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Abstract

Tent spaces of vector-valued functions were recently studied by Hytönen, van Neerven and Portal with an
eye on applications to H∞-functional calculi. This paper extends their results to the endpoint cases p = 1
and p =∞ along the lines of earlier work by Harboure, Torrea and Viviani in the scalar-valued case. The
main result of the paper is an atomic decomposition in the case p = 1, which relies on a new geometric
argument for cones. A result on the duality of these spaces is also given.
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1. Introduction

Coifman et al. introduced in [4] the concept of tent spaces that provides a neat
framework for several ideas and techniques in harmonic analysis. In particular, they
defined the spaces T p, 1 ≤ p <∞, that are relevant for square functions, and consist of
functions f on the upper half-space Rn+1

+ for which the Lp norm of the conical square
function is finite: ∫

Rn

(∫
Γ(x)
| f (y, t)|2

dy dt
tn+1

)p/2
dx <∞,

where Γ(x) denotes the cone {(y, t) ∈ Rn+1
+ : |x − y| < t} at x ∈ Rn. Typical functions in

these spaces arise for instance from harmonic extensions u to Rn+1
+ of Lp functions on

Rn according to the formula f (y, t) = t∂tu(y, t).
Tent spaces were approached by Harboure et al. in [5] as Lp spaces of L2-valued

functions, which gave an abstract way to deduce many of their basic properties.
Indeed, for 1 < p < ∞, the mapping J f (x) = 1Γ(x) f is readily seen to embed T p in
Lp(Rn; L2(Rn+1

+ )), when Rn+1
+ is equipped with the measure dy dt/tn+1. Furthermore,

they showed that T p is embedded as a complemented subspace, which not only

I gratefully acknowledge the support from the Finnish National Graduate School in Mathematics and its
Applications and from the Academy of Finland, grant 133264.
c© 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 $16.00

107

https://doi.org/10.1017/S1446788714000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000123


108 M. Kemppainen [2]

implies its completeness, but also gives a way to prove a few other properties,
such as equivalence of norms defined by cones of different aperture and the duality
(T p)∗ ' T p′ , where 1/p + 1/p′ = 1.

Treatment of the endpoint cases p = 1 and p =∞ requires more careful inspection.
First, the space T∞ was defined in [4] as the space of functions g on Rn+1

+ for which

sup
B

1
|B|

∫
B̂
|g(y, t)|2

dy dt
t

<∞,

where the supremum is taken over all balls B ⊂ Rn and where B̂ ⊂ Rn+1
+ denotes the

‘tent’ over B (see Section 4). The tent space duality is now extended to the endpoint
case as (T 1)∗ ' T∞. Moreover, functions in T 1 admit a decomposition into atoms a
each of which is supported in B̂ for some ball B ⊂ Rn and satisfies∫

B̂
|a(y, t)|2

dy dt
t
≤

1
|B|
.

As for the embeddings, it is proven in [5] that T 1 embeds in the L2(Rn+1
+ )-valued

Hardy space H1(Rn; L2(Rn+1
+ )), while T∞ embeds in BMO(Rn; L2(Rn+1

+ )), the space
of L2(Rn+1

+ )-valued functions with bounded mean oscillation.
The study of vector-valued analogues of these spaces was initiated by Hytönen,

van Neerven and Portal in [7], where they followed the ideas from [5] and proved the
analogous embedding results for T p(X) with 1 < p <∞ under the assumption that X is
a Banach space with unconditional martingale differences (UMD). It should be noted
that, for non-Hilbertian X, the L2 integrals had to be replaced by stochastic integrals or
some equivalent objects, which in turn required further adjustments in proofs, namely
the lattice maximal functions that appeared in [5] were replaced by an appeal to Stein’s
inequality for conditional expectation operators. Later on, Hytönen and Weis provided
in [8] a scale of vector-valued versions of the quantity appearing above in the definition
of T∞.

