THE VECTOR-VALUED TENT SPACES T^{1} AND T^{∞} MIKKO KEMPPAINEN

(Received 2 May 2011; accepted 21 February 2014; first published online 15 May 2014)

Communicated by A. Pryde

Abstract

Tent spaces of vector-valued functions were recently studied by Hytönen, van Neerven and Portal with an eye on applications to H^{∞}-functional calculi. This paper extends their results to the endpoint cases $p=1$ and $p=\infty$ along the lines of earlier work by Harboure, Torrea and Viviani in the scalar-valued case. The main result of the paper is an atomic decomposition in the case $p=1$, which relies on a new geometric argument for cones. A result on the duality of these spaces is also given.

2010 Mathematics subject classification: primary 42B35; secondary 46E40.
Keywords and phrases: vector-valued harmonic analysis, atomic decomposition, stochastic integration.

1. Introduction

Coifman et al. introduced in [4] the concept of tent spaces that provides a neat framework for several ideas and techniques in harmonic analysis. In particular, they defined the spaces $T^{p}, 1 \leq p<\infty$, that are relevant for square functions, and consist of functions f on the upper half-space \mathbb{R}_{+}^{n+1} for which the L^{p} norm of the conical square function is finite:

$$
\int_{\mathbb{R}^{n}}\left(\int_{\Gamma(x)}|f(y, t)|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x<\infty
$$

where $\Gamma(x)$ denotes the cone $\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:|x-y|<t\right\}$ at $x \in \mathbb{R}^{n}$. Typical functions in these spaces arise for instance from harmonic extensions u to \mathbb{R}_{+}^{n+1} of L^{p} functions on \mathbb{R}^{n} according to the formula $f(y, t)=t \partial_{t} u(y, t)$.

Tent spaces were approached by Harboure et al. in [5] as L^{p} spaces of L^{2}-valued functions, which gave an abstract way to deduce many of their basic properties. Indeed, for $1<p<\infty$, the mapping $J f(x)=1_{\Gamma(x)} f$ is readily seen to embed T^{p} in $L^{p}\left(\mathbb{R}^{n} ; L^{2}\left(\mathbb{R}_{+}^{n+1}\right)\right)$, when \mathbb{R}_{+}^{n+1} is equipped with the measure $d y d t / t^{n+1}$. Furthermore, they showed that T^{p} is embedded as a complemented subspace, which not only

[^0]implies its completeness, but also gives a way to prove a few other properties, such as equivalence of norms defined by cones of different aperture and the duality $\left(T^{p}\right)^{*} \simeq T^{p^{\prime}}$, where $1 / p+1 / p^{\prime}=1$.

Treatment of the endpoint cases $p=1$ and $p=\infty$ requires more careful inspection. First, the space T^{∞} was defined in [4] as the space of functions g on \mathbb{R}_{+}^{n+1} for which

$$
\sup _{B} \frac{1}{|B|} \int_{\widehat{B}}|g(y, t)|^{2} \frac{d y d t}{t}<\infty,
$$

where the supremum is taken over all balls $B \subset \mathbb{R}^{n}$ and where $\widehat{B} \subset \mathbb{R}_{+}^{n+1}$ denotes the 'tent' over B (see Section 4). The tent space duality is now extended to the endpoint case as $\left(T^{1}\right)^{*} \simeq T^{\infty}$. Moreover, functions in T^{1} admit a decomposition into atoms a each of which is supported in \widehat{B} for some ball $B \subset \mathbb{R}^{n}$ and satisfies

$$
\int_{\widehat{B}}|a(y, t)|^{2} \frac{d y d t}{t} \leq \frac{1}{|B|} .
$$

As for the embeddings, it is proven in [5] that T^{1} embeds in the $L^{2}\left(\mathbb{R}_{+}^{n+1}\right)$-valued Hardy space $H^{1}\left(\mathbb{R}^{n} ; L^{2}\left(\mathbb{R}_{+}^{n+1}\right)\right.$), while T^{∞} embeds in $\operatorname{BMO}\left(\mathbb{R}^{n} ; L^{2}\left(\mathbb{R}_{+}^{n+1}\right)\right)$, the space of $L^{2}\left(\mathbb{R}_{+}^{n+1}\right)$-valued functions with bounded mean oscillation.

The study of vector-valued analogues of these spaces was initiated by Hytönen, van Neerven and Portal in [7], where they followed the ideas from [5] and proved the analogous embedding results for $T^{p}(X)$ with $1<p<\infty$ under the assumption that X is a Banach space with unconditional martingale differences (UMD). It should be noted that, for non-Hilbertian X, the L^{2} integrals had to be replaced by stochastic integrals or some equivalent objects, which in turn required further adjustments in proofs, namely the lattice maximal functions that appeared in [5] were replaced by an appeal to Stein's inequality for conditional expectation operators. Later on, Hytönen and Weis provided in [8] a scale of vector-valued versions of the quantity appearing above in the definition of T^{∞}.

This paper continues the work on the endpoint cases and provides definitions for $T^{1}(X)$ and $T^{\infty}(X)$. The main result decomposes a $T^{1}(X)$ function into atoms using a geometric argument for cones. The original decomposition argument in [4] is inherently scalar-valued and not as such suitable for stochastic integrals. Moreover, the spaces $T^{1}(X)$ and $T^{\infty}(X)$ are embedded in certain Hardy and BMO spaces, respectively, much in the spirit of [5]. The theory of vector-valued stochastic integration (see van Neerven and Weis [14]) is used throughout the paper.

2. Preliminaries

2.1. Notation. Random variables are taken to be defined on a fixed probability space whose probability measure and expectation are denoted by \mathbb{P} and \mathbb{E}. The integral average (with respect to Lebesgue measure) over a measurable set $A \subset \mathbb{R}^{n}$ is written as $f_{A}=|A|^{-1} \int_{A}$, where $|A|$ stands for the Lebesgue measure of A. For a ball B in \mathbb{R}^{n} we write x_{B} and r_{B} for its center and radius, respectively. Throughout the paper X is
assumed to be a real Banach space and $\left\langle\xi, \xi^{*}\right\rangle$ is used to denote the duality pairing between $\xi \in X$ and $\xi^{*} \in X^{*}$. Isomorphism of Banach spaces is expressed using \simeq. By $\alpha \lesssim \beta$ it is meant that there exists a constant C such that $\alpha \leq C \beta$. Quantities α and β are comparable, $\alpha \approx \beta$, if $\alpha \lesssim \beta$ and $\beta \lesssim \alpha$.
2.2. Stochastic integration. We start by discussing the correspondence between Gaussian random measures and stochastic integrals of real-valued functions. Recall that a Gaussian random measure on a σ-finite measure space (M, μ) is a mapping W that takes subsets of M with finite measure to (centered) Gaussian random variables in such a manner that:
(i) the variance $\mathbb{E} W(A)^{2}=\mu(A)$;
(ii) for all disjoint A and B the random variables $W(A)$ and $W(B)$ are independent and $W(A \cup B)=W(A)+W(B)$ almost surely.
Since for Gaussian random variables the notions of independence and orthogonality are equivalent, it suffices to consider their pairwise independence in the definition above. Given a Gaussian random measure W, we obtain a linear isometry from $L^{2}(M)$ to $L^{2}(\mathbb{P})$, our stochastic integral, by first defining $\int_{M} 1_{A} d W=W(A)$ and then extending by linearity and density to the whole of $L^{2}(M)$. On the other hand, if we are in possession of such an isometry, we may define a Gaussian random measure W by sending a subset A of M with finite measure to the stochastic integral of 1_{A}. For more details, see Janson [9, Ch. 7].

A function $f: M \rightarrow X$ is said to be weakly L^{2} if $\left\langle f(\cdot), \xi^{*}\right\rangle$ is in $L^{2}(M)$ for all $\xi^{*} \in X^{*}$. Such a function is said to be stochastically integrable (with respect to a Gaussian random measure W) if there exists a (unique) random variable $\int_{M} f d W$ in X so that for all $\xi^{*} \in X^{*}$

$$
\left\langle\int_{M} f d W, \xi^{*}\right\rangle=\int_{M}\left\langle f(t), \xi^{*}\right\rangle d W(t) \quad \text { almost surely. }
$$

We also say that a function f is stochastically integrable over a measurable subset A of M if $1_{A} f$ is stochastically integrable. Note, in particular, that each function $f=\sum_{k} f_{k} \otimes \xi_{k}$ in the algebraic tensor product $L^{2}(M) \otimes X$ is stochastically integrable and that

$$
\int_{M} f d W=\sum_{k}\left(\int_{M} f_{k} d W\right) \xi_{k}
$$

A detailed theory of vector-valued stochastic integration can be found in van Neerven and Weis [14], see also Rosiński and Suchanecki [15]. Stochastic integrals have a number of nice properties (see [14]).
(i) Khintchine-Kahane inequality: for every stochastically integrable f we have

$$
\left(\mathbb{E}\left\|\int_{M} f d W\right\|^{p}\right)^{1 / p} \approx\left(\mathbb{E}\left\|\int_{M} f d W\right\|^{q}\right)^{1 / q}
$$

whenever $1 \leq p, q<\infty$.
(ii) Covariance domination: if a function $g \in L^{2}(M) \otimes X$ is dominated by a function $f \in L^{2}(M) \otimes X$ in covariance, that is, if

$$
\int_{M}\left\langle g(t), \xi^{*}\right\rangle^{2} d \mu(t) \leq \int_{M}\left\langle f(t), \xi^{*}\right\rangle^{2} d \mu(t)
$$

for all $\xi^{*} \in X^{*}$, then

$$
\mathbb{E}\left\|\int_{M} g d W\right\|^{2} \leq \mathbb{E}\left\|\int_{M} f d W\right\|^{2}
$$

