𝑖
0 )−ℓ (𝜏)𝐻𝜏 , and 𝑤𝑖0 is the longest element in

𝑊 𝑖 . The bar involution on H𝐵𝑚 ×H𝐴𝑛 restricts to the bar involution on H𝜁 , and we have that
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𝑆𝑖 = 𝑆𝑖 and 𝑆𝑖𝐻𝜏 = 𝑞−ℓ (𝜏)𝑆𝑖 = 𝐻𝜏𝑆𝑖 , 𝜏 ∈ 𝑊 𝑖 ,

𝑆𝜁 = 𝑆𝜁 and 𝑆𝜁𝐻𝜎 = 𝑞−ℓ (𝜎)𝑆𝜁 = 𝐻𝜎𝑆𝜁 , 𝜎 ∈ 𝑊𝜁 .

Consider the following Q(𝑞)-linear subspace of T𝑚 |𝑛:

T
𝑚 |𝑛
𝜁 := T𝑚 |𝑛𝑆𝜁 . (5.5)

Then T𝑚 |𝑛𝑆𝜁 is a 𝑈𝚤-submodule by Proposition 19. Let I𝑚 |𝑛
𝜁− denote the set of elements in I𝑚 |𝑛 that are

anti-dominant with respect to 𝑊𝜁 . For 𝑓 ∈ Z
𝑚 |𝑛
𝜁− , we let 𝑊 𝑓 := {𝜎 ∈ 𝑊𝜁 | 𝑓 · 𝜎 = 𝑓 } be the stabilizer

subgroup inside 𝑊𝜁 and 𝑊 𝑓 the set of shortest length representatives of the coset 𝑊 𝑓 \𝑊𝜁 .
Define the following sets of monomial bases for T𝑚 |𝑛

𝜁 :

𝑁 𝑓 := 𝑀 𝑓 𝑆𝜁 ; 𝑀 𝑓 :=
1

[𝑊 𝑓 ]
𝑀 𝑓 𝑆𝜁 , 𝑓 ∈ I

𝑚 |𝑛
𝜁− . (5.6)

From the formulas of the action of the Hecke algebra on 𝑀 𝑓 , it follows that the basis elements 𝑁 𝑓

lie in the Z[𝑞, 𝑞−1]-span of {𝑀𝑔 |𝑔 ∈ I𝑚 |𝑛}. The 𝑀 𝑓 s also lie in the Z[𝑞, 𝑞−1]-span of {𝑀𝑔 |𝑔 ∈ I𝑚 |𝑛},
which can be seen as follows. Suppose that the Hecke algebra of 𝑊 𝑖 acts on V⊗𝑚𝑖 , for 𝑖 = 1, · · · , 𝑠, and
the Hecke algebra of 𝑊 𝑗 acts on W⊗𝑛 𝑗 , 𝑗 = 𝑠 + 1, · · · , 𝑠 + 𝑡. We have

∑
𝑖 𝑚𝑖 = 𝑚 and

∑
𝑗 𝑛 𝑗 = 𝑛. The

element

𝑀 𝑓𝑖 =
1

[𝑊 𝑓 ∩𝑊 𝑖]
𝑀 𝑓𝑖𝑆𝑖 ,

where 𝑓𝑖 is f restricted to the interval corresponding to 𝑊 𝑖 , is an 𝚤-canonical basis element for 𝑖 = 1
and a canonical basis element for 𝑖 > 1. Thus, by [BW, Theorem 4.20] in the case of 𝑖 = 1 and [Lu3,
Theorem 27.3.2] in the case 𝑖 > 1, it lies in the Z[𝑞, 𝑞−1]-span of corresponding 𝑀𝑔𝑖 , where the notation
of 𝑔𝑖 is self-explanatory. Now, we have

𝑀 𝑓 = 𝑀 𝑓1 ⊗ · · · ⊗ 𝑀 𝑓𝑠+𝑡 ,

and hence, it lies in the Z[𝑞, 𝑞−1]-span of 𝑀𝑔, 𝑔 ∈ I𝑚 |𝑛.
For 𝑓 ∈ Z

𝑚 |𝑛
𝜁− , we also define

𝑁 𝑓 :=
[𝑊𝜁 ]

[𝑊 𝑓 ]
𝑁 𝑓 . (5.7)

Suppose that 𝑓 ∈ I𝑚 |𝑛, but not necessarily in I𝑚 |𝑛
𝜁− . Let 𝜏 ∈ 𝑊𝜁 be of shortest length such that

𝑓 · 𝜏 ∈ I
𝑚 |𝑛
𝜁− . Then we have

𝑀 𝑓 𝑆𝜁 = 𝑀 𝑓 ·𝜏𝐻𝜏−1𝑆𝜁 = 𝑞−ℓ (𝜏)𝑀 𝑓 ·𝜏𝑆𝜁 = 𝑞−ℓ (𝜏)𝑁 𝑓 ·𝜏 . (5.8)

Similarly, we have the identity 1
[𝑊 𝑓 ]

𝑀 𝑓 𝑆𝜁 = 𝑞−ℓ (𝜏)𝑀 𝑓 ·𝜏 .