This paper continues the work on the endpoint cases and provides definitions for
T 1(X) and T∞(X). The main result decomposes a T 1(X) function into atoms using
a geometric argument for cones. The original decomposition argument in [4] is
inherently scalar-valued and not as such suitable for stochastic integrals. Moreover,
the spaces T 1(X) and T∞(X) are embedded in certain Hardy and BMO spaces,
respectively, much in the spirit of [5]. The theory of vector-valued stochastic
integration (see van Neerven and Weis [14]) is used throughout the paper.

2. Preliminaries

2.1. Notation. Random variables are taken to be defined on a fixed probability space
whose probability measure and expectation are denoted by P and E. The integral
average (with respect to Lebesgue measure) over a measurable set A ⊂ Rn is written
as
>

A = |A|−1
∫

A, where |A| stands for the Lebesgue measure of A. For a ball B in Rn

we write xB and rB for its center and radius, respectively. Throughout the paper X is
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assumed to be a real Banach space and 〈ξ, ξ∗〉 is used to denote the duality pairing
between ξ ∈ X and ξ∗ ∈ X∗. Isomorphism of Banach spaces is expressed using '. By
α . β it is meant that there exists a constant C such that α ≤ Cβ. Quantities α and β
are comparable, α h β, if α . β and β . α.

2.2. Stochastic integration. We start by discussing the correspondence between
Gaussian random measures and stochastic integrals of real-valued functions. Recall
that a Gaussian random measure on a σ-finite measure space (M, µ) is a mapping W
that takes subsets of M with finite measure to (centered) Gaussian random variables in
such a manner that:

(i) the variance EW(A)2 = µ(A);
(ii) for all disjoint A and B the random variables W(A) and W(B) are independent

and W(A ∪ B) = W(A) + W(B) almost surely.

Since for Gaussian random variables the notions of independence and orthogonality
are equivalent, it suffices to consider their pairwise independence in the definition
above. Given a Gaussian random measure W, we obtain a linear isometry from L2(M)
to L2(P), our stochastic integral, by first defining

∫
M 1A dW = W(A) and then extending

by linearity and density to the whole of L2(M). On the other hand, if we are in
possession of such an isometry, we may define a Gaussian random measure W by
sending a subset A of M with finite measure to the stochastic integral of 1A. For more
details, see Janson [9, Ch. 7].

A function f : M→ X is said to be weakly L2 if 〈 f (·), ξ∗〉 is in L2(M) for all ξ∗ ∈ X∗.
Such a function is said to be stochastically integrable (with respect to a Gaussian
random measure W) if there exists a (unique) random variable

∫
M f dW in X so that

for all ξ∗ ∈ X∗ 〈∫
M

f dW, ξ∗
〉

=

∫
M
〈 f (t), ξ∗〉 dW(t) almost surely.

We also say that a function f is stochastically integrable over a measurable subset
A of M if 1A f is stochastically integrable. Note, in particular, that each function
f =

∑
k fk ⊗ ξk in the algebraic tensor product L2(M) ⊗ X is stochastically integrable

and that ∫
M

f dW =
∑

k

(∫
M

fk dW
)
ξk.

A detailed theory of vector-valued stochastic integration can be found in van Neerven
and Weis [14], see also Rosiński and Suchanecki [15]. Stochastic integrals have a
number of nice properties (see [14]).

(i) Khintchine–Kahane inequality: for every stochastically integrable f we have(
E

∥∥∥∥∥∫
M

f dW
∥∥∥∥∥p)1/p

h
(
E

∥∥∥∥∥∫
M

f dW
∥∥∥∥∥q)1/q

whenever 1 ≤ p, q <∞.
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(ii) Covariance domination: if a function g ∈ L2(M) ⊗ X is dominated by a function
f ∈ L2(M) ⊗ X in covariance, that is, if∫

M
〈g(t), ξ∗〉2 dµ(t) ≤

∫
M
〈 f (t), ξ∗〉2 dµ(t)

for all ξ∗ ∈ X∗, then

E

∥∥∥∥∥∫
M

g dW
∥∥∥∥∥2
≤ E

∥∥∥∥∥∫
M

f dW
∥∥∥∥∥2
.