(iii) Dominated convergence: if a sequence (f_{k}) of stochastically integrable functions is dominated in covariance by a single stochastically integrable function and

$$
\int_{M}\left\langle f_{k}(t), \xi^{*}\right\rangle^{2} d \mu(t) \rightarrow 0
$$

for all $\xi^{*} \in X^{*}$, then

$$
\mathbb{E}\left\|\int_{M} f_{k} d W\right\|^{2} \rightarrow 0
$$

In particular, if a sequence $\left(A_{k}\right)$ of measurable sets satisfies $1_{A_{k}} \rightarrow 0$ pointwise almost everywhere, then for every f in $L^{2}(M) \otimes X$,

$$
\mathbb{E}\left\|\int_{A_{k}} f d W\right\|^{2} \rightarrow 0
$$

The expression

$$
\left(\mathbb{E}\left\|\int_{M} f d W\right\|^{2}\right)^{1 / 2}
$$

defines a norm on the space of (equivalence classes of) strongly measurable stochastically integrable functions $f: M \rightarrow X$. However, the norm is not generally complete, unless X is a Hilbert space. For convenience, we operate mainly with functions in $L^{2}(M) \otimes X$ and denote their completion under the norm above by $\gamma(M ; X)$.

This space can be identified with the space of γ-radonifying operators from $L^{2}(M)$ to X (see [14] and the survey [13]). We note the following facts.
(i) Given an $m \in L^{\infty}(M)$, the multiplication operator $f \mapsto m f$ on $L^{2}(M) \otimes X$ has norm $\|m\|_{L^{\infty}(M)}$.
(ii) For K-convex X (see [13, Section 10]) the duality $\gamma(M ; X)^{*}=\gamma\left(M ; X^{*}\right)$ holds and realizes for $f \in L^{2}(M) \otimes X$ and $g \in L^{2}(M) \otimes X^{*}$ via

$$
\langle f, g\rangle=\int_{M}\langle f(t), g(t)\rangle d \mu(t)
$$

A family \mathcal{T} of operators in $\mathcal{L}(X)$ is said to be γ-bounded if for every finite collection of operators $T_{k} \in \mathcal{T}$ and vectors $\xi_{k} \in X$,

$$
\mathbb{E}\left\|\sum_{k} \gamma_{k} T_{k} \xi_{k}\right\|^{2} \lesssim \mathbb{E}\left\|\sum_{k} \gamma_{k} \xi_{k}\right\|^{2}
$$

where $\left(\gamma_{k}\right)$ is an independent sequence of standard Gaussians.

Observe, that families of operators obtained by composing operators from (a finite number of) other γ-bounded families are also γ-bounded. It follows from covariance domination and Fubini's theorem, that the family of operators $f \mapsto m f$ is γ-bounded on $L^{p}\left(\mathbb{R}^{n} ; X\right)$ whenever the multipliers m are chosen from a bounded set in $L^{\infty}\left(\mathbb{R}^{n}\right)$.

The following continuous-time result for γ-bounded families is common knowledge (to be found in Kalton and Weis [10]).

Lemma 2.1. Assume that X does not contain a closed subspace isomorphic to c_{0}. If the range of an X-strongly measurable function $A: M \rightarrow \mathcal{L}(X)$ is γ-bounded, then for every strongly measurable stochastically integrable function $f: M \rightarrow X$ the strongly measurable function $t \mapsto A(t) f(t): M \rightarrow X$ is also stochastically integrable and satisfies

$$
\mathbb{E}\left\|\int_{M} A(t) f(t) d W(t)\right\|^{2} \lesssim \mathbb{E}\left\|\int_{M} f(t) d W(t)\right\|^{2} .
$$

Recall that X-strong measurability of a function $A: M \rightarrow \mathcal{L}(X)$ requires $A(\cdot) \xi$: $M \rightarrow X$ to be strongly measurable for every $\xi \in X$. For simple functions $A: M \rightarrow \mathcal{L}(X)$ the lemma above is immediate from the definition of γ-boundedness and requires no assumption regarding containment of c_{0}, as the function $t \mapsto A(t) f(t): M \rightarrow X$ is also in $L^{2}(M) \otimes X$. Assuming A to be simple is anyhow too restrictive for applications and to consider nonsimple functions A we need to handle more general stochastically integrable functions than just those in $L^{2}(M) \otimes X$.

Our choice of (M, μ) will be the upper half-space $\mathbb{R}_{+}^{n+1}=\mathbb{R}^{n} \times(0, \infty)$ equipped with the measure $d y d t / t^{n+1}$. We will simplify our notation and write $\gamma(X)=\gamma\left(\mathbb{R}_{+}^{n+1} ; X\right)$; in what follows, stochastic integration is performed on \mathbb{R}_{+}^{n+1}.
2.3. The UMD property and averaging operators. It is often necessary to assume that our Banach space X is UMD. This has the crucial implication, known as Stein's inequality (see Bourgain [2] and Clément et al. [3]), that every increasing family of conditional expectation operators is γ-bounded on $L^{p}(X)$ whenever $1<p<\infty$. While this is proven in the given references only in the case of probability spaces, it can be generalized to the σ-finite case such as ours with no difficulty. Namely, let us consider filtrations on \mathbb{R}^{n} generated by systems of dyadic cubes, that is, by collections $\mathcal{D}=\bigcup_{k \in \mathbb{Z}} \mathcal{D}_{k}$, where each \mathcal{D}_{k} is a disjoint cover of \mathbb{R}^{n} consisting of cubes Q of the form $x_{Q}+\left[0,2^{-k}\right)^{n}$ and every $Q \in \mathcal{D}_{k}$ is a union of 2^{n} cubes in \mathcal{D}_{k+1}. The conditional expectation operators or averaging operators are then given for each integer k by

$$
f \mapsto \sum_{Q \in \mathcal{D}_{k}} 1_{Q} f_{Q} f, \quad f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n} ; X\right)
$$

Composing such an operator with multiplication by an indicator 1_{Q} of a dyadic cube Q, we arrive through Stein's inequality to the conclusion that the family $\left\{A_{Q}\right\}_{Q \in \mathcal{D}}$ of localized averaging operators

$$
A_{Q} f=1_{Q} f_{Q} f
$$

is γ-bounded on $L^{p}\left(\mathbb{R}^{n} ; X\right)$ whenever $1<p<\infty$. The following result of Mei [11] allows us to replace dyadic cubes by balls.
Lemma 2.2. There exist $n+1$ systems of dyadic cubes such that every ball B is contained in a dyadic cube Q_{B} from one of the systems and $|B| \lesssim\left|Q_{B}\right|$.

Stein's inequality together with the lemma above guarantees that the family $\left\{A_{B}: B\right.$ ball in $\left.\mathbb{R}^{n}\right\}$ is γ-bounded on $L^{p}\left(\mathbb{R}^{n} ; X\right)$ whenever $1<p<\infty$. Indeed, for each ball B we can write

$$
A_{B}=1_{B} \frac{\left|Q_{B}\right|}{|B|} A_{Q_{B}} 1_{B}
$$

This was proven already in [7].
It will be useful to consider smoothed or otherwise different versions of indicators $1_{B}(x)=1_{[0,1)}\left(\left|x-x_{B}\right| / r_{B}\right)$. Given a measurable $\psi:[0, \infty) \rightarrow \mathbb{R}$ with $1_{[0,1)} \leq|\psi| \leq 1_{[0, \alpha)}$ for some $\alpha>1$, we define the averaging operators

$$
A_{y, t}^{\psi} f(x)=\psi\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n}} \int_{\mathbb{R}^{n}} \psi\left(\frac{|z-y|}{t}\right) f(z) d z, \quad x \in \mathbb{R}^{n}
$$

where

$$
c_{\psi}=\int_{\mathbb{R}^{n}} \psi(|x|)^{2} d x .
$$

Again, under the assumption that X is UMD and $1<p<\infty$, the γ-boundedness of the family $\left\{A_{y, t}^{\psi}:(y, t) \in \mathbb{R}_{+}^{n+1}\right\}$ of operators on $L^{p}\left(\mathbb{R}^{n} ; X\right)$ follows at once when we write

$$
A_{y, t}^{\psi}=\psi\left(\frac{|\cdot-y|}{t}\right) \frac{\left|Q_{B(y, \alpha t)}\right|}{c_{\psi} t^{n}} A_{Q_{B(,, \alpha t}} \psi\left(\frac{|\cdot-y|}{t}\right) .
$$

Observe, that the function $(y, t) \mapsto A_{y, t}^{\psi}$ from \mathbb{R}_{+}^{n+1} to $\mathcal{L}\left(L^{p}\left(\mathbb{R}^{n} ; X\right)\right)$ is $L^{p}\left(\mathbb{R}^{n} ; X\right)$ strongly measurable. Recall also that every UMD space is K-convex and cannot contain a closed subspace isomorphic to c_{0}.