Lemma 21. The bar involution on T̂𝑚 |𝑛 restricts to a bar involution on T̂𝑚 |𝑛
𝜁 such that, for 𝑓 ∈ Z

𝑚 |𝑛
𝜁− ,

we have the following:

(1) 𝜓𝚤
(
𝑁 𝑓

)
∈ 𝑁 𝑓 +

∑
𝑔≺ 𝑓 Z[𝑞, 𝑞

−1]𝑁𝑔,

(2) 𝜓𝚤
(
𝑀 𝑓

)
∈ 𝑀 𝑓 +

∑
𝑔≺ 𝑓 Z[𝑞, 𝑞

−1]𝑀𝑔,
(3) 𝜓𝚤

(
𝑁 𝑓

)
∈ 𝑁 𝑓 +

∑
𝑔≺ 𝑓 Z[𝑞, 𝑞

−1]𝑁𝑔 .
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Proof. For 𝑓 ∈ I
𝑚 |𝑛
𝜁− , suppose that 𝜓𝚤 (𝑀 𝑓 ) = 𝑀 𝑓 +

∑
𝑔≺ 𝑓 𝑟𝑔 𝑓 𝑀𝑔 with 𝑟𝑔 𝑓 ∈ Z[𝑞, 𝑞−1]. Then, by

Proposition 19 and (5.8), we have

𝜓𝚤 (𝑁 𝑓 ) = 𝜓𝚤 (𝑀 𝑓 𝑆𝜁 ) = 𝜓𝚤 (𝑀 𝑓 )𝑆𝜁 = 𝑀 𝑓 𝑆𝜁 +
∑
𝑔≺ 𝑓

𝑟𝑔 𝑓 𝑀𝑔𝑆𝜁 = 𝑁 𝑓 +
∑

𝑔≺ 𝑓 ;𝑔∈I𝑚|𝑛
𝜁−

𝑟 ′𝑔 𝑓 𝑁𝑔 .

Since 𝑟𝑔 𝑓 ∈ Z[𝑞, 𝑞−1], we have 𝑟 ′𝑓 𝑔 ∈ Z[𝑞, 𝑞−1] by (5.8). This proves Part (1).
We know that each 𝑀 𝑓 is a decomposable tensor, where the first factor is either an 𝚤-canonical or

canonical basis element and the remaining ones are canonical basis elements in the respective tensor
powers of either V or W. Recalling the definition of bar involution 𝜓𝚤 on a tensor product of a 𝑈𝚤-
module and a U-module from (5.3), we can now apply [BWW, (2.4)] and conclude that 𝜓𝚤

(
𝑀 𝑓

)
lies in

the Z[𝑞, 𝑞−1]-space of the 𝑀𝑔s. This gives Part (2).
Part (3) now follows from Part (2). �

Now we can apply [Lu3, Lemma 24.2.1] and obtain the following.

Proposition 22. The Q(𝑞)-vector space T̂𝑚 |𝑛
𝜁 has unique 𝜓𝚤-invariant topological bases of the form

{T ′
𝑓 | 𝑓 ∈ I

𝑚 |𝑛
𝜁− }, {T 𝑓 | 𝑓 ∈ I

𝑚 |𝑛
𝜁− } and {L 𝑓 | 𝑓 ∈ I

𝑚 |𝑛
𝜁− }

such that

T ′
𝑓 = 𝑀 𝑓 +

∑
𝑔≺ 𝑓

t′𝑔 𝑓 (𝑞)𝑀𝑔, T 𝑓 = 𝑁 𝑓 +
∑
𝑔≺ 𝑓

t𝑔 𝑓 (𝑞)𝑁𝑔, L 𝑓 = 𝑁 𝑓 +
∑
𝑔≺ 𝑓

l𝑔 𝑓 (𝑞)𝑁𝑔,

with t′𝑔 𝑓 (𝑞), t𝑔 𝑓 (𝑞) ∈ 𝑞Z[𝑞], and l𝑔 𝑓 (𝑞) ∈ 𝑞−1Z[𝑞−1], for 𝑔 ≺ 𝑓 in Z𝑚 |𝑛
𝜁− .

As usual, we adopt the convention t′𝑓 𝑓 (𝑞) = t 𝑓 𝑓 (𝑞) = l 𝑓 𝑓 (𝑞) = 1, t′𝑔 𝑓 = t𝑔 𝑓 = l𝑔 𝑓 = 0 for
𝑔 � 𝑓 .