(iii) Dominated convergence: if a sequence ( fk) of stochastically integrable functions
is dominated in covariance by a single stochastically integrable function and∫

M
〈 fk(t), ξ∗〉2 dµ(t)→ 0

for all ξ∗ ∈ X∗, then

E

∥∥∥∥∥∫
M

fk dW
∥∥∥∥∥2
→ 0.

In particular, if a sequence (Ak) of measurable sets satisfies 1Ak → 0 pointwise
almost everywhere, then for every f in L2(M) ⊗ X,

E

∥∥∥∥∥∫
Ak

f dW
∥∥∥∥∥2
→ 0.

The expression (
E

∥∥∥∥∥∫
M

f dW
∥∥∥∥∥2)1/2

defines a norm on the space of (equivalence classes of) strongly measurable
stochastically integrable functions f : M → X. However, the norm is not generally
complete, unless X is a Hilbert space. For convenience, we operate mainly with
functions in L2(M) ⊗ X and denote their completion under the norm above by γ(M; X).

This space can be identified with the space of γ-radonifying operators from L2(M)
to X (see [14] and the survey [13]). We note the following facts.

(i) Given an m ∈ L∞(M), the multiplication operator f 7→ m f on L2(M) ⊗ X has
norm ‖m‖L∞(M).

(ii) For K-convex X (see [13, Section 10]) the duality γ(M; X)∗ = γ(M; X∗) holds
and realizes for f ∈ L2(M) ⊗ X and g ∈ L2(M) ⊗ X∗ via

〈 f , g〉 =

∫
M
〈 f (t), g(t)〉 dµ(t).

A family T of operators inL(X) is said to be γ-bounded if for every finite collection
of operators Tk ∈ T and vectors ξk ∈ X,

E

∥∥∥∥∥∑
k

γkTkξk

∥∥∥∥∥2
. E

∥∥∥∥∥∑
k

γkξk

∥∥∥∥∥2
,

where (γk) is an independent sequence of standard Gaussians.
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Observe, that families of operators obtained by composing operators from (a finite
number of) other γ-bounded families are also γ-bounded. It follows from covariance
domination and Fubini’s theorem, that the family of operators f 7→ m f is γ-bounded
on Lp(Rn; X) whenever the multipliers m are chosen from a bounded set in L∞(Rn).

The following continuous-time result for γ-bounded families is common knowledge
(to be found in Kalton and Weis [10]).

Lemma 2.1. Assume that X does not contain a closed subspace isomorphic to c0.
If the range of an X-strongly measurable function A : M → L(X) is γ-bounded,
then for every strongly measurable stochastically integrable function f : M → X the
strongly measurable function t 7→ A(t) f (t) : M → X is also stochastically integrable
and satisfies

E

∥∥∥∥∥∫
M

A(t) f (t) dW(t)
∥∥∥∥∥2
. E

∥∥∥∥∥∫
M

f (t) dW(t)
∥∥∥∥∥2
.

Recall that X-strong measurability of a function A : M → L(X) requires A(·)ξ :
M→ X to be strongly measurable for every ξ ∈ X. For simple functions A : M→L(X)
the lemma above is immediate from the definition of γ-boundedness and requires no
assumption regarding containment of c0, as the function t 7→ A(t) f (t) : M → X is also
in L2(M) ⊗ X. Assuming A to be simple is anyhow too restrictive for applications
and to consider nonsimple functions A we need to handle more general stochastically
integrable functions than just those in L2(M) ⊗ X.

Our choice of (M, µ) will be the upper half-space Rn+1
+ = Rn × (0,∞) equipped with

the measure dy dt/tn+1. We will simplify our notation and write γ(X) = γ(Rn+1
+ ; X); in

what follows, stochastic integration is performed on Rn+1
+ .