3. Overview of tent spaces

3.1. Tent spaces $\boldsymbol{T}^{p}(\boldsymbol{X})$. Let us equip the upper half-space \mathbb{R}_{+}^{n+1} with the measure $d y d t / t^{n+1}$ and a Gaussian random measure W. Recall the definition of the cone $\Gamma(x)=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:|x-y|<t\right\}$ at $x \in \mathbb{R}^{n}$.

Let $1 \leq p<\infty$. We wish to define a norm on the space of functions $f: \mathbb{R}_{+}^{n+1} \rightarrow X$ for which $1_{\Gamma(x)} f \in L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for almost every $x \in \mathbb{R}^{n}$ by

$$
\|f\|_{T^{p}(X)}=\left(\int_{\mathbb{R}^{n}}\left(\mathbb{E}\left\|\int_{\Gamma(x)} f d W\right\|^{2}\right)^{p / 2} d x\right)^{1 / p}
$$

and use the Khintchine-Kahane inequality to write

$$
\|f\|_{T^{p}(X)} \approx\left(\mathbb{E}\left\|\int_{\Gamma(\cdot)} f d W\right\|_{L^{p}\left(\mathbb{R}^{n} ; X\right)}^{p}\right)^{1 / p}
$$

but issues concerning measurability need closer inspection.

Lemma 3.1. Suppose that $f: \mathbb{R}_{+}^{n+1} \rightarrow X$ is such that $1_{\Gamma(x)} f \in L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for almost every $x \in \mathbb{R}^{n}$. Then:
(1) the function $x \mapsto 1_{\Gamma(x)} f$ is strongly measurable from \mathbb{R}^{n} to $\gamma(X)$;
(2) the function $x \mapsto \int_{\Gamma(x)} f d W$ is strongly measurable from \mathbb{R}^{n} to $L^{2}(\mathbb{P} ; X)$ and may be considered, when $\|f\|_{T^{p}(X)}<\infty$, as a random $L^{p}\left(\mathbb{R}^{n} ; X\right)$ function;
(3) the function $x \mapsto\left(\mathbb{E}\left\|\int_{\Gamma(x)} f d W\right\|^{2}\right)^{1 / 2}$ agrees almost everywhere with a lower semicontinuous function so that the set

$$
\left\{x \in \mathbb{R}^{n}:\left(\mathbb{E}\left\|\int_{\Gamma(x)} f d W\right\|^{2}\right)^{1 / 2}>\lambda\right\}
$$

is open whenever $\lambda>0$.
Proof. Denote by A_{k} the set $\left\{(y, t) \in \mathbb{R}_{+}^{n+1}: t>1 / k\right\}$ and write $f_{k}=1_{A_{k}} f$. It is clear that for each positive integer k, the functions $x \mapsto 1_{\Gamma(x)} f_{k}$ and $x \mapsto \int_{\Gamma(x)} f_{k} d W$ are strongly measurable and continuous since

$$
\mathbb{E}\left\|\int_{\Gamma(x) \Delta \Gamma\left(x^{\prime}\right)} f_{k} d W\right\|^{2} \rightarrow 0, \quad \text { as } \quad x \rightarrow x^{\prime}
$$

Furthermore, $1_{\Gamma(x)} f_{k} \rightarrow 1_{\Gamma(x)} f$ in $\gamma(X)$ for almost every $x \in \mathbb{R}^{n}$ since

$$
\mathbb{E}\left\|\int_{\Gamma(x)}\left(f-f_{k}\right) d W\right\|^{2}=\mathbb{E}\left\|\int_{\Gamma(x) \backslash A_{k}} f d W\right\|^{2} \rightarrow 0 .
$$

Consequently, $x \mapsto 1_{\Gamma(x)} f$ and $x \mapsto \int_{\Gamma(x)} f d W$ are strongly measurable. Moreover, the pointwise limit of an increasing sequence of real-valued continuous functions is lower semicontinuous, which proves the third claim.

Defintition 3.2. Let $1 \leq p<\infty$. The tent space $T^{p}(X)$ is defined as the completion under $\|\cdot\|_{T^{p}(X)}$ of the space of (equivalence classes of) functions $\mathbb{R}_{+}^{n+1} \rightarrow X$ (in what follows, ' $T^{p}(X)$ functions') such that $1_{\Gamma(x)} f \in L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for almost every x in \mathbb{R}^{n} and $\|f\|_{T^{p}(X)}<\infty$.

As was mentioned in the previous section, it is useful to consider the more general situation where the indicator of a ball is replaced by a measurable function $\phi:[0, \infty)$ $\rightarrow \mathbb{R}$ with $1_{[0,1)} \leq|\phi| \leq 1_{[0, \alpha)}$ for some $\alpha>1$. Let us assume, in addition, that ϕ is continuous at zero. For functions $f: \mathbb{R}_{+}^{n+1} \rightarrow X$ such that $(y, t) \mapsto \phi(|x-y| / t) f(y, t) \in$ $L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for almost every $x \in \mathbb{R}^{n}$, the strong measurability of

$$
x \mapsto\left((y, t) \mapsto \phi\left(\frac{|x-y|}{t}\right) f(y, t)\right) \quad \text { and } \quad x \mapsto \int_{\Gamma(x)} \phi\left(\frac{|x-y|}{t}\right) f(y, t) d W(y, t)
$$

are treated as in the case of $\phi(|x-y| / t)=1_{[0,1)}(|x-y| / t)=1_{\Gamma(x)}(y, t)$.
3.2. Embedding $T^{p}(X)$ into $L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)$. A collection of results from the paper [7] by Hytönen, van Neerven and Portal is presented next. Following the idea of Harboure, Torrea and Viviani [5], the tent spaces are embedded into L^{p} spaces of $\gamma(X)$-valued functions by

$$
J f(x)=1_{\Gamma(x)} f, \quad x \in \mathbb{R}^{n} .
$$

Furthermore, for simple $L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$-valued functions F on \mathbb{R}^{n} we define an operator N by

$$
(N F)(x ; y, t)=1_{B(y, t)}(x) f_{B(y, t)} F(z ; y, t) d z, \quad x \in \mathbb{R}^{n},(y, t) \in \mathbb{R}_{+}^{n+1}
$$

Assuming that X is UMD, we can now view $T^{p}(X)$ as a complemented subspace of $L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)$:

Theorem 3.3. Suppose that X is UMD and let $1<p<\infty$. Then N extends to a bounded projection on $L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ and J extends to an isometry from $T^{p}(X)$ onto the image of $L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ under N.

The following result shows the comparability of different tent space norms.
Theorem 3.4. Suppose that X is UMD, let $1<p<\infty$ and let $1_{[0,1)} \leq|\phi| \leq 1_{[0, \alpha)}$. For every function f in $T^{p}(X)$ the function $(y, t) \mapsto \phi(|x-y| / t) f(y, t)$ is stochastically integrable for almost every $x \in \mathbb{R}^{n}$ and

$$
\int_{\mathbb{R}^{n}} \mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}} \phi\left(\frac{|x-y|}{t}\right) f(y, t) d W(y, t)\right\|^{p} d x \approx \int_{\mathbb{R}^{n}} \mathbb{E}\left\|\int_{\Gamma(x)} f d W\right\|^{p} d x
$$

The proof relies on the boundedness of modified projection operators

$$
\left(N_{\phi} F\right)(x ; y, t)=\phi\left(\frac{|x-y|}{t}\right) f_{B(y, t)} F(z ; y, t) d z, \quad x \in \mathbb{R}^{n},(y, t) \in \mathbb{R}_{+}^{n+1}
$$

and the observation that the embedding

$$
J_{\phi} f(x ; y, t)=\phi\left(\frac{|x-y|}{t}\right) f(y, t), \quad x \in \mathbb{R}^{n},(y, t) \in \mathbb{R}_{+}^{n+1} .
$$

can be written as $J_{\phi} f=N_{\phi} J f$. In particular, this shows that the norms given by cones of different apertures are comparable. Indeed, choosing $\phi=1_{[0, \alpha)}$ gives the norm where $\Gamma(x)$ is replaced by the cone $\Gamma_{\alpha}(x)=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}:|x-y|<\alpha t\right\}$ with aperture $\alpha>1$.

Identification of tent spaces $T^{p}(X)$ with complemented subspaces of $L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ gives a powerful way to deduce their duality.

Theorem 3.5. Suppose that X is UMD and let $1<p<\infty$. Then the dual of $T^{p}(X)$ is $T^{p^{\prime}}\left(X^{*}\right)$, where $1 / p+1 / p^{\prime}=1$, and the duality is realized for functions $f \in T^{p}(X)$ and $g \in T^{p^{\prime}}\left(X^{*}\right)$ via

$$
\langle f, g\rangle=c_{n} \int_{\mathbb{R}_{+}^{n+1}}\langle f(y, t), g(y, t)\rangle \frac{d y d t}{t}
$$

where c_{n} is the volume of the unit ball in \mathbb{R}^{n}.