5.5. 𝚤-Canonical Bases on q-symmetric tensors

This section compares the bases {𝑇 𝑓 } and {𝐿 𝑓 } with the bases {T 𝑓 } and {L 𝑓 }. Since this part is
analogous to [CCM1, Section 3.7] and follows along the same line of arguments, we shall be brief and
only summarize the main results.

Proposition 23. Let 𝑓 , 𝑔 ∈ I
𝑚 |𝑛
𝜁− and 𝑤

𝜁
0 be the longest element in 𝑊𝜁 . We have

T ′
𝑓 = 𝑇

𝑓 𝑤
𝜁
0
, T ′

𝑓 𝑆𝜁 = T 𝑓 , 𝐿 𝑓 𝑆𝜁 = L 𝑓 .

In particular, we have t𝑔 𝑓 = t′𝑔 𝑓 = 𝑡
𝑔 ·𝑤

𝜁
0 , 𝑓 ·𝑤

𝜁
0

and l𝑔 𝑓 =
∑
𝑥∈𝑊 𝑔 ℓ𝑔 ·𝑥, 𝑓 𝑞

−ℓ (𝑥) , where 𝑊𝑔 is the set of
shortest length representatives 𝑊 𝑓 ∩𝑊𝜁 \𝑊𝜁 .

Let 𝜙𝜁 : T̂𝑚 |𝑛 → T̂
𝑚 |𝑛
𝜁 be the 𝑈𝚤-module homomorphism defined by

𝜙𝜁 (𝑀 𝑓 ) := 𝑀 𝑓 𝑆𝜁 , 𝑓 ∈ I𝑚 |𝑛. (5.9)

We have the following.
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Theorem 24. Let 𝜙𝜁 : T̂𝑚 |𝑛 → T̂
𝑚 |𝑛
𝜁 be the map in (5.9). For 𝑓 ∈ I𝑚 |𝑛, let 𝜏 be the minimum length

element in 𝑊𝜁 such that 𝑓 · 𝜏 ∈ I
𝑚 |𝑛
𝜁− . Then we have

(1) 𝜙𝜁
(
𝑀 𝑓

)
= 𝑞−ℓ (𝜏)𝑁 𝑓 ·𝜏 and 𝜙𝜁 (𝑀 𝑓 ) = 𝑞−ℓ (𝜏)𝑁 𝑓 .

(2) 𝜙𝜁 (𝑇 𝑓 ·𝑤 𝜁
0
) = T 𝑓 , for 𝑓 ∈ I

𝑚 |𝑛
𝜁− .

(3) 𝜙𝜁
(
𝐿 𝑓

)
=

{
L 𝑓 , if 𝑓 ∈ I

𝑚 |𝑛
𝜁− ,

0, otherwise.

5.6. The quantum symmetric pair (𝑈,𝑈 𝚥) and 𝚥-canonical bases

A different coideal subalgebra 𝑈 𝚥 ⊆ 𝑈 is introduced in [BW, Chapter 6.1]. The pair (𝑈,𝑈 𝚥) forms
a (different) quasi-split quantum symmetric pair of type AIII. A parallel theory of canonical and
dual canonical bases, called 𝚥-canonical basis theory in loc. cit., based on a corresponding anti-linear
involution on 𝑈 𝚥 is then developed. In particular, it follows that on a similar Fock space, which we
denote by 𝚥T̂𝑚 |𝑛, one has 𝚥-canonical and dual 𝚥-canonical basis. Here, a difference is that in this new
Fock space, the standard bases in both V and W are now indexed by integers rather than half-integers
so that set of the standard monomial basis is now in one-to-one correspondence with 𝚥I𝑚 |𝑛, the set of
integer-valued functions of {1, · · · , 𝑚; 1̄, · · · , �̄�}. In [BW, Chapter 6.7], a version of (𝑈 𝚥 ,H𝐵𝑚 )-duality
on V⊗𝑚 was established, which then allows us to obtain a corresponding analogue of Proposition 19 in
this setting. This, in turn, enables us to construct the corresponding q-symmetrized Fock space, denoted
by 𝚥T

𝑚 |𝑛
𝜁 , for 𝜁 ∈ ch𝔫+

0̄ , and its completion 𝚥T̂
𝑚 |𝑛
𝜁 , which gives rise to a canonical 𝑈 𝚥-epimorphism

𝚥𝜙𝜁 : 𝚥T̂𝑚 |𝑛 → 𝚥T̂
𝑚 |𝑛
𝜁 . A counterpart of the intertwiner for (𝑈,𝑈 𝚥) is given [BW, Chapter 6.2] with

its integral property established in [BW, Chapter 6.5]. This now provides us with all the necessary
ingredients to repeat the constructions in Sections 5.1–5.5 for the quantum symmetric pair (𝑈,𝑈 𝚥),
leading to the construction of 𝚥-canonical and dual 𝚥-canonical bases on q-symmetrized Fock space
𝚥T̂
𝑚 |𝑛
𝜁 and then finally to a counterpart of Theorem 24 in this setting.