2.3. The UMD property and averaging operators. It is often necessary to assume
that our Banach space X is UMD. This has the crucial implication, known as Stein’s
inequality (see Bourgain [2] and Clément et al. [3]), that every increasing family of
conditional expectation operators is γ-bounded on Lp(X) whenever 1 < p <∞. While
this is proven in the given references only in the case of probability spaces, it can
be generalized to the σ-finite case such as ours with no difficulty. Namely, let us
consider filtrations on Rn generated by systems of dyadic cubes, that is, by collections
D =

⋃
k∈ZDk, where each Dk is a disjoint cover of Rn consisting of cubes Q of the

form xQ + [0, 2−k)n and every Q ∈ Dk is a union of 2n cubes in Dk+1. The conditional
expectation operators or averaging operators are then given for each integer k by

f 7→
∑

Q∈Dk

1Q

?
Q

f , f ∈ L1
loc(Rn; X).

Composing such an operator with multiplication by an indicator 1Q of a dyadic cube
Q, we arrive through Stein’s inequality to the conclusion that the family {AQ}Q∈D of
localized averaging operators

AQ f = 1Q

?
Q

f ,

https://doi.org/10.1017/S1446788714000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000123


112 M. Kemppainen [6]

is γ-bounded on Lp(Rn; X) whenever 1 < p < ∞. The following result of Mei [11]
allows us to replace dyadic cubes by balls.

Lemma 2.2. There exist n + 1 systems of dyadic cubes such that every ball B is
contained in a dyadic cube QB from one of the systems and |B| . |QB|.

Stein’s inequality together with the lemma above guarantees that the family
{AB : B ball in Rn} is γ-bounded on Lp(Rn; X) whenever 1 < p < ∞. Indeed, for each
ball B we can write

AB = 1B
|QB|

|B|
AQB1B.

This was proven already in [7].
It will be useful to consider smoothed or otherwise different versions of indicators

1B(x) = 1[0,1)(|x − xB|/rB). Given a measurable ψ : [0,∞)→ R with 1[0,1) ≤ |ψ| ≤ 1[0,α)
for some α > 1, we define the averaging operators

Aψ
y,t f (x) = ψ

(
|x − y|

t

) 1
cψtn

∫
Rn
ψ
(
|z − y|

t

)
f (z) dz, x ∈ Rn,

where
cψ =

∫
Rn
ψ(|x|)2 dx.

Again, under the assumption that X is UMD and 1 < p <∞, the γ-boundedness of the
family {Aψ

y,t : (y, t) ∈ Rn+1
+ } of operators on Lp(Rn; X) follows at once when we write

Aψ
y,t = ψ

(
| · −y|

t

)
|QB(y,αt)|

cψtn AQB(y,αt)ψ
(
| · −y|

t

)
.

Observe, that the function (y, t) 7→ Aψ
y,t from Rn+1

+ to L(Lp(Rn; X)) is Lp(Rn; X)-
strongly measurable. Recall also that every UMD space is K-convex and cannot
contain a closed subspace isomorphic to c0.

3. Overview of tent spaces

3.1. Tent spaces T p(X). Let us equip the upper half-space Rn+1
+ with the measure

dy dt/tn+1 and a Gaussian random measure W. Recall the definition of the cone
Γ(x) = {(y, t) ∈ Rn+1

+ : |x − y| < t} at x ∈ Rn.
Let 1 ≤ p < ∞. We wish to define a norm on the space of functions f : Rn+1

+ → X
for which 1Γ(x) f ∈ L2(Rn+1

+ ) ⊗ X for almost every x ∈ Rn by

‖ f ‖T p(X) =

(∫
Rn

(
E

∥∥∥∥∥∫
Γ(x)

f dW
∥∥∥∥∥2)p/2

dx
)1/p

and use the Khintchine–Kahane inequality to write

‖ f ‖T p(X) h
(
E

∥∥∥∥∥∫
Γ(·)

f dW
∥∥∥∥∥p

Lp(Rn;X)

)1/p
,

but issues concerning measurability need closer inspection.
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Lemma 3.1. Suppose that f : Rn+1
+ → X is such that 1Γ(x) f ∈ L2(Rn+1

+ ) ⊗ X for almost
every x ∈ Rn. Then:

(1) the function x 7→ 1Γ(x) f is strongly measurable from Rn to γ(X);
(2) the function x 7→

∫
Γ(x) f dW is strongly measurable from Rn to L2(P; X) and may

be considered, when ‖ f ‖T p(X) <∞, as a random Lp(Rn; X) function;
(3) the function x 7→ (E‖

∫
Γ(x) f dW‖2)1/2 agrees almost everywhere with a lower

semicontinuous function so that the set{
x ∈ Rn :

(
E

∥∥∥∥∥∫
Γ(x)

f dW
∥∥∥∥∥2)1/2

> λ
}

is open whenever λ > 0.