The following theorem combines results from [7, Theorem 4.8] and [8, Corollary 4.3 and Theorem 1.3]. The tent space $T^{\infty}(X)$ is defined in the next section.

Theorem 3.6. Suppose that X is UMD and let Ψ be a Schwartz function with vanishing integral. Then the operator

$$
T_{\Psi} f(y, t)=\Psi_{t} * f(y)
$$

is bounded from $L^{p}\left(\mathbb{R}^{n} ; X\right)$ to $T^{p}(X)$ whenever $1<p<\infty$, from $H^{1}\left(\mathbb{R}^{n} ; X\right)$ to $T^{1}(X)$ and from $\operatorname{BMO}\left(\mathbb{R}^{n} ; X\right)$ to $T^{\infty}(X)$.

4. Tent spaces $T^{1}(X)$ and $T^{\infty}(X)$

Having completed our overview of tent spaces $T^{p}(X)$ with $1<p<\infty$ we turn to the endpoint cases $p=1$ and $p=\infty$, of which the latter remains to be defined. As for the case $p=1$, our aim is to show that $T^{1}(X)$ is isomorphic to a complemented subspace of the Hardy space $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ of $\gamma(X)$-valued functions on \mathbb{R}^{n}. In the case $p=\infty$, we introduce the space $T^{\infty}(X)$, which is shown to embed in $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma(X)\right)$, that is, the space of $\gamma(X)$-valued functions whose mean oscillation is bounded. The idea of these embeddings was originally put forward by Harboure et al. in the scalar-valued case (see [5]).

Recall that the tent over an open set $E \subset \mathbb{R}^{n}$ is defined by $\widehat{E}=\left\{(y, t) \in \mathbb{R}_{+}^{n+1}\right.$: $B(y, t) \subset E\}$ or equivalently by

$$
\widehat{E}=\mathbb{R}_{+}^{n+1} \mid \bigcup_{x \notin E} \Gamma(x)
$$

Observe that while cones are open, tents are closed. Truncated cones are also needed: for $x \in \mathbb{R}^{n}$ and $r>0$ we define $\Gamma(x ; r)=\{(y, t) \in \Gamma(x): t<r\}$.

In [8] Hytönen and Weis adjusted the quantities that define scalar-valued atoms and T^{∞} functions in terms of tents to more suitable ones that rely on averages of square functions. More precisely for scalar-valued g on \mathbb{R}_{+}^{n+1} we have

$$
\begin{aligned}
\int_{B} \int_{\Gamma\left(x, r_{B}\right)}|g(y, t)|^{2} \frac{d y d t}{t^{n+1}} d x & =\int_{B} \int_{\mathbb{R}^{n} \times\left(0, r_{B}\right)} 1_{B(y, t)}(x)|g(y, t)|^{2} \frac{d y d t}{t^{n+1}} d x \\
& =\int_{0}^{r_{B}} \int_{2 B}|g(y, t)|^{2}|B \cap B(y, t)| \frac{d y d t}{t^{n+1}}
\end{aligned}
$$

from which one reads

$$
\int_{\widehat{B}}|g(y, t)|^{2} \frac{d y d t}{t} \lesssim \int_{B} \int_{\Gamma\left(x ; r_{B}\right)}|g(y, t)|^{2} \frac{d y d t}{t^{n+1}} d x \lesssim \int_{\widehat{3 B}}|g(y, t)|^{2} \frac{d y d t}{t} .
$$

This motivates the definition of a $T^{1}(X)$ atom as a function $a: \mathbb{R}_{+}^{n+1} \rightarrow X$ such that for some ball B we have supp $a \subset \widehat{B}, 1_{\Gamma(x)} a \in L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for almost every $x \in B$ and

$$
\int_{B} \mathbb{E}\left\|\int_{\Gamma(x)} a d W\right\|^{2} d x \leq \frac{1}{|B|}
$$

Then $1_{\Gamma(x)} a$ differs from zero only when $x \in B$ and so

$$
\|a\|_{T^{1}(X)}=\int_{\mathbb{R}^{n}}\left(\mathbb{E}\left\|\int_{\Gamma(x)} a d W\right\|^{2}\right)^{1 / 2} d x \leq|B|^{1 / 2}\left(\int_{B} \mathbb{E}\left\|\int_{\Gamma(x)} a d W\right\|^{2} d x\right)^{1 / 2} \leq 1
$$

Furthermore, for (equivalence classes of) functions $g: \mathbb{R}_{+}^{n+1} \rightarrow X$ such that $1_{\Gamma(x ; r)} g \in$ $L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for every $r>0$ and almost every $x \in \mathbb{R}^{n}$ we define

$$
\|g\|_{T^{\infty}(X)}=\sup _{B}\left(f_{B} \mathbb{E}\left\|\int_{\Gamma\left(x, r_{B}\right)} g d W\right\|^{2} d x\right)^{1 / 2}<\infty
$$

where the supremum is taken over all balls $B \subset \mathbb{R}^{n}$.
Definition 4.1. The tent space $T^{\infty}(X)$ is defined as the completion under $\|\cdot\|_{T^{\infty}(X)}$ of the space of (equivalence classes of) functions $g: \mathbb{R}_{+}^{n+1} \rightarrow X$ such that $1_{\Gamma(x ; r)} g \in$ $L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$ for every $r>0$ and almost every $x \in \mathbb{R}^{n}$ and for which $\|g\|_{T^{\infty}(X)}<\infty$.
4.1. The atomic decomposition. In an atomic decomposition, we aim to express a $T^{1}(X)$ function as an infinite sum of (multiples of) atoms. The original proof for scalar-valued tent spaces by Coifman, Meyer and Stein [4, Theorem 1(c)] rests on a lemma that allows one to exchange integration in the upper half-space with 'double integration', which is something unthinkable when 'double integration' consists of both standard and stochastic integration. The following argument provides a more geometrical reasoning. We start with a covering lemma.

Lemma 4.2. Suppose that an open set $E \subset \mathbb{R}^{n}$ has finite measure. Then there exist disjoint balls $B^{j} \subset E$ such that

$$
\widehat{E} \subset \bigcup_{j \geq 1} \widehat{5 B^{j}}
$$

Proof. We start by writing $d_{1}=\sup _{B \subset E} r_{B}$ and choosing a ball $B^{1} \subset E$ with radius $r_{1}>d_{1} / 2$. Then we proceed inductively: suppose that balls B^{1}, \ldots, B^{k} have been chosen and write

$$
d_{k+1}=\sup \left\{r_{B}: B \subset E, B \cap B^{j}=\emptyset, j=1, \ldots, k\right\} .
$$

If possible, we choose $B^{k+1} \subset E$ with radius $r_{k+1}>d_{k+1} / 2$ so that B^{k+1} is disjoint from all B^{1}, \ldots, B^{k}. Let then $(y, t) \in \widehat{E}$. In order to show that $B(y, t) \subset 5 B^{j}$ for some j we note that $B(y, t)$ has to intersect some B^{j} : indeed, if there are only finitely many balls B^{j}, then $y \in \overline{B^{j}}$ for some j. On the other hand, if there are infinitely many balls B^{j} and they are all disjoint from $B(y, t)$, then $r_{j}>d_{j} / 2>t / 2$ and E has infinite measure, which is a contradiction. Thus, there exists a j for which $B(y, t) \cap B^{j} \neq \emptyset$ and so $B(y, t) \subset 5 B^{j}$ because $t \leq d_{j} \leq 2 r_{j}$ by construction.

Given a $0<\lambda<1$, we define the extension of a measurable set $E \subset \mathbb{R}^{n}$ by

$$
E_{\lambda}^{*}=\left\{x \in \mathbb{R}^{n}: M 1_{E}(x)>\lambda\right\} .
$$

Here M is the Hardy-Littlewood maximal operator assigning the maximal function

$$
M f(x)=\sup _{B \ni x} f_{B}|f(y)| d y, \quad x \in \mathbb{R}^{n},
$$

to every locally integrable real-valued f. Note that the lower semicontinuity of $M f$ guarantees that E_{λ}^{*} is open while the weak $(1,1)$ inequality for the maximal operator assures us that $\left|E_{\lambda}^{*}\right| \leq \lambda^{-1}|E|$.

We continue by constructing sectors opening in finite number of directions of our choice. To do this, we fix vectors v_{1}, \ldots, v_{N} in the unit sphere \mathbb{S}^{n-1} of \mathbb{R}^{n} such that

$$
\max _{1 \leq m \leq N} v \cdot v_{m} \geq \frac{\sqrt{3}}{2}
$$

for every $v \in \mathbb{S}^{n-1}$. In other words, every $v \in \mathbb{S}^{n-1}$ makes an angle of no more than 30° with one of v_{m}. We write

$$
S_{m}=\left\{v \in \mathbb{S}^{n-1}: v \cdot v_{m} \geq \frac{\sqrt{3}}{2}\right\}
$$

and observe that the angle between two $v, v^{\prime} \in S_{m}$ is at most 60°, i.e. $v \cdot v^{\prime} \geq \frac{1}{2}$. Consequently, $\left|v-v^{\prime}\right| \leq 1$.

