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ABSTRACT

The Kolmogorov distance is used to transform arithmetic severities into
equispaced arithmetic severities in order to reduce the number of
calculations when using algorithms like Panjer's formulae for compound
distributions. An upper bound is given for the Kolmogorov distance
between the true compound distribution and the transformed one.
Advantages of the Kolmogorov distance and disadvantages of the total
variation distance are discussed. When the bounds are too big, a Berry-
Esseen result can be used. Then almost every case can be handled by the
techniques described in this paper. Numerical examples show the interest of
the methods.
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1. INTRODUCTION

The total claims distribution of a risk is given by

S = Xi + ... +XN (1)

where X denotes the severity of the claim distribution and N the claim
frequency distribution. We suppose that the claim severity has a discrete
probability function fx(x) and the claim frequency distribution has a
probability function p(n).
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The evaluation of the probability distribution S is difficult since it needs
the evaluation of convolutions of order n and an infinite summation:

«=0

De Pril (1985) has given a recursive algorithm for the evaluation of the
convolutions of arithmetic severities:

fx'O) =./J(0) (3)

x > 1 (4)

Under the hypothesis that the claim frequency distribution satisfies the
recursion:

( ^j « > 1 (5)

Panjer (1981) has given a recursive algorithm for the evaluation of the
compound distribution:

(6)

where ^N(^) =EezN denotes the moment generating function of N.
For both the recursions (4) and (7), the computing time will be

significantly reduced if the claim severity is equispaced because in this case
working on 0, ft, 2h, ... is the same as working on 0, 1, 2, ...

Our goal is to replace the evaluation of

F[S < a]

by the evaluation of

V[Sapp < a]

and to measure the difference between the two by the Kolmogorov distance.
The concepts discussed hereafter will be illustrated with the Poisson

distribution. Of course the other laws satisfying (5) may be used as well as
more complicated distributions satisfying more complicated recursions (see
section 8).
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The following hypothetical claim severity distribution will be used for
illustration:

X

fx
0

0.05

7

0.1

12

0. 15

CLAIM

17

0.05

TABLE 1
SEVERITY DISTRIBUTION

21

0.05

23

0.05

28

0. 1

39

0.1
46

0.1

53

0.15

67

0..1

2. TECHNIQUES GIVEN IN THE LITERATURE

Two methods are given in the literature in order to construct discrete
equispaced distributions.

Gerber and Jones (1976) propose a very intuitive rounding method.
Suppose we want to transform the claim severity distribution X into an
equispaced distribution on x — 0, h, 2h, ... The probabilities are simply
given by

Suppose we choose h = 20. We find the approached equispaced distribution
\Xapp)'-

TABLE 2

APPROACHED DISTRIBUTION; ROUNDING, h = 20

Xapp 0 20 40 60

/A;,.,, 0.15 0.40 0.20 0.25

The rounding method has the disadvantage that the approached distribution
does not conserve any moment of the true distribution.

Gerber (1982) proposes a method that matches some moments: the local
moment matching method (LMM).

Suppose for example we want to match two moments. Let the interval
(xk, Xk + 2h\. The masses rn^, m\, m\ are associated to the points

in order to preserve the first two moments:

f.ti+2/i

7=0

nxk+2h
x'dFxix) r = 0 , 1 , 2 (8)

Jxk
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Using the Lagrange formula, Gerber (1982) gives the solution of the
system (8):

In our case the integral is a sum.
The method might be applied in order to match more than two moments.
By taking h = 20, we find

TABLE 3

INTERMEDIATE MASSES: LMM

mjj

0.1318

m\

0.4389

m»

0.0793

mj

0.0836

m\

0.2704

m\

-0.0040

and thus the following approached distribution:

TABLE 4

APPROACHED DISTRIBUTION: LMM. h = 20

X 0
0.1318

20
0.4389

40
0.1629

60
0.2704

80
-0.0040

This example shows an important disadvantage of the local moment
matching method: the probabilities can take negative values.

With h = 17, we find

TABLE 5

APPROACHED DISTRIBUTION; LMM. /( = 17

0
0.0998

17
0.4268

34
0.0921

51
0.3009

68
0.0804

3. THE KOLMOGOROV DISTANCE

The methods presented in the previous section are essentially local and they
present some important disadvantages. In the sequel we will propose a
global method consisting in the minimization of a distance between the true
distribution and the approached distribution.
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Having chosen the equispaced points of the approached distribution, we
minimize the distance in order to find the probabilities associated with the
equispaced points.

The Kolmogorov distance between two random variables X and Y is
given by

dK(X, Y) = max \Fx{x) - FY{x)\ (9)
X

where Fx{x) denotes the cumulative distribution function of X.
This distance is used for the Kolmogorov-Smirnov adjustment test

between two distributions. A small dK is in favour of the null hypothesis that
the two distributions are the same while a large value of dK is in favour of the
alternative hypothesis that the two distributions are different.