6. Category O for ortho-symplectic Lie superalgebras

In this section, we let 𝔤 be an ortho-symplectic Lie superalgebra. We shall recall the solution of the
irreducible character problem for the ortho-symplectic Lie superalgebras in OZ of [BW, Bao]. This will
be used in the subsequent section.

6.1. Lie superalgebra of type B

For 𝔤 = 𝔬𝔰𝔭(2𝑚+1|2𝑛), we shall consider the following set of simple rootsΠ = {−𝜖1, 𝜖1−𝜖2, · · · , 𝜖𝑚−1−
𝜖𝑚, 𝜖𝑚 − 𝛿1, 𝛿1 − 𝛿2, · · · , 𝛿𝑛−1 − 𝛿𝑛} so that we have the following Dynkin diagram:

©© © ©
⊗

© © ©· · ·⇐= · · ·
−𝜖1 𝜖1 − 𝜖2 𝜖𝑚 − 𝛿1 𝛿1 − 𝛿2 𝛿𝑛−1 − 𝛿𝑛

Let 𝔟 denote the corresponding Borel subalgebra with the set of positive roots Φ+ consisting of

{±𝜖𝑖 − 𝜖 𝑗 ,−𝜖𝑘 |𝑖 < 𝑗} ∪ {±𝛿𝑘 − 𝛿𝑙 |𝑘 < 𝑙} ∪ {−2𝛿𝑘 } ∪ {−𝛿𝑘 } ∪ {±𝜖𝑖 − 𝛿𝑘 }.

The Weyl vector equals

𝜌 =
𝑚∑
𝑖=1

(
1
2
− 𝑖)𝜖𝑖 +

𝑛∑
𝑗=1

(𝑚 − 𝑗 +
1
2
)𝛿 𝑗 .

https://doi.org/10.1017/fms.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.17


Forum of Mathematics, Sigma 23

For 𝜆 ∈ 𝔥∗, we define a function 𝑓𝜆 : {1, · · · , 𝑚; 1̄, · · · , �̄�} → C by

𝑓𝜆(𝑖) :=

{
(𝜆 + 𝜌, 𝜖𝑖), for 𝑖 = 1, · · · , 𝑚,

(𝜆 + 𝜌, 𝛿𝑖), for 𝑖 = 1̄, · · · , �̄�.

Recall that Λ denotes the set of integral weights. Denote by � the Bruhat order on Λ with respect to
the simple system above. We have the following subsets in Λ:

Λint :=
𝑚∑
𝑖=1
Z𝜖𝑖 +

𝑛∑
𝑗=1
Z𝛿 𝑗 , Λhf :=

𝑚∑
𝑖=1

(
1
2
+ Z)𝜖𝑖 +

𝑛∑
𝑗=1

(
1
2
+ Z)𝛿 𝑗 . (6.1)

Note that if 𝜆 ∈ Λ, but 𝜆 ∉ Λint ∪ Λhf, then 𝜆 is a typical weight. The assignment 𝑓 → 𝑓𝜆 restricts to
bijections Λint → I𝑚 |𝑛 and Λhf → 𝚥I𝑚 |𝑛 .

Recall that we let O denote the BGG category and OZ be the integral BGG subcategory for 𝔤,
respectively. We further let Oint

Z
and Ohf

Z
denote the full subcategories of OZ consisting of objects with

weights lying in Λint and Λhf, respectively. For 𝜆 ∈ 𝔥∗, 𝑀 (𝜆) denotes the Verma module of 𝔟-highest
weight 𝜆 and 𝐿(𝜆) denotes its unique irreducible quotient. We also recall that 𝑇O (𝜆) denotes the tilting
module of highest 𝜆 in O.

Let 𝐾 (O) denote the Grothendieck group of O and 𝐾 (O)Q = 𝐾 (O) ⊗Z Q. The subgroup 𝐾 (OZ)Q
has basis {[𝑀 (𝜆)] |𝜆 ∈ Λ}. We have the self-explanatory notations of 𝐾 (Oint

Z
)Q and 𝐾 (Ohf

Z
)Q for the

corresponding Grothendieck groups.
We have a linear isomorphism 𝜓 : T𝑚 |𝑛

𝑞=1 → 𝐾 (Oint
Z

)Q at 𝑞 = 1 given by 𝑀 𝑓𝜆 → [𝑀 (𝜆)], by
means of which we can define a topological completion 𝐾 (Oint

Z
)Q of 𝐾 (Oint

Z
)
Q

. This gives a linear
isomorphism 𝜓 : T̂𝑚 |𝑛

𝑞=1 → 𝐾 (Oint
Z

)Q at 𝑞 = 1. Indeed, 𝜓 is a 𝑈𝚤
𝑞=1-homomorphism, where the action of

the generators of 𝑈𝚤
𝑞=1 on the Fock space correspond to that of certain translation functors (constructed

by tensoring with symmetric powers of the natural module) acting on Oint
Z

[BW, (11.3)–(11.5)]. We
have the following solution of the irreducible character problem in Oint

Z
.