For every $x \in \mathbb{R}^{n}$ and $t>0$, write

$$
R_{m}(x, t)=\left\{y \in B(x, t): \frac{y-x}{|y-x|} \in S_{m} \text { or } y=x\right\}
$$

for the sector opening from x in the direction of v_{m}. For any two $y, y^{\prime} \in R_{m}(x, t)$, the angle between $y-x$ and $y^{\prime}-x$ is at most 60° (when y and y^{\prime} are different from x), implying that $\left|y-y^{\prime}\right| \leq t$. Hence the proportion of $R_{m}(x, t)$ in $B(y, t)$ for any $y \in R_{m}(x, t)$ is a dimensional constant, in symbols,

$$
\frac{\left|R_{m}(x, t)\right|}{|B(y, t)|}=c(n), \quad y \in R_{m}(x, t) .
$$

For every $0<\lambda<c(n)$ it thus holds that $M 1_{R_{m}(x, t)}>\lambda$ in $B(y, t)$ whenever $y \in R_{m}(x, t)$. Writing $E^{*}=E_{c(n) / 2}^{*}$ we have now proven the following result.
Lemma 4.3. If $E \subset \mathbb{R}^{n}$ is measurable and $y \in R_{m}(x, t) \subset E$, then $B(y, t) \subset E^{*}$.
Note that the next lemma follows easily when $n=1$ and holds even without the extension. Indeed, if E is an open interval in \mathbb{R} and $x \in E$, then one can choose x_{1} and x_{2} to be the endpoints of E and obtain $\Gamma(x) \backslash \widehat{E} \subset \Gamma\left(x_{1}\right) \cup \Gamma\left(x_{2}\right)$. On the other hand, for $n \geq 2$ the extension is necessary, which can be seen already by taking E to be an open ball.

Lemma 4.4. Suppose that an open set $E \subset \mathbb{R}^{n}$ has finite measure. Then for every $x \in E$ there exist $x_{1}, \ldots, x_{N} \in \partial E$, with N depending only on the dimension n, such that

$$
\Gamma(x) \backslash \widehat{E^{*}} \subset \bigcup_{m=1}^{N} \Gamma\left(x_{m}\right) .
$$

Proof. For every $1 \leq m \leq N$ we may pick $x_{m} \in \partial E$ in such a manner that

$$
\frac{x_{m}-x}{\left|x_{m}-x\right|} \in S_{m}
$$

and $\left|x_{m}-x\right|$, which we denote by t_{m}, is minimal (while positive, since E is open). In other words, $R_{m}\left(x, t_{m}\right) \subset E$. We need to show that for every $(y, t) \in \Gamma(x) \backslash \widehat{E^{*}}$ the point y is less than t away from one of the x_{m}. Thus, let $(y, t) \in \Gamma(x) \backslash \widehat{E^{*}}$, which translates to $|x-y|<t$ and $B(y, t) \not \subset E^{*}$.

Consider first the case of y not belonging to any $R_{m}\left(x, t_{m}\right)$. Then for some m,

$$
\frac{y-x}{|y-x|} \in S_{m} \quad \text { and } \quad|y-x| \geq t_{m} .
$$

Now the point

$$
z=t_{m} \frac{y-x}{|y-x|}+x
$$

sits in the line segment connecting x and y and satisfies $|z-x|=t_{m}$. Hence the calculation

$$
\begin{aligned}
\left|y-x_{m}\right| & \leq|y-z|+\left|z-x_{m}\right| \\
& =|y-z|+t_{m}\left|\frac{z-x}{t_{m}}-\frac{x_{m}-x}{t_{m}}\right| \\
& =|y-z|+|z-x|\left|\frac{z-x}{|z-x|}-\frac{x_{m}-x}{\left|x_{m}-x\right|}\right| \\
& \leq|y-z|+|z-x| \\
& =|y-x|<t,
\end{aligned}
$$

where we used the fact that $\left|v-v^{\prime}\right| \leq 1$ for any two $v, v^{\prime} \in S_{m}$, shows that $(y, t) \in \Gamma\left(x_{m}\right)$.
On the other hand, if $y \in R_{m}\left(x, t_{m}\right)$ for some m, then $\left|y-x_{m}\right| \leq t_{m}$, since the diameter of $R_{m}\left(x, t_{m}\right)$ does not exceed t_{m}. Also $B\left(y, t_{m}\right) \subset E^{*}$ by Lemma 4.3 so that $t_{m}<t$ since $B(y, t) \not \subset E^{*}$, which shows that $(y, t) \in \Gamma\left(x_{m}\right)$.

We are now ready to state and prove the atomic decomposition for $T^{1}(X)$ functions.
Theorem 4.5. For every function f in $T^{1}(X)$ there exist countably many atoms a_{k} and real numbers λ_{k} such that

$$
f=\sum_{k} \lambda_{k} a_{k} \quad \text { and } \quad \sum_{k}\left|\lambda_{k}\right| \lesssim\|f\|_{T^{1}(X)} .
$$

Proof. Let f be a function in $T^{1}(X)$ and write

$$
E_{k}=\left\{x \in \mathbb{R}^{n}:\left(\mathbb{E}\left\|\int_{\Gamma(x)} f d W\right\|^{2}\right)^{1 / 2}>2^{k}\right\}
$$

for each integer k. By Lemma 3.1, each E_{k} is open. For each k, apply Lemma 4.2 to the open set E_{k}^{*} in order to get disjoint balls $B_{k}^{j} \subset E_{k}^{*}$ for which

$$
\widehat{E_{k}^{*}} \subset \bigcup_{j \geq 1} \widehat{5 B_{k}^{j}}
$$

Further, for each of these covers, take a (rough) partition of unity, that is, a collection of functions χ_{k}^{j} for which

$$
0 \leq \chi_{k}^{j} \leq 1, \quad \sum_{j=1}^{\infty} \chi_{k}^{j}=1 \text { on } \widehat{E_{k}^{*}} \quad \text { and } \quad \operatorname{supp} \chi_{k}^{j} \subset \widehat{5 B_{k}^{j}} .
$$

For instance, one can define χ_{k}^{1} as the indicator of $\widehat{5 B_{k}^{1}}$ and χ_{k}^{j} for $j \geq 2$ as the indicator of

$$
\widehat{5 B_{k}^{j}} \mid \bigcup_{i=1}^{j-1} \widehat{5 B_{k}^{i}} .
$$

Write $A_{k}=\widehat{E_{k}^{*}} \backslash \widehat{E_{k+1}^{*}}$. We are now in the position to decompose f as

$$
f=\sum_{k \in \mathbb{Z}} 1_{A_{k}} f=\sum_{k \in \mathbb{Z}} \sum_{j \geq 1} \chi_{k}^{j} 1_{A_{k}} f=\sum_{k \in \mathbb{Z}} \sum_{j \geq 1} \lambda_{k}^{j} a_{k}^{j},
$$

where

$$
\lambda_{k}^{j}=\left|5 B_{k}^{j}\right|^{1 / 2}\left(\int_{5 B_{k}^{j}} \mathbb{E}\left\|\int_{\Gamma(x) \cap A_{k}} f d W\right\|^{2} d x\right)^{1 / 2} .
$$

Observe that $a_{k}^{j}=\chi_{k}^{j} 1_{A_{k}} f / \lambda_{k}^{j}$ is an atom supported in $\widehat{5 B_{k}^{j}}$.
It remains to estimate the sum of λ_{k}^{j}. For $x \notin E_{k+1}$,

$$
\mathbb{E}\left\|\int_{\Gamma(x) \cap A_{k}} f d W\right\|^{2} d x \leq 4^{k+1}
$$

by the definition of E_{k+1}. The cones at points $x \in E_{k+1}$ are the problematic ones and so in order to estimate λ_{k}^{j}, we need to exploit the fact that $1_{A_{k}} f$ vanishes on $\widehat{E_{k+1}^{*}}$. Let $x \in E_{k+1}$ and use Lemma 4.4 to pick $x_{1}, \ldots, x_{N} \in \partial E_{k+1}$, where $N \leq c^{\prime}(n)$, such that

$$
\Gamma(x) \backslash \widehat{E_{k+1}^{*}} \subset \bigcup_{m=1}^{N} \Gamma\left(x_{m}\right)
$$

Now $x_{1}, \ldots, x_{N} \notin E_{k+1}$ which allows us to estimate

$$
\mathbb{E}\left\|\int_{\Gamma(x) \cap A_{k}} f d W\right\|^{2} \leq\left(\sum_{m=1}^{N}\left(\mathbb{E}\left\|\int_{\Gamma\left(x_{m}\right)} f d W\right\|^{2}\right)^{1 / 2}\right)^{2} \leq N^{2} 4^{k+1} .
$$

Hence, integrating over $5 B_{k}^{j}$ we obtain

$$
\int_{5 B_{k}^{j}} \mathbb{E}\left\|\int_{\Gamma(x) \cap A_{k}} f d W\right\|^{2} d x \leq\left|5 B_{k}^{j}\right| c^{\prime}(n)^{2} 4^{k+1} .
$$