Suppose the same claim severity distribution as in the previous section.
We want to approximate it by a distribution with masses at 0, 20, 40, 60, 80
i.e. such that h = 20. The problem is to fmdfXa (o), —,fxmp (80) in order to

app

minimize d^X, Xapp). This is easily done numerically.
We find

TABLE 6

APPROACHED DISTRIBUTION; KOLMOGOROV, H = 20

fx,:)
0
0.2250

20
0.2976

40
0.2976

60
0.0899

80
0.0899

dK(X,Xapp)= 0.175

Other approached distributions might be obtained with the same Kolmo-
gorov distance. This suggests that we might minimize dx under the
constraint that the first moment of X is preserved.

We then find

TABLE 7

APPROACHED DISTRIBUTION; KOLMOGOROV. H = 20; FIRST MOMENT CONSTRAINED

0
0.225

20
0.2960

40
0.2604

60
0.1312

80
0.0874

dK(X,Xapp) =0.175
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If the minimization is proceeded with the constraint of the first two
moments, we find

TABLE 8

APPROACHED DISTRIBUTION; KOLMOGOROV. U - 20: KIRST TWO MOMI-.NTS CONSTRAINED

Xm 0 20 40 60 80

fxm 0.1833 0.2500 0.4206 0.1156 0.0305

dK(X,Xapp) = 0.2167

We see that in this case the Kolmogorov distance is higher with two
moments constrained than with only one. The cost of matching several
moments is such that the dK is higher. The preceding considerations suggest
the following algorithm when using the Kolmogorov distance to construct
an equispaced distribution:

1. Choose a set of equispaced points
2. m = 0
3. Minimize dx(X, Xapp) with m moments constrained
4. Minimize dK(X,Xapp) with m + 1 moments constrained
5. If df:(m) = dxim + 1) then m = m + 1 and go to 4

else keep the approached distribution given by the minimization of
dK(m).

6. Note that the necessity of keeping n moments may overrule the rule 5
7. If the distance cannot be accepted then go back to 1 and change the

equispaced points

Clearly the minimum may be achieved by more than one constrained
distribution. This is not a problem in practice because the bounds we will
derive for the distance between the compound distributions will depend only
on the Kolmogorov distance between the distributions of X and Xapp.

4. THE EFFECT OF THE APPROXIMATION ON THE COMPOUND DISTRIBUTION

Let us now look at the Kolmogorov distance between the compound
distribution (fs(x)) and the approached compound distribution (fsapi,{x))-
Suppose that JV is Poisson distributed N ~ Po{\ = 0.1).
The following distances have been calculated.
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TABLE 9

KOLMOGOROV DISTANCES WITH A = 0.1

dK(X,Xvp) dK(S,S,'appl

h= 10; 4 moments 0.125 0.0115

h~ 10; 5 moments 0.125 0.0115

A = 10; 6 moments 0.1273 0.0117

/ !=17;LMM 0.1696 0.0157

h = 17; 2 moments 0.1395 0.0131

h = 20; Rounding 0.25 0.0228

h = 20; 1 moment 0.175 0.0161

/; = 20; 2 moments 0.2167 0.0202

h = 20; 3 moments 0.2311 0.0212

h = 25; 1 moment 0.225 0.0207

h = 25; 2 moments 0.2646 0.0242

We see that the dx(X, Xapp) increases with h. This is not a surprise because,
at the limit h = 0, we would trivially have dx(X, Xapp) = 0.

Concerning dK(S,Sapp), the results are excellent. In each case, it is less
than 10% ofdK{X,Xapp).

Of course the parameters of the claim frequency distribution must play a
role. In our example, there is only one parameter: A. Intuitively, we expect
the dj((S,Sapp) to grow with A. The following calculations show it is not
necessarily the case.

We choose h = 10 and 5 moments constrained (dfc(X, Xapp) = 0.125). We
find

TABLE 10

KOLMOGOROV DISTANCES; H - 10; FIRST FIVE MOMENTS CONSTRAINED

A dK(S,Sapp)

0.05 0.005992

0.10 0.011488

0.20 0.021113

1 0.053471

2 0.048496

3 0.036778

4 0.027632

5 0.023072

20 0.010845
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As this example shows, the dK(S,Sapp) grows until around A = 1 and then
decreases. In this example, the true distribution X and the approached
distribution Xapp are so closed that high order convolutions of the
distributions remain very close. This explains why the Kolmogorov distance
between the compound distributions decreases when A becomes very large.