Proof. Denote by Ak the set {(y, t) ∈ Rn+1
+ : t > 1/k} and write fk = 1Ak f . It is clear that

for each positive integer k, the functions x 7→ 1Γ(x) fk and x 7→
∫

Γ(x) fk dW are strongly
measurable and continuous since

E

∥∥∥∥∥∫
Γ(x)∆Γ(x′)

fk dW
∥∥∥∥∥2
→ 0, as x→ x′.

Furthermore, 1Γ(x) fk → 1Γ(x) f in γ(X) for almost every x ∈ Rn since

E

∥∥∥∥∥∫
Γ(x)

( f − fk) dW
∥∥∥∥∥2

= E

∥∥∥∥∥∫
Γ(x)\Ak

f dW
∥∥∥∥∥2
→ 0.

Consequently, x 7→ 1Γ(x) f and x 7→
∫

Γ(x) f dW are strongly measurable. Moreover, the
pointwise limit of an increasing sequence of real-valued continuous functions is lower
semicontinuous, which proves the third claim. �

Definition 3.2. Let 1 ≤ p < ∞. The tent space T p(X) is defined as the completion
under ‖ · ‖T p(X) of the space of (equivalence classes of) functions Rn+1

+ → X (in what
follows, ‘T p(X) functions’) such that 1Γ(x) f ∈ L2(Rn+1

+ ) ⊗ X for almost every x in Rn

and ‖ f ‖T p(X) <∞.

As was mentioned in the previous section, it is useful to consider the more general
situation where the indicator of a ball is replaced by a measurable function φ : [0,∞)
→ R with 1[0,1) ≤ |φ| ≤ 1[0,α) for some α > 1. Let us assume, in addition, that φ is
continuous at zero. For functions f : Rn+1

+ → X such that (y, t) 7→ φ(|x − y|/t) f (y, t) ∈
L2(Rn+1

+ ) ⊗ X for almost every x ∈ Rn, the strong measurability of

x 7→
(
(y, t) 7→ φ

(
|x − y|

t

)
f (y, t)

)
and x 7→

∫
Γ(x)

φ
(
|x − y|

t

)
f (y, t) dW(y, t)

are treated as in the case of φ(|x − y|/t) = 1[0,1)(|x − y|/t) = 1Γ(x)(y, t).

https://doi.org/10.1017/S1446788714000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000123


114 M. Kemppainen [8]

3.2. Embedding T p(X) into Lp(Rn; γ(X)). A collection of results from the
paper [7] by Hytönen, van Neerven and Portal is presented next. Following the idea
of Harboure, Torrea and Viviani [5], the tent spaces are embedded into Lp spaces of
γ(X)-valued functions by

J f (x) = 1Γ(x) f , x ∈ Rn.

Furthermore, for simple L2(Rn+1
+ ) ⊗ X-valued functions F on Rn we define an operator

N by

(NF)(x; y, t) = 1B(y,t)(x)
?

B(y,t)
F(z; y, t) dz, x ∈ Rn, (y, t) ∈ Rn+1

+ .

Assuming that X is UMD, we can now view T p(X) as a complemented subspace of
Lp(Rn; γ(X)):

Theorem 3.3. Suppose that X is UMD and let 1 < p <∞. Then N extends to a bounded
projection on Lp(Rn; γ(X)) and J extends to an isometry from T p(X) onto the image of
Lp(Rn; γ(X)) under N.

The following result shows the comparability of different tent space norms.