Consequently,

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \sum_{j \geq 1} \lambda_{k}^{j} & \leq c^{\prime}(n) \sum_{k \in \mathbb{Z}} 2^{k+1} \sum_{j \geq 1}\left|5 B_{k}^{j}\right| \\
& \leq c^{\prime}(n) 5^{n} \sum_{k \in \mathbb{Z}} 2^{k+1}\left|E_{k}^{*}\right| \\
& \leq c^{\prime}(n) \lambda(n)^{-1} 5^{n} \sum_{k \in \mathbb{Z}} 2^{k+1}\left|E_{k}\right| \\
& \leq c^{\prime}(n) \lambda(n)^{-1} 5^{n} \mid f \|_{T^{1}(X)} .
\end{aligned}
$$

It is perhaps surprising that the UMD assumption is not needed for the atomic decomposition.
4.2. Embedding $T^{1}(X)$ into $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ and $T^{\infty}(X)$ into $B M O\left(\mathbb{R}^{n} ; \gamma(X)\right)$. Armed with the atomic decomposition we proceed to the embeddings. Suppose that $\psi:[0, \infty) \rightarrow \mathbb{R}$ is smooth, that $1_{[0,1)} \leq|\psi| \leq 1_{[0, \alpha)}$ for some $\alpha>2$ and that $\int_{\mathbb{R}^{n}} \psi(|x|) d x=$ 0 . For functions $f: \mathbb{R}_{+}^{n+1} \rightarrow X$ we define

$$
J_{\psi} f(x ; y, t)=\psi\left(\frac{|x-y|}{t}\right) f(y, t), \quad x \in \mathbb{R}^{n},(y, t) \in \mathbb{R}_{+}^{n+1},
$$

and note immediately that $\int_{\mathbb{R}^{n}} J_{\psi} f(x) d x=0$.
Recall also that functions in the Hardy space $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ are composed of atoms $A: \mathbb{R}^{n} \rightarrow \gamma(X)$ each of which is supported on a ball $B \subset \mathbb{R}^{n}$, has zero integral and satisfies

$$
\int_{B} \mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}} A(x ; y, t) d W(y, t)\right\|^{2} d x \leq \frac{1}{|B|} .
$$

For further references, see Blasco [1] and Hytönen [6].
Theorem 4.6. Suppose that X is UMD. Then J_{ψ} embeds $T^{1}(X)$ into $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ and $T^{\infty}(X)$ into $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma(X)\right)$.

Proof. We argue that J_{ψ} takes $T^{1}(X)$ atoms to (multiples of) $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ atoms. If a $T^{1}(X)$ atom a is supported in \widehat{B} for some ball $B \subset \mathbb{R}^{n}$, then $J_{\psi} a$ is supported in αB and $\int J_{\psi} a=0$. Moreover, since X is UMD, we may use the equivalence of $T^{2}(X)$ norms (Theorem 3.4) and write

$$
\int_{\alpha B} \mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}} \psi\left(\frac{|x-y|}{t}\right) a(y, t) d W(y, t)\right\|^{2} d x \lesssim \int_{B} \mathbb{E}\left\|\int_{\Gamma(x)} a d W\right\|^{2} d x \leq \frac{1}{|B|} .
$$

The boundedness of J_{ψ} from $T^{1}(X)$ to $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ follows. In addition, since $1_{[0,1)} \leq|\psi|$, it follows that $\|f\|_{T^{1}(X)} \leq\left\|J_{\psi} f\right\|_{L^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)} \leq\left\|J_{\psi} f\right\|_{H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)}$ and so J_{ψ} is also bounded from below.

To see that J_{ψ} maps $T^{\infty}(X)$ boundedly into $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma(X)\right)$, we need to show that

$$
\left(f_{B} \mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}}\left(J_{\psi} g(x ; y, t)-f_{B} J_{\psi} g(z ; y, t) d z\right) d W(y, t)\right\|^{2} d x\right)^{1 / 2} \lesssim\|g\|_{T^{\infty}(X)}
$$

for all balls $B \subset \mathbb{R}^{n}$. We partition the upper half-space into $\mathbb{R}^{n} \times\left(0, r_{B}\right)$ and the sets $A_{k}=\mathbb{R}^{n} \times\left[2^{k-1} r_{B}, 2^{k} r_{B}\right)$ for positive integers k and study each piece separately.

On $\mathbb{R}^{n} \times\left(0, r_{B}\right)$,

$$
\begin{aligned}
\left(f_{B} \mathbb{E}\left\|\int_{\mathbb{R}^{n} \times\left(0, r_{B}\right)} \psi\left(\frac{|z-y|}{t}\right) g(y, t) d W(y, t)\right\|^{2} d z\right)^{1 / 2} & \leq\left(f_{B} \mathbb{E}\left\|\int_{\Gamma_{\alpha}\left(x ; r_{B}\right)} g d W\right\|^{2} d x\right)^{1 / 2} \\
& \lesssim\|g\|_{T^{\infty}}
\end{aligned}
$$

since $|\psi| \leq 1_{[0, \alpha)}$ and the $T^{2}(X)$ norms are comparable (Theorem 3.4). Furthermore, as one can justify by approximating ψ with simple functions,

$$
\begin{aligned}
& \left(\mathbb{E}\left\|\int_{\mathbb{R}^{n} \times\left(0, r_{B}\right)} g(y, t) f_{B} \psi\left(\frac{|z-y|}{t}\right) d z d W(y, t)\right\|^{2}\right)^{1 / 2} \\
& \quad \leq\left(f_{B} \mathbb{E}\left\|\int_{\mathbb{R}^{n} \times\left(0, r_{B}\right)} \psi\left(\frac{|z-y|}{t}\right) g(y, t) d W(y, t)\right\|^{2} d z\right)^{1 / 2}
\end{aligned}
$$

which can be estimated from above by $\|g\|_{T^{\infty}}$, as above.
For each k and $x \in B$, we claim that

$$
\left|f_{B}\left(\psi\left(\frac{|x-y|}{t}\right)-\psi\left(\frac{|z-y|}{t}\right)\right) d z\right| \lesssim 2^{-k} 1_{\Gamma_{\alpha+2}(x)}(y, t),
$$

whenever $(y, t) \in A_{k}$. Indeed, if $(y, t) \in A_{k} \cap \Gamma_{\alpha+2}(x)$, we may use the fact that

$$
\left|\psi\left(\frac{|x-y|}{t}\right)-\psi\left(\frac{|z-y|}{t}\right)\right| \lesssim \sup \left|\psi^{\prime}\right| \frac{|x-z|}{t} \lesssim \frac{r_{B}}{2^{k} r_{B}}=2^{-k}
$$

for all $z \in B$, while for $(y, t) \in A_{k} \backslash \Gamma_{\alpha+2}(x)$ we have $|y-x| \geq(\alpha+2) t \geq \alpha t+2 r_{B}$ so that $|y-z| \geq|y-x|-|x-z| \geq \alpha t$ for each $z \in B$, which results in

$$
\int_{B}\left(\psi\left(\frac{|x-y|}{t}\right)-\psi\left(\frac{|z-y|}{t}\right)\right) d z=0 .
$$

This gives

$$
\begin{aligned}
& \left(f_{B} \mathbb{E}\left\|\int_{A_{k}} \frac{g(y, t)}{|B|} \int_{B}\left(\psi\left(\frac{|x-y|}{t}\right)-\psi\left(\frac{|z-y|}{t}\right)\right) d z d W(y, t)\right\|^{2} d x\right)^{1 / 2} \\
& \quad \leq 2^{-k}\left(f_{B} \mathbb{E}\left\|\int_{A_{k} \cap \Gamma_{\alpha+2}(x)} g d W\right\|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

But every $A_{k} \cap \Gamma_{\alpha+2}(x)$ with $x \in B$ is contained in any $\Gamma_{\alpha+6}(z)$ with $z \in 2^{k} B$. Indeed, for all $(y, t) \in A_{k} \cap \Gamma_{\alpha+2}(x)$,

$$
|y-z| \leq|y-x|+|x-z| \leq(\alpha+2) t+\left(2^{k}+1\right) r_{B} \leq(\alpha+6) t
$$

Hence,

$$
f_{B} \mathbb{E}\left\|\int_{A_{k} \cap \Gamma_{\alpha+2}(x)} g d W\right\|^{2} d x \leq f_{2^{k} B} \mathbb{E}\left\|\int_{\Gamma_{\alpha+6}(z)} g d W\right\|^{2} d z
$$

Summing up, we obtain

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left(f_{B} \mathbb{E}\left\|\int_{A_{k}} g(y, t) f_{B}\left(\psi\left(\frac{|x-y|}{t}\right)-\psi\left(\frac{|z-y|}{t}\right)\right) d z d W(y, t)\right\|^{2} d x\right)^{1 / 2} \\
& \quad \leq \sum_{k=1}^{\infty} 2^{-k}\left(f_{2^{k} B} \mathbb{E}\left\|\int_{\Gamma_{\alpha+6}(z)} g d W\right\|^{2} d z\right)^{1 / 2} \\
& \quad \leq\|g\|_{T^{\infty}(X) .}
\end{aligned}
$$