Of course this is not the general rule. The following example shows that
the Kolmogorov distance between the compound distributions increases
with A when the approximation between X and Xapp is bad:

TABLE 11

KOLMOGOROV DISTANCES; PATHOLOGICAL EXAMPLE

X
fx

•X-app

fxm,

A

0.1
1
10
50
100
500
1000

0

0.4

0

0.3

XaPP)

2 4

0.2 0.4

3
0.7

= 0.4

dK(S,Svp)

0.037062
0.185621
0.126143
0.174345
0.180262
0.344425
0.464542

5. UPPER AND LOWER BOUNDS FOR dK(S, Sam>)

We are going to use the following lemma (see De Pril and Dhaene (1992) for
a proof):

If dK(X, Y)<a then dK(X*", Y*") < na

With the analogous formula of (2) for the cdfs, we easily find an upper
bound for the Kolmogorov distance between the true distribution and the
approached distribution.
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dK(S, Sapp) = m a x j ^ s W - FSapp{x)\

249

= max
«=o

n=0

«=o

(10)

(11)

(12)
n=0

= ENdK(X,Xapp)

A trivial lower bound is given by

dK{S,Sapp) > \

Obviously df^X*", X*pp) is always < 1. Therefore the upper bound
sharpened:

dK(S, Sapp) <ENdK(X, X^

>,ndK(X,Xapp)-\)

(14)

can be

(15)
n=2

Let us take the example of table 10:

TABLE 12

COMPARISON BETWEEN THE KOLMOGOROV DISTANCE AND THE BOUNDS; A = IO

dK{S,Sm lower bound upper bound sharpened upper bound

O.I
0.2
1

0.011488
0.021113
0.053471

0.000712
0.001297
0.003042

0.0125
0.0250
0.125

0.0125

0.025

0.124999

Even when A (or EN is a more general setting) is far from 0, a precise bound
can be obtained. There will be a cost for this operation: the calculation of
some convolutions of X and Xc

Define FEjy,<,,/, = {[EiVJ — a; ...;
app-

+ b)
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We have

<max
X

je(Z+\rE.a,h)

TABLE 13

COMPARISON BETWEEN THE KOLMOOOROV DISTANCE AND THE BOUNDS; k = HI, A - I

dK(S,Sapp) 0.053471

twice sharpened upper bound V = {1,2} 0.086197

twice sharpened upper bound T = {1,3} 0.063503

twice sharpened upper bound T = {1,4} 0.055846

6. THE DISTANCE OF TOTAL VARIATION

Whenever you want to compare two integer random variables X and Y, the
total variation distance between the two variables is defined by

dTV(X, Y) = sup \P{X e A) - P{Y e A)\ (16)
ACZ+

seems adequate. For example, this distance is very interesting when
comparing the Poisson-Binomial and the Poisson distributions (see Barbour,
Hoist and Janson (1992)).

It is easy to show that the definition of the total variation distance is
equivalent to

, oo

dTV(X, Y)=-J2 \P{X = m)-P{Y = m)\ (17)
m=0

and so, it is immediate to deduce that

dK < dTV

In the present study, the total variation distance is uninteresting because it
couldn't discriminate equispaced distributions. The reason for this fact is
that only a few points share a positive probability for both the claim severity
distribution and the approximate one.

This explains why we prefer to use the Kolmogorov distance than the
total variation distance even if, at first side, it seems less general.
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7. BERRY-ESSEEN BOUND FOR THE NORMAL APPROXIMATION

In the preceding sections, we saw that whenever EN is high, the upper bound
(15) is useless, even if, in practice, the approximation based on the
Kolmogorov distance remains a good one. This fact, not really surprising,
can be confirmed by a Berry-Esseen result.

Michel (1993) gives a Berry-Esseen bound for the normal approximation
of a compound Poisson distribution.

Let S a compound Poisson distribution. Assume the skewness of S is finite.
Then

'S - ES
sup
teR OS

where $(/) is the cumulative distribution of a standard normal distribution and

ES3 - 3ESES2 + 2CES)3

7s = 3 is the skewness oj S
as

For our numerical example, whenever N is a Poisson random variable with
mean A, we obtain the following upper bound for the difference between the
distribution of S and the normal approximation:

TABLE 14

BERRY-ESSEEN BOUND IN FUNCTION OF A

A bound

0,1 3,4965
1 1,1057

10 0,3496
100 0,1105

1000 0,0349

The result is not surprising: whenever the mean of the counting distribution
is low the approximation by the normal distribution is bad but in that case
the method described in the previous section can be applied. Whenever this
mean is high, the central limit approximation is good. Nevertheless, the
techniques described in the previous sections remain interesting if one want
an approximation of S by discrete random variable Sapp.