Theorem 3.4. Suppose that X is UMD, let 1 < p < ∞ and let 1[0,1) ≤ |φ| ≤ 1[0,α). For
every function f in T p(X) the function (y, t) 7→ φ(|x − y|/t) f (y, t) is stochastically
integrable for almost every x ∈ Rn and∫

Rn
E

∥∥∥∥∥∫
Rn+1

+

φ
(
|x − y|

t

)
f (y, t) dW(y, t)

∥∥∥∥∥p
dx h

∫
Rn
E

∥∥∥∥∥∫
Γ(x)

f dW
∥∥∥∥∥p

dx.

The proof relies on the boundedness of modified projection operators

(NφF)(x; y, t) = φ
(
|x − y|

t

)?
B(y,t)

F(z; y, t) dz, x ∈ Rn, (y, t) ∈ Rn+1
+

and the observation that the embedding

Jφ f (x; y, t) = φ
(
|x − y|

t

)
f (y, t), x ∈ Rn, (y, t) ∈ Rn+1

+ .

can be written as Jφ f = NφJ f . In particular, this shows that the norms given by cones
of different apertures are comparable. Indeed, choosing φ = 1[0,α) gives the norm where
Γ(x) is replaced by the cone Γα(x) = {(y, t) ∈ Rn+1

+ : |x − y| < αt} with aperture α > 1.
Identification of tent spaces T p(X) with complemented subspaces of Lp(Rn; γ(X))

gives a powerful way to deduce their duality.

Theorem 3.5. Suppose that X is UMD and let 1 < p < ∞. Then the dual of T p(X) is
T p′(X∗), where 1/p + 1/p′ = 1, and the duality is realized for functions f ∈ T p(X) and
g ∈ T p′(X∗) via

〈 f , g〉 = cn

∫
Rn+1

+

〈 f (y, t), g(y, t)〉
dy dt

t
,

where cn is the volume of the unit ball in Rn.
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The following theorem combines results from [7, Theorem 4.8] and [8, Corollary
4.3 and Theorem 1.3]. The tent space T∞(X) is defined in the next section.

Theorem 3.6. Suppose that X is UMD and let Ψ be a Schwartz function with vanishing
integral. Then the operator

TΨ f (y, t) = Ψt ∗ f (y)

is bounded from Lp(Rn; X) to T p(X) whenever 1 < p < ∞, from H1(Rn; X) to T 1(X)
and from BMO(Rn; X) to T∞(X).

4. Tent spaces T1(X) and T∞(X)

Having completed our overview of tent spaces T p(X) with 1 < p <∞ we turn to the
endpoint cases p = 1 and p =∞, of which the latter remains to be defined. As for the
case p = 1, our aim is to show that T 1(X) is isomorphic to a complemented subspace
of the Hardy space H1(Rn; γ(X)) of γ(X)-valued functions on Rn. In the case p = ∞,
we introduce the space T∞(X), which is shown to embed in BMO(Rn; γ(X)), that is,
the space of γ(X)-valued functions whose mean oscillation is bounded. The idea of
these embeddings was originally put forward by Harboure et al. in the scalar-valued
case (see [5]).

Recall that the tent over an open set E ⊂ Rn is defined by Ê = {(y, t) ∈ Rn+1
+ :

B(y, t) ⊂ E} or equivalently by

Ê = Rn+1
+

∖ ⋃
x<E

Γ(x).

Observe that while cones are open, tents are closed. Truncated cones are also needed:
for x ∈ Rn and r > 0 we define Γ(x; r) = {(y, t) ∈ Γ(x) : t < r}.

In [8] Hytönen and Weis adjusted the quantities that define scalar-valued atoms and
T∞ functions in terms of tents to more suitable ones that rely on averages of square
functions. More precisely for scalar-valued g on Rn+1

+ we have∫
B

∫
Γ(x;rB)

|g(y, t)|2
dy dt
tn+1 dx =

∫
B

∫
Rn×(0,rB)

1B(y,t)(x)|g(y, t)|2
dy dt
tn+1 dx

=

∫ rB

0

∫
2B
|g(y, t)|2|B ∩ B(y, t)|

dy dt
tn+1 ,

from which one reads∫
B̂
|g(y, t)|2

dy dt
t
.