To see that $\|g\|_{T^{\infty}(X)} \lesssim\left\|J_{\psi} g\right\|_{\text {BMO }\left(\mathbb{R}^{n} ; \gamma(X)\right)}$ it suffices to fix a ball $B \subset \mathbb{R}^{n}$ and show, that for every $x \in B$,

$$
1_{\Gamma\left(x, r_{B}\right)}(y, t) \leq\left|\psi\left(\frac{|x-y|}{t}\right)-f_{(\alpha+2) B} \psi\left(\frac{|z-y|}{t}\right) d z\right|,
$$

since this gives us

$$
\begin{aligned}
f_{B} \mathbb{E}\left\|\int_{\Gamma\left(x, r_{B}\right)} g d W\right\|^{2} d x & \leq f_{B} \mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}} g(y, t)\left(\psi\left(\frac{|x-y|}{t}\right)-f_{(\alpha+2) B} \psi\left(\frac{|z-y|}{t}\right) d z\right)\right\|^{2} d x \\
& \leq(\alpha+2)^{n}\left\|J_{\psi} g\right\|_{\mathrm{BMO}\left(\mathbb{R}^{n} ; \gamma(X)\right) .}
\end{aligned}
$$

Now that $1_{[0,1)} \leq|\psi|$ and $\int_{\mathbb{R}^{n}} \psi(|x|) d x=0$, it is enough to prove for a fixed $x \in B$, that

$$
\operatorname{supp} \psi\left(\frac{|\cdot-y|}{t}\right) \subset(\alpha+2) B
$$

for every $(y, t) \in \Gamma\left(x ; r_{B}\right)$, i.e. that $B(y, \alpha t) \subset(\alpha+2) B$ whenever $|x-y|<t<r_{B}$. This is indeed true, as every $z \in B(y, \alpha t)$ satisfies

$$
|z-x| \leq|z-y|+|y-x|<(\alpha+1) r_{B} .
$$

We have established that, also in this case, J_{ψ} is bounded from below.
It follows that different $T^{1}(X)$ norms are equivalent in the sense that whenever $1_{[0,1)} \leq|\phi| \leq 1_{[0, \alpha)}$ for some $\alpha>1$, we can take smooth $\psi:[0, \infty) \rightarrow \mathbb{R}$ with $|\phi| \leq|\psi| \leq$ $1_{[0,2 \alpha)}$ to obtain

$$
\|f\|_{T^{1}(X)} \leq\left\|J_{\phi} f\right\|_{L^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)} \leq\left\|J_{\psi} f\right\|_{L^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)} \leq\left\|J_{\psi} f\right\|_{H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)} \lesssim\|f\|_{T^{1}(X)}
$$

To identify $T^{1}(X)$ as a complemented subspace of $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ we define a projection first on the level of test functions. Let us write

$$
T(X)=\left\{f: \mathbb{R}_{+}^{n+1} \rightarrow X: 1_{\Gamma(x)} f \in L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X \text { for almost every } x \in \mathbb{R}^{n}\right\}
$$

and

$$
\begin{gathered}
S(\gamma(X))=\operatorname{span}\left\{F: \mathbb{R}^{n} \times \mathbb{R}_{+}^{n+1} \rightarrow X: F(x ; y, t)=\Psi(x ; y, t) f(y, t)\right. \\
\text { for some } \left.\Psi \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}_{+}^{n+1}\right) \text { and } f \in T(X)\right\} .
\end{gathered}
$$

Observe that J_{ψ} maps $T(X)$ into $S(\gamma(X))$ and that $S(\gamma(X))$ intersects $L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ densely for all $1<p<\infty$ and likewise for $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$.

For F in $S(\gamma(X))$ we define

$$
\left(N_{\psi} F\right)(x ; y, t)=\psi\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n}} \int_{\mathbb{R}^{n}} \psi\left(\frac{|z-y|}{t}\right) F(z ; y, t) d z,
$$

where $c_{\psi}=\int_{\mathbb{R}^{n}} \psi(|x|)^{2} d x$. Now N_{ψ} is a projection and satisfies $N_{\psi} J_{\psi}=J_{\psi}$. Also, for every $F \in S(\gamma(X))$ we find an $f \in T(X)$ so that $N_{\psi} F=J_{\psi} f$, namely

$$
f(y, t)=\frac{1}{c_{\psi} t^{n}} \int_{\mathbb{R}^{n}} \psi\left(\frac{|z-y|}{t}\right) F(z ; y, t) d z, \quad(y, t) \in \mathbb{R}_{+}^{n+1} .
$$

Theorem 4.7. Suppose that X is UMD. Then N_{ψ} extends to a bounded projection on $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ and J_{ψ} extends to an isomorphism from $T^{1}(X)$ onto the image of $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ under N_{ψ}.
Proof. Let $1<p<\infty$. For simple $L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X$-valued functions F defined on \mathbb{R}^{n} the mapping $(y, t) \mapsto F(\cdot ; y, t): \mathbb{R}_{+}^{n+1} \rightarrow L^{p}\left(\mathbb{R}^{n} ; X\right)$ is in $L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes L^{p}\left(\mathbb{R}^{n} ; X\right)$ and we may express N_{ψ} using the averaging operators as

$$
\left(N_{\psi} F\right)(\cdot ; y, t)=A_{y, t}^{\psi}(F(\cdot ; y, t)) .
$$

Since X is UMD, Stein's inequality guarantees γ-boundedness for the range of the strongly $L^{p}\left(\mathbb{R}^{n} ; X\right)$-measurable function $(y, t) \mapsto A_{y, t}^{\psi}$, and so by Lemma 2.1,

$$
\mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}} A_{y, t}^{\psi}(F(\cdot ; y, t)) d W(y, t)\right\|_{L^{p}\left(\mathbb{R}^{n} ; X\right)}^{p} \lesssim \mathbb{E}\left\|\int_{\mathbb{R}_{+}^{n+1}} F(\cdot ; y, t) d W(y, t)\right\|_{L^{p}\left(\mathbb{R}^{n} ; X\right)}^{p} .
$$

In other words, $\left\|N_{\psi} F\right\|_{L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)}^{p} \lesssim\|F\|_{L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right)}^{p}$.
We wish to define a suitable $\mathcal{L}(\gamma(X))$-valued kernel K that allows us to express N_{ψ} as a Calderón-Zygmund operator

$$
N_{\psi} F(x)=\int_{\mathbb{R}^{n}} K(x, z) F(z) d z, \quad F \in L^{p}\left(\mathbb{R}^{n} ; \gamma(X)\right) .
$$

For distinct $x, z \in \mathbb{R}^{n}$ and we define $K(x, z)$ as multiplication by

$$
(y, t) \mapsto \psi\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n}} \psi\left(\frac{|z-y|}{t}\right),
$$

and so

$$
\|K(x, z)\|_{\mathcal{L}(\gamma(X))}=\sup _{(y, t) \in \mathbb{R}^{n+1}}\left|\psi\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n}} \psi\left(\frac{|z-y|}{t}\right)\right| .
$$

For $|x-z|>\alpha t$,

$$
\psi\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n}} \psi\left(\frac{|z-y|}{t}\right)=0
$$

while $|x-z| \leq \alpha t$ guarantees that

$$
\left|\psi\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n}} \psi\left(\frac{|z-y|}{t}\right)\right| \leq \frac{1}{c_{\psi} t^{n}} \leq \frac{\alpha^{n}}{c_{\psi}|x-z|^{n}} .
$$

Hence,

$$
\|K(x, z)\|_{\mathcal{L}(\gamma(X))} \lesssim \frac{1}{|x-z|^{\mid}} .
$$

Similarly,

$$
\left\|\nabla_{x} K(x, z)\right\|_{\mathcal{L}(\gamma(X))}=\sup _{(y, t) \in \mathbb{R}_{+}^{n+1}}\left|\psi^{\prime}\left(\frac{|x-y|}{t}\right) \frac{1}{c_{\psi} t^{n+1}} \psi\left(\frac{|z-y|}{t}\right)\right| \lesssim \frac{1}{|x-z|^{n+1}}
$$

Thus K is indeed a Calderón-Zygmund kernel.
Now $\int_{\mathbb{R}^{n}} \psi(|x|) d x=0$ implies that $\int_{\mathbb{R}^{n}} N_{\psi} F(x) d x=0$ for $F \in H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$, which guarantees that N_{ψ} maps $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ into itself (see Meyer and Coifman [12, Ch. 7, Section 4]).

We proceed to the question of duality of $T^{1}(X)$ and $T^{\infty}\left(X^{*}\right)$. Assuming that X is UMD, it is both reflexive and K-convex so that the duality

$$
H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)^{*} \simeq \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma(X)^{*}\right) \simeq \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)
$$

holds (recall the discussion in Section 2) and we may define the adjoint of N_{ψ} by $\left\langle F, N_{\psi}^{*} G\right\rangle=\left\langle N_{\psi} F, G\right\rangle$, where $F \in H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ and $G \in \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$. Moreover, as $T^{1}(X)$ is isomorphic to the image of $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ under N_{ψ}, its dual $T^{1}(X)^{*}$ is isomorphic to the image of $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$ under the adjoint N_{ψ}^{*} and the question arises whether the latter is isomorphic to $T^{\infty}\left(X^{*}\right)$. For J_{ψ} to give this isomorphism (and to be onto) one could try and follow the proof strategy of the case $1<p<\infty$ and give an explicit definition of N_{ψ}^{*} on a dense subspace of $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$. Even though the properties of the kernel K of N_{ψ} guarantee that N_{ψ}^{*} formally agrees with N_{ψ} on $L^{p}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$, it is problematic to find suitable dense subspaces of $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$.