Theorem 25. [BW, Theorem 11.13] The map𝜓 : T̂𝑚 |𝑛
𝑞=1 → 𝐾 (Oint

Z
)Q defined by sending 𝑀 𝑓𝜆 → [𝑀 (𝜆)]

satisfies

𝜓
(
𝐿 𝑓𝜆

)
= [𝐿(𝜆)], and 𝜓

(
𝑇 𝑓𝜆

)
= [𝑇O (𝜆)] .

In particular, we have ch𝐿(𝜆) =
∑
𝜇�𝜆 ℓ 𝑓𝜆 , 𝑓𝜇 (1)ch𝑀 (𝜇).

Remark 26. For the category Ohf
Z

of half-integer weights of 𝔤, we have a counterpart to Theorem 25
above, now with T̂𝑚 |𝑛

𝑞=1 and 𝐾 (Oint
Z

)Q replaced by 𝚥T̂
𝑚 |𝑛
𝑞=1 and 𝐾 (Ohf

Z
)Q, respectively [BW, Theorem

12.5]. The linear isomorphism is indeed a 𝑈
𝚥
𝑞=1-homomorphism, where the action of the generators of

𝑈
𝚥
𝑞=1 corresponds to that of the same translation functors acting now on Ohf

Z
[BW, Remark 12.4]. The

map again matches 𝚥-canonical and dual 𝚥-canonical basis elements of 𝚥T̂𝑚 |𝑛
𝑞=1 with tilting and irreducible

objects in Ohf
Z

, respectively.

6.2. Lie superalgebra of type D

There is a Kazhdan-Lusztig theory for the Lie superalgebra𝔤 = 𝔬𝔰𝔭(2𝑚 |2𝑛) based on different 𝚤-quantum
groups. Indeed, similar Fock space realizations for the BGG categories of 𝔤-modules of integer and
half-integer weights were constructed in [Bao]. In particular, an 𝔬𝔰𝔭(2𝑚 |2𝑛)-counterpart of Theorem
25 is obtained in[Bao, Theorem 4.15] for both integer and half-integer weight modules in OZ.
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7. Serre quotient functor and proof of Theorem 2

The Serre quotient functor 𝜋 : OZ → O satisfies the universal property as follows. If there is an exact
functor 𝐹 : OZ → C, where C is an abelian category, such that 𝐹 (𝑋) = 0 for any 𝑋 ∈ I𝜁 , then there is a
unique exact functor 𝐹 ′ : O → C such that 𝐹 = 𝐹 ′ ◦ 𝜋; see [Ga, Corollaries II.1.2 and III.1.3] for more
details.

In this section, we assume that 𝔤 is a basic Lie superalgebra; that is, 𝔤 is one of the Lie superalgebras
from (1.2) except for the series 𝔭(𝑛). We consider the restriction of the Backelin functor Γ𝜁 to OZ.
We will prove that Γ𝜁 : OZ → Γ𝜁 (OZ) also satisfies this universal property. As a consequence, Γ𝜁
provides an explicit realization of 𝜋, extending the results in [CCM2, Corollary 37], where the cases
of Lie superalgebras of type I, including 𝔭(𝑛), are considered. We shall now combine the results of the
previous sections to complete the proof of Theorem 2.

7.1. Functor 𝐹𝜁 and Gorelik’s equivalence

Recall from [Ch2, Theorem 26] (see also [CCM2, Section 7.3]) that there is an exact functor from OZ
to W (𝜁):

𝐹𝜁 (−) := L(𝑀0 (𝜈),−) ⊗𝑈 (𝔤0̄)
𝑀0 (𝜈, 𝜁) : OZ → W (𝜁), (7.1)

where 𝜈 ∈ 𝔥∗ is a dominant and integral weight with the stabilizer subgroup 𝑊𝜁 . Here, for any 𝑋 ∈ O,
the L(𝑀0 (𝜈), 𝑋) denotes the maximal (𝔤, 𝔤0̄)-submodule of HomC(𝑀0 (𝜈), 𝑋) that is a direct sum of
finite-dimensional 𝔤0̄-modules with respect to the adjoint action of 𝔤0̄.

The functor 𝐹𝜁 (−) satisfies the universal property of the Serre quotient functor as described above
and restricts to an equivalence between O𝜁 -pres and W (𝜁). In the case when 𝔤 is of type I, the Backelin
functor Γ𝜁 restricted to OZ and the functor 𝐹𝜁 are isomorphic; see [CCM1, Corollary 37].