∫
B

∫
Γ(x;rB)

|g(y, t)|2
dy dt
tn+1 dx .

∫
3̂B
|g(y, t)|2

dy dt
t

.

This motivates the definition of a T 1(X) atom as a function a : Rn+1
+ → X such that for

some ball B we have supp a ⊂ B̂, 1Γ(x)a ∈ L2(Rn+1
+ ) ⊗ X for almost every x ∈ B and∫

B
E

∥∥∥∥∥∫
Γ(x)

a dW
∥∥∥∥∥2

dx ≤
1
|B|
.
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Then 1Γ(x)a differs from zero only when x ∈ B and so

‖a‖T 1(X) =

∫
Rn

(
E

∥∥∥∥∥∫
Γ(x)

a dW
∥∥∥∥∥2)1/2

dx ≤ |B|1/2
(∫

B
E

∥∥∥∥∥∫
Γ(x)

a dW
∥∥∥∥∥2

dx
)1/2
≤ 1.

Furthermore, for (equivalence classes of) functions g : Rn+1
+ → X such that 1Γ(x;r)g ∈

L2(Rn+1
+ ) ⊗ X for every r > 0 and almost every x ∈ Rn we define

‖g‖T∞(X) = sup
B

(?
B
E

∥∥∥∥∥∫
Γ(x;rB)

g dW
∥∥∥∥∥2

dx
)1/2

<∞,

where the supremum is taken over all balls B ⊂ Rn.

Definition 4.1. The tent space T∞(X) is defined as the completion under ‖ · ‖T∞(X)

of the space of (equivalence classes of) functions g : Rn+1
+ → X such that 1Γ(x;r)g ∈

L2(Rn+1
+ ) ⊗ X for every r > 0 and almost every x ∈ Rn and for which ‖g‖T∞(X) <∞.

4.1. The atomic decomposition. In an atomic decomposition, we aim to express
a T 1(X) function as an infinite sum of (multiples of) atoms. The original proof for
scalar-valued tent spaces by Coifman, Meyer and Stein [4, Theorem 1(c)] rests on a
lemma that allows one to exchange integration in the upper half-space with ‘double
integration’, which is something unthinkable when ‘double integration’ consists of
both standard and stochastic integration. The following argument provides a more
geometrical reasoning. We start with a covering lemma.

Lemma 4.2. Suppose that an open set E ⊂ Rn has finite measure. Then there exist
disjoint balls B j ⊂ E such that

Ê ⊂
⋃
j≥1

5̂B j.

Proof. We start by writing d1 = supB⊂E rB and choosing a ball B1 ⊂ E with radius
r1 > d1/2. Then we proceed inductively: suppose that balls B1, . . . , Bk have been
chosen and write

dk+1 = sup{rB : B ⊂ E, B ∩ B j = ∅, j = 1, . . . , k}.

If possible, we choose Bk+1 ⊂ E with radius rk+1 > dk+1/2 so that Bk+1 is disjoint from
all B1, . . . , Bk. Let then (y, t) ∈ Ê. In order to show that B(y, t) ⊂ 5B j for some j we
note that B(y, t) has to intersect some B j: indeed, if there are only finitely many balls
B j, then y ∈ B j for some j. On the other hand, if there are infinitely many balls B j and
they are all disjoint from B(y, t), then r j > d j/2 > t/2 and E has infinite measure, which
is a contradiction. Thus, there exists a j for which B(y, t) ∩ B j , ∅ and so B(y, t) ⊂ 5B j

because t ≤ d j ≤ 2r j by construction. �

Given a 0 < λ < 1, we define the extension of a measurable set E ⊂ Rn by

E∗λ = {x ∈ Rn : M1E(x) > λ}.
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Here M is the Hardy–Littlewood maximal operator assigning the maximal function