In order to address these issues in more detail, we specify another pair of test function classes, namely

$$
\begin{aligned}
\widetilde{T}(X)= & \left\{g: \mathbb{R}_{+}^{n+1} \rightarrow X: 1_{\Gamma(x ; r)} g \in L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X \text { for every } r>0\right. \\
& \text { and for almost every } \left.x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{S}(\gamma(X))=\operatorname{span}\left\{G: \mathbb{R}^{n} \times \mathbb{R}_{+}^{n+1} \rightarrow X: G(x ; y, t)=\Psi(x ; y, t) g(y, t)\right. \\
& \\
& \left.\quad \text { for some } \Psi \in L^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}_{+}^{n+1}\right) \text { and } g \in \widetilde{T}(X)\right\} /\{\text { constant functions }\} .
\end{aligned}
$$

Since $\int_{\mathbb{R}^{n}} \psi(|x|) d x=0$, the projection N_{ψ} is well-defined on $\widetilde{S}(\gamma(X))$. Moreover, given any $G \in \widetilde{S}(\gamma(X))$ we can write

$$
g(y, t)=\frac{1}{c_{\psi} t^{n}} \int_{\mathbb{R}^{n}} \psi\left(\frac{|z-y|}{t}\right) G(z ; y, t) d z
$$

to define a function $g \in \widetilde{T}(X)$ for which $N_{\psi} G=J_{\psi} g$. But $\widetilde{S}(\gamma(X))$ has only weak*dense intersection with $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ (recall that $\left.X \simeq X^{* *}\right)$. Nevertheless, J_{ψ} is an isomorphism from $T^{\infty}(X)$ onto the closure of the image of $\widetilde{S}(\gamma(X)) \cap \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ under N_{ψ}. It is not clear whether test functions are dense in the closure of their image under the projection.

The following relaxed duality result is still valid.
Theorem 4.8. Suppose that X is UMD. Then $T^{\infty}\left(X^{*}\right)$ isomorphic to a norming subspace of $T^{1}(X)^{*}$ and its action is realized for functions $f \in T^{1}(X)$ and $g \in T^{\infty}\left(X^{*}\right)$ via

$$
\langle f, g\rangle=c \int_{\mathbb{R}_{+}^{n+1}}\langle f(y, t), g(y, t)\rangle \frac{d y d t}{t}
$$

where c depends on the dimension n.
Proof. Fix a smooth $\psi:[0, \infty) \rightarrow \mathbb{R}$ such that $1_{[0,1)} \leq|\psi| \leq 1_{[0, \alpha)}$ for some $\alpha>2$ and $\int_{\mathbb{R}^{n}} \psi(|x|) d x=0$. By Theorem 4.7, $T^{1}(X)$ is isomorphic to the image of $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$ under N_{ψ}, from which it follows that the dual $T^{1}(X)^{*}$ is isomorphic to the image of $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$ under the adjoint projection N_{ψ}^{*}, which formally agrees with N_{ψ}. The space $T^{\infty}\left(X^{*}\right)$, on the other hand, is isomorphic to the closure of the image of $\widetilde{S}\left(\gamma\left(X^{*}\right)\right) \cap \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$ under N_{ψ} in $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$ and hence is a closed subspace of $T^{1}(X)^{*}$. We can pair a function $f \in T^{1}(X)$ with a function $g \in T^{\infty}\left(X^{*}\right)$ using the pairing of $J_{\psi} f$ and $J_{\psi} g$ and the atomic decomposition of f to obtain

$$
\begin{aligned}
\langle f, g\rangle=\sum_{k}\left\langle J_{\psi} a_{k}, J_{\psi} g\right\rangle & =\sum_{k} \lambda_{k} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}_{+}^{n+1}} \psi\left(\frac{|x-y|}{t}\right)^{2}\left\langle a_{k}(y, t), g(y, t)\right\rangle \frac{d y d t}{t^{n+1}} \\
& =c_{n} c_{\psi} \sum_{k} \lambda_{k} \int_{\mathbb{R}_{+}^{n+1}}\left\langle a_{k}(y, t), g(y, t)\right\rangle \frac{d y d t}{t} \\
& =c_{n} c_{\psi} \int_{\mathbb{R}_{+}^{n+1}}\langle f(y, t), g(y, t)\rangle \frac{d y d t}{t},
\end{aligned}
$$

where c_{n} denotes the volume of the unit ball in \mathbb{R}^{n}. The space $L^{\infty}\left(\mathbb{R}^{n}\right) \otimes L^{2}\left(\mathbb{R}_{+}^{n+1}\right) \otimes X^{*}$ is weak*-dense in $\operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$ and hence a norming subspace for $H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)$. As it is contained in $\widetilde{S}\left(\gamma\left(X^{*}\right)\right) \cap \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$, we obtain

$$
\begin{aligned}
\|f\|_{T^{1}(X)} & \approx\left\|J_{\psi} f\right\|_{H^{1}\left(\mathbb{R}^{n} ; \gamma(X)\right)}=\sup _{G}\left|\left\langle J_{\psi} f, G\right\rangle\right|=\sup _{G}\left|\left\langle N_{\psi} J_{\psi} f, G\right\rangle\right| \\
& =\sup _{G}\left|\left\langle J_{\psi} f, N_{\psi}^{*} G\right\rangle\right| \approx \sup _{g}\left|\left\langle J_{\psi} f, J_{\psi} g\right\rangle\right|=\sup _{g} \mid\langle f, g\rangle,
\end{aligned}
$$

where the suprema are taken over $G \in \widetilde{S}\left(\gamma\left(X^{*}\right)\right) \cap \operatorname{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)$ with $\|G\|_{\mathrm{BMO}\left(\mathbb{R}^{n} ; \gamma\left(X^{*}\right)\right)} \leq 1$ and $g \in T^{\infty}\left(X^{*}\right)$ with $\|g\|_{T^{\infty}\left(X^{*}\right)} \leq 1$.

Acknowledgements

I would like to thank Tuomas Hytönen, Jan van Neerven, Hans-Olav Tylli and Mark Veraar for insightful comments and conversations.

References

[1] O. Blasco, 'Hardy spaces of vector-valued functions: duality', Trans. Amer. Math. Soc. 308 (1988), 495-507.
[2] J. Bourgain, 'Vector-valued singular integrals and the H^{1}-BMO duality', in: Probability Theory and Harmonic Analysis (Cleveland, Ohio, 1983), Monographs and Textbooks in Pure and Applied Mathematics, 98 (Dekker, New York, 1986), 1-19.
[3] P. Clément, B. de Pagter, F. A. Sukochev and H. Witvliet, 'Schauder decomposition and multiplier theorems', Studia Math. 138 (2000), 135-163.
[4] R. R. Coifman, Y. Meyer and E. M. Stein, 'Some new function spaces and their applications to harmonic analysis', J. Funct. Anal. 62(2) (1985), 304-335.
[5] E. Harboure, J. L. Torrea and B. E. Viviani, 'A vector-valued approach to tent spaces', J. Anal. Math. 56 (1991), 125-140.
[6] T. Hytönen, 'Vector-valued wavelets and the Hardy space $H^{1}\left(\mathbb{R}^{n}, X\right)$ ', Studia Math. 172 (2006), 125-147.
[7] T. Hytönen, J. M. A. M. van Neerven and P. Portal, ‘Conical square function estimates in UMD Banach spaces and applications to H^{∞}-functional calculi’, J. Anal. Math. 106 (2008), 317-351.
[8] T. Hytönen and L. Weis, 'The Banach space-valued BMO, Carleson's condition, and paraproducts', J. Fourier Anal. Appl. 16 495-513.
[9] S. Janson, Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, 129 (Cambridge University Press, Cambridge, 1997).
[10] N. Kalton and L. Weis, The H^{∞}-functional calculus and square function estimates, in preparation.
[11] T. Mei, 'BMO is the intersection of two translates of dyadic BMO', C. R. Math. Acad. Sci. Paris. 336 (2003), 1003-1006.
[12] Y. Meyer and R. R. Coifman, 'Wavelets', Calderón-Zygmund and multilinear operators, Translated from the 1990 and 1991 French originals by David Salinger, Cambridge Studies in Advanced Mathematics, 48 (Cambridge University Press, Cambridge, 1997).
[13] J. M. A. M. van Neerven, ' γ-radonifying operators-a survey', in: The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Proceedings of the Centre for Mathematics and its Applications, 44 (Australian National University, Canberra, 2010), 1-61.
[14] J. M. A. M. van Neerven and L. Weis, 'Stochastic integration of functions with values in a Banach space', Studia Math. 166 (2005), 131-170.
[15] J. Rosiński and Z. Suchanecki, 'On the space of vector-valued functions integrable with respect to the white noise’, Colloq. Math. 43 (1980), 183-201; 1981.

MIKKO KEMPPAINEN, Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2b, FI-00014 Helsinki, Finland e-mail: mikko.k.kemppainen@helsinki.fi

[^0]: I gratefully acknowledge the support from the Finnish National Graduate School in Mathematics and its Applications and from the Academy of Finland, grant 133264.
 (C) 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