Assume the respective skewness are 7 and j a p p . If X is a N(ES,YarS)
random variable, then by the Berry-Esseen result of Michel and the
triangular inequality, we obtain

sup|P(5< 0 -F(Sapp <t)\<0,87 + 0 ,87 w + sup|P[Jr <t]-¥[Y<t]\ (18)
teR teR
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where X ~ N{ES; VarS)
Y ~ N(ESapp;YarSapp)

In particular, when Sapp is constructed in such a way that the first two
moments of X and Y are the same, (18) becomes

sup|P(S < 0 - F(Sapp < t)\ < 0, 87 + 0 , 8 7 w
teR

Remarks:
1) Whenever the mean of N is very large, a technical problem arises: the

initialization of the recursion gives an underflow. This problem has been
handled by Panjer and Wang (1995) but the technique they propose can
not be controlled if one wants an arithmetic distribution. However if a
normal approximation is sufficient, then it is very well controlled by
Michel's (1993) result.

2) Michel (1993) gives also a non-uniform result under the same hypothesis:

'S-ES 30,6

Unluckily this result is more interesting than the uniform bound only if
\t\ > 3,34, i.e. in the very far tail of the distribution. This is the reason
why we concentrate only on the uniform result. Of course the non-
uniform result of Michel is interesting to use when approximating
quantities like stop-loss premiums for example.

8. EXTENSION

The proof of Michel's (1993) result is given for the case where N, the number
of components of the random sum, is a Poisson random variable but as the
proof shows, the crucial point for the extension of the Berry-Esseen result to
the random case is the fact that the distribution of S is infinitely divisible.
Consequently, N has to be infinitely divisible.

In fact, by Feller (1971), there is a logical equivalence between infinite
divisibility on integers and Compound Poisson distributions.

Then the result of Michel (1993) is immediately extended to every infinite
divisible distribution on integers.

As an example of more general distribution for N, we take the Hofmann's
family of distributions (see Hofmann (1955) and Kestemont and Paris (1985)
for a discussion) whose probability generating function is

))""-1) (19)

This distribution depends on three parameters: p, c and a. The parameter a
distinguishes the distributions and presents the particular cases: Poisson
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(a = 0), Poisson Inverse Gaussian (a = 1/2), Binomial Negative (a = 1),
Polya-Aeppli (a = 2) and Neymann Type A (a —• oc, c —> oo, ac —* b).

The mean of the distribution is p and has for maximum likelihood
estimator the experimental mean.

This distribution is also known as the Generalized Poisson Pascal
distribution (see Panjer and Willmot (1992) but we prefer the Hofmann's
presentation which has a better parametrization and natural extensions (see
Walhin and Paris (1998)).

The Hofmann distribution Ho{p, c, a) is itself a compound Poisson
distribution and you can write

where L is poisson distributed
£ i s s u c h t h a t F ^ i =

n " \ = a + % n > 2

Then the generalization of Panjer's recursion (Sundt and Jewell (1981)) can
be used when £ is a counting distribution. The aggregate claims distribution
can then be evaluated by a double application of Panjer's recursion because

V = Xi+ ... +X^
S = Vx + ... + VL

(see Panjer and Willmot (1992) for a general statement and Walhin and Paris
(1998) for details concerning the Hofmann's distribution).

As N is infinitely divisible (see (19)), the results described in the previous
section will apply for this general counting distribution.

The characteristics of the distribution are

S = Xi + ...+ XN

N ~ Ho{p, c, a)

m = EX

H2 = EX2

Hi = EX3

VarS = [can] + fi2)p

ac2u] +
is = •
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9. CONCLUSION

We have seen how a global method can give an equispaced approached
distribution of a general discrete distribution. The minimization of the
Kolmogorov distance does not present the disadvantages of the methods
presented in the literature. The problem of matching moments between both
distributions can be solved.

When the mean of the frequency claim distribution is low, which is
typically the case in automobile insurance, the knowledge of the
Kolmogorov distance between both the severity distributions is sufficient
to give a sharp upper bound on the Kolmogorov distance between both the
compound distributions.

When the mean of the counting distributions is high, there exists an
interesting Berry-Esseen bound for the normal approximation when A' is
infinitely divisible. If one wants to keep the discrete approximate
distribution, the Berry-Esseen bound may be used twice in order to give a
bound on the Kolmogorov distance between the true and approximate
compound distributions.

When the mean of the claim frequency is not high enough for using the
Berry-Esseen result, the bounds can be sharpened at the price of calculating
some high order convolutions of both the true and approximate severity
distributions. Then almost every situation can be handled, in term of
controlling the error induced, by the techniques described in this paper. Note
that the two practical situations, events with very low frequency and very
large portfolios are very well controlled.

Our experience shows that even when the mean of the frequency claim
distribution is medium, the Kolmogorov distance between both compound
distributions remains a fraction of the Kolmogorov distance between both
the claim severity distributions if the approximation is good. Note that the
properties of the Kolmogorov distance between the compound distributions
can also be used in the case of a bad knowledge of the claim severity
distribution.
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