We put 𝔤 -mod𝑍 to be the category of all finitely generated 𝔤-modules on which 𝑍 (𝔤) acts locally
finitely. For any central character 𝜒 of 𝔤, we set (·)𝜒 to be the endofunctor on 𝔤 -mod𝑍 of taking the
largest summand of modules annihilated by some power of the kernel ker(𝜒).

Let 𝜒 be a strongly typical central character with a perfect mate 𝜒0 in the sense of [Go2]. Denote by
O𝜒 and O𝜒0 the corresponding central blocks; namely, O𝜒 and O𝜒0 are the full subcategories of objects
in O and O0̄ annihilated by some powers of ker(𝜒) and ker(𝜒0), respectively. The following lemma is
due to Gorelik [Go2] (see also [Co, Lemma 3.1]):

Lemma 27 (Gorelik). Suppose that 𝜒 is a strongly typical central character with a perfect mate 𝜒0.
The functors

Res(−)𝜒0 , Ind(−)𝜒 (7.2)

give rise to a mutually inverse equivalence of central blocks O𝜒 and O𝜒0 . Furthermore, this equivalence
of categories preserves Verma modules.

Lemma 28. Suppose that 𝜆, 𝜆′ ∈ 𝔥∗ such that

Ind(𝑀0 (𝜆
′))𝜒 = 𝑀 (𝜆), (7.3)

Res(𝑀 (𝜆))𝜒0 = 𝑀0 (𝜆
′). (7.4)

Then we have

Res(𝑀 (𝜆, 𝜁))𝜒0 � 𝑀0 (𝜆
′, 𝜁), (7.5)

Ind(𝑀0 (𝜆
′, 𝜁))𝜒 � 𝑀 (𝜆, 𝜁), (7.6)

𝐹𝜁 (𝑀 (𝜆)) � 𝑀 (𝜆, 𝜁). (7.7)
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Proof. First, we calculate

Res(𝑀 (𝜆, 𝜁))𝜒0

= Res(Γ𝜁 (𝑀 (𝜆)))𝜒0 by Proposition 4

= Γ0
𝜁 (Res(𝑀 (𝜆))𝜒0)

= Γ0
𝜁 (𝑀0 (𝜆

′))

= 𝑀0 (𝜆
′, 𝜁) by [Bac Proposition 6.9] .

Next, we calculate

Ind(𝑀0 (𝜆
′, 𝜁))𝜒

= Ind(Γ0
𝜁 (𝑀0 (𝜆

′)))𝜒

= Γ𝜁 (Ind(𝑀0 (𝜆
′)𝜒)

= Γ𝜁 (𝑀 (𝜆))

= 𝑀 (𝜆, 𝜁) by Proposition 4.

Finally, we calculate

𝐹𝜁 (𝑀 (𝜆)) = 𝐹𝜁 (Ind(𝑀0 (𝜆
′))𝜒)

= Ind(𝐹0
𝜁 (𝑀0 (𝜆

′)))𝜒

= Ind(𝑀0 (𝜆
′, 𝜁))𝜒 by [MSo, Proposition 5.15] .

= 𝑀 (𝜆, 𝜁) by the isomorphism (7.6). �

Corollary 29. The functors Γ𝜁 (−) and 𝐹𝜁 (−) from OZ to N (𝜁) are isomorphic. In particular, the
Backelin functor Γ𝜁 (−) : OZ → W (𝜁) satisfies the universal property of Serre quotient.

Proof. Let𝜆 ∈ 𝔥∗ be a strongly typical, dominant, integral and regular weight. Let𝜆′ ∈ 𝔥∗ be such that the
central character 𝜒0 := 𝜒0

𝜆′ of𝔤0̄ associated to𝜆′ is a perfect mate of 𝜒 := 𝜒𝜆 and Res(𝑀 (𝜆))𝜒0 = 𝑀0 (𝜆
′).

By Lemmas 27 and 28, it follows that

𝐹𝜁 (𝑀 (𝜆)) � 𝑀 (𝜆, 𝜁) � Γ𝜁 (𝑀 (𝜆)).

Then we have Γ𝜁 � 𝐹𝜁 by [CCM2, Lemma 1] (see also [CCM2, Corollary 37]). The conclusion
follows. �

Remark 30. Recall the coapproximation functor 𝔧 : OZ → O𝜁 -pres from Section 4.1. By Lemma 28,
under the equivalences of categories O𝜁 -pres � W (𝜁) � O, we have a correspondence between the
simple objects 𝔧(𝐿(𝜆)) � 𝑃(𝜆)/𝑇𝑟 (rad𝑃(𝜆)), 𝐿(𝜆, 𝜁) and 𝜋(𝐿(𝜆)), and a correspondence between the
proper standard objects Δ (𝜆), 𝑀 (𝜆, 𝜁) and 𝜋(𝑀 (𝜆)). Here, rad𝑃(𝜆) denotes the radical of 𝑃(𝜆).

7.2. Proof of Theorem 2

In this section, we consider the case when𝔤 is an ortho-symplectic Lie superalgebra and make connection
between W (𝜁) and (dual) 𝚤-canonical bases on the q-symmetrized Fock space from Section 5.5.

First, suppose that 𝔤 = 𝔬𝔰𝔭(2𝑚 + 1|2𝑛). Let W (𝜁)int be the full subcategory of W (𝜁) consisting of
objects that have composition factors of the form 𝐿(𝜆, 𝜁), with 𝜆 ∈ Λint. Similarly, the full subcategory
W (𝜁)hf consists of objects that have composition factors of the form 𝐿(𝜆, 𝜁), with 𝜆 ∈ Λhf. We note
that Γ𝜁 (𝑃(𝜆)), 𝜆 ∈ Λ(𝜁) integral, are the projective indecomposable modules in W (𝜁) and there are no
nontrivial extension between 𝐿(𝜇) and 𝐿(𝜈) inOZ with 𝜇 ∈ Λint and 𝜈 ∈ Λhf. It follows that there are no
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nontrivial extensions between modules from W (𝜁)int and W (𝜁)hf, and indeed, Γ𝜁 (OintZ ) = W (𝜁)int

and Γ𝜁 (OhfZ ) = W (𝜁)hf. Let 𝐾 (W (𝜁)int)Q and 𝐾 (W (𝜁)hf)Q denote the respective Grothendieck
groups with rational coefficients.

Define the linear map 𝜓𝜁 : T̂𝑚 |𝑛
𝜁 ,𝑞=1 → 𝐾 (W (𝜁)int)Q at 𝑞 = 1 by 𝜓𝜁

(
𝑁 𝑓𝜆

)
:= [𝑀 (𝜆, 𝜁)], for

𝜆 ∈ Λ(𝜁) ∩ Λint. Here, 𝐾 (W (𝜁)int)Q denotes the corresponding topological completion inherited
from the topological completion of T𝑚 |𝑛

𝜁 ,𝑞=1 via this map.

Theorem 31. Let 𝔤 = 𝔬𝔰𝔭(2𝑚 + 1|2𝑛).

(1) The functors Γ𝜁 and 𝐹𝜁 from Oint
Z

to W (𝜁)int categorify the 𝑈𝚤-homomorphism 𝜙𝜁 : T̂𝑚 |𝑛
𝑞=1 →

T̂
𝑚 |𝑛
𝜁 ,𝑞=1 at 𝑞 = 1.

(2) The map 𝜓𝜁 sends 𝚤-canonical and dual 𝚤-canonical basis elements L 𝑓𝜆 and T 𝑓𝜆 to the tilting and
simple objects corresponding to weight 𝜆 ∈ Λint∩Λ(𝜁), respectively.

Proof. Let 𝛾𝜁 : 𝐾 (Oint
Z

)Q → 𝐾 (W (𝜁))Q be the map induced by the Backelin functor Γ𝜁 on the
respective Grothendieck groups. It is evident that the image lies in 𝐾 (W (𝜁)int)Q. By Proposition 4
and Theorem 24 one verifies that 𝛾𝜁 ◦ 𝜓 and 𝜓𝜁 ◦ 𝜙𝜁 coincide on the monomial basis of T𝑚 |𝑛 and
hence 𝛾𝜁 ◦ 𝜓 = 𝜓𝜁 ◦ 𝜙𝜁 , which is precisely the commutativity of the diagram (1.6). We note that 𝜙𝜁
is a 𝑈𝚤

𝑞=1-homomorphism and the Backelin functor commutes with translation functors. Furthermore,
𝜓 is compatible with the 𝑈𝚤

𝑞=1-action on T̂𝑚 |𝑛
𝑞=1 and certain 𝔤-translation functor action on OZ by [BW,

Proposition 11.9]. It follows therefore that the map 𝜓𝜁 is also compatible with the 𝑈𝚤
𝑞=1-action on T̂𝑚 |𝑛

𝜁

and translation functor action on W (𝜁)int.
Part (1) is now a consequence of Proposition 4 and Theorem 6(ii), 24 and 25.
For 𝜆 ∈ Λ(𝜁) ∩ Λint, we compute, using Theorems 6(ii), 24 and 25, that

[𝐿(𝜆, 𝜁)] = [Γ𝜁 (𝐿(𝜆))] = 𝛾𝜁 ([𝐿(𝜆)]) = 𝛾𝜁 (𝜓(𝐿 𝑓𝜆)) = 𝜓𝜁 (𝜙𝜁 (𝐿 𝑓 )) = 𝜓𝜁 (L 𝑓𝜆).

This proves Part (2) for simple objects.
By Proposition 17, each tilting module in O𝜁 -pres is of the form 𝑇 (𝜆) = 𝑇O (𝑤

𝜁
0 · 𝜆) ∈ O𝜁 -pres for

some 𝜆 ∈ Λ(𝜁). From this and the fact that the functors Γ𝜁 and 𝐹𝜁 are isomorphic to the same Serre
quotient functor, and 𝐹𝜁 restricts to an equivalence of categories from O𝜁 -pres to W (𝜁), it follows that
Γ𝜁 (𝑇O (𝑤

𝜁
0 · 𝜆)) is a tilting module in W (𝜁). By Theorem 24, for 𝜆 ∈ Λ(𝜁) ∩ Λint, it follows that

𝛾𝜁 ([𝑇 (𝜆)]) = 𝛾𝜁

(
[𝑇O (𝑤

𝜁
0 · 𝜆)]

)
= 𝛾𝜁 ◦ 𝜓(𝑇

𝑓𝜆 ·𝑤
𝜁
0
) = 𝜓𝜁 ◦ 𝜙𝜁 (𝑇 𝑓𝜆 ·𝑤 𝜁

0
) = 𝜓𝜁 (T 𝑓𝜆).

This completes the proof of Part (2). �

We can formulate the following half-integer version of Theorem 31 with similar proof.

Theorem 32. Let 𝔤 = 𝔬𝔰𝔭(2𝑚 + 1|2𝑛).

(1) The functors Γ𝜁 and 𝐹𝜁 from Ohf
Z

to W (𝜁)hf categorify the 𝑈 𝚥-homomorphism 𝚥𝜙𝜁 : 𝚥T̂
𝑚 |𝑛
𝑞=1 →

𝚥T̂
𝑚 |𝑛
𝜁 ,𝑞=1 at 𝑞 = 1.

(2) The induced linear map 𝚥𝜓𝜁 : 𝚥T̂
𝑚 |𝑛
𝜁 ,𝑞=1 → 𝐾 (W (𝜁)hf)Q at 𝑞 = 1 that sends standard monomial

basis elements to corresponding standard Whittaker module of weights in Λ(𝜁) ∩ Λhf matches
𝚥-canonical and dual 𝚥-canonical basis elements with the tilting and simple objects of weights in
Λ(𝜁) ∩ Λhf, respectively.

Remark 33. As mentioned earlier in Section 6.2, we have Fock space realizations for the Kazhdan-
Lusztig theory of type D Lie superalgebras in the integral category O [Bao]. This allows us to obtain
counterparts of Theorems 31 and 32 for the Lie superalgebra 𝔤 = 𝔬𝔰𝔭(2𝑚 |2𝑛) as well.
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Remark 34. Theorem 31 states that the natural correspondence between certain standard monomial
basis elements of T̂𝑚 |𝑛

𝜁 and standard Whittaker modules identifies the 𝚤-canonical basis in T̂𝑚 |𝑛
𝜁 with

tilting objects in W (𝜁). Indeed, using properties of 𝜓𝚤 , we can construct a different bar involution on
T̂𝑚 |𝑛 and then on T̂𝑚 |𝑛

𝜁 compatible with the reverse Bruhat order (i.e., applying the bar involution to
a standard monomial basis element gives a Z[𝑞, 𝑞−1]-linear combination of standard monomial basis
elements corresponding to weights higher in the Bruhat ordering). Here, the completion is understood to
be compatible with the reverse Bruhat ordering. In this setup, using Corollary 18, it can be shown that the
natural correspondence between the standard monomial basis elements and standard Whittaker modules
will now identify the dual 𝚤-canonical basis elements in T̂𝑚 |𝑛

𝜁 with the projective indecomposable
modules in W (𝜁). Similar version exists for 𝚥-canonical basis. We also have counterparts for 𝔤 =
𝔬𝔰𝔭(2𝑚 |2𝑛) as well.

7.3. Annihilator ideals

For a given 𝔤-module M, we denote by Ann𝔤𝑀 the annihilator ideal of M. The following corollary estab-
lishes an analogue of [Ko, Theorem 3.9] for Lie algebras and [Ch2, Theorem B] for Lie superalgebras
of type I for basic Lie superalgebras:
Corollary 35. We have

Ann𝔤 (𝐿(𝜆, 𝜁)) = Ann𝔤 (𝐿(𝜆)), (7.8)

for any 𝜆 ∈ Λ(𝜁).
Proof. By [Ch2, Theorem A(2), Theorem 26(2)], we have

Ann𝔤 (𝐹𝜁 (𝐿(𝜆))) = Ann𝔤 (𝐿(𝜆)), (7.9)

for any 𝜆 ∈ Λ(𝜁). The corollary now follows from Theorem 6(ii) and Corollary 29. �
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