M f (x) = sup
B3x

?
B
| f (y)| dy, x ∈ Rn,

to every locally integrable real-valued f . Note that the lower semicontinuity of M f
guarantees that E∗λ is open while the weak (1, 1) inequality for the maximal operator
assures us that |E∗λ| ≤ λ

−1|E|.
We continue by constructing sectors opening in finite number of directions of our

choice. To do this, we fix vectors v1, . . . , vN in the unit sphere Sn−1 of Rn such that

max
1≤m≤N

v · vm ≥

√
3

2

for every v ∈ Sn−1. In other words, every v ∈ Sn−1 makes an angle of no more than 30◦

with one of vm. We write

S m =

{
v ∈ Sn−1 : v · vm ≥

√
3

2

}
and observe that the angle between two v, v′ ∈ S m is at most 60◦, i.e. v · v′ ≥ 1

2 .
Consequently, |v − v′| ≤ 1.

For every x ∈ Rn and t > 0, write

Rm(x, t) =

{
y ∈ B(x, t) :

y − x
|y − x|

∈ S m or y = x
}

for the sector opening from x in the direction of vm. For any two y, y′ ∈ Rm(x, t), the
angle between y − x and y′ − x is at most 60◦ (when y and y′ are different from x),
implying that |y − y′| ≤ t. Hence the proportion of Rm(x, t) in B(y, t) for any y ∈ Rm(x, t)
is a dimensional constant, in symbols,

|Rm(x, t)|
|B(y, t)|

= c(n), y ∈ Rm(x, t).

For every 0 < λ < c(n) it thus holds that M1Rm(x,t) > λ in B(y, t) whenever y ∈ Rm(x, t).
Writing E∗ = E∗c(n)/2 we have now proven the following result.

Lemma 4.3. If E ⊂ Rn is measurable and y ∈ Rm(x, t) ⊂ E, then B(y, t) ⊂ E∗.

Note that the next lemma follows easily when n = 1 and holds even without the
extension. Indeed, if E is an open interval in R and x ∈ E, then one can choose x1 and
x2 to be the endpoints of E and obtain Γ(x) \ Ê ⊂ Γ(x1) ∪ Γ(x2). On the other hand, for
n ≥ 2 the extension is necessary, which can be seen already by taking E to be an open
ball.

Lemma 4.4. Suppose that an open set E ⊂ Rn has finite measure. Then for every x ∈ E
there exist x1, . . . , xN ∈ ∂E, with N depending only on the dimension n, such that

Γ(x) \ Ê∗ ⊂
N⋃

m=1

Γ(xm).
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Proof. For every 1 ≤ m ≤ N we may pick xm ∈ ∂E in such a manner that
xm − x
|xm − x|

∈ S m

and |xm − x|, which we denote by tm, is minimal (while positive, since E is open). In
other words, Rm(x, tm) ⊂ E. We need to show that for every (y, t) ∈ Γ(x) \ Ê∗ the point
y is less than t away from one of the xm. Thus, let (y, t) ∈ Γ(x) \ Ê∗, which translates to
|x − y| < t and B(y, t) 1 E∗.

Consider first the case of y not belonging to any Rm(x, tm). Then for some m,
y − x
|y − x|

∈ S m and |y − x| ≥ tm.

Now the point
z = tm

y − x
|y − x|

+ x

sits in the line segment connecting x and y and satisfies |z − x| = tm. Hence the
calculation

|y − xm| ≤ |y − z| + |z − xm|

= |y − z| + tm
∣∣∣∣∣z − x

tm
−

xm − x
tm

∣∣∣∣∣
= |y − z| + |z − x|

∣∣∣∣∣ z − x
|z − x|

−
xm − x
|xm − x|

∣∣∣∣∣
≤ |y − z| + |z − x|
= |y − x| < t,

where we used the fact that |v − v′| ≤ 1 for any two v, v′ ∈ S m, shows that (y, t) ∈ Γ(xm).
On the other hand, if y ∈ Rm(x, tm) for some m, then |y − xm| ≤ tm, since the diameter

of Rm(x, tm) does not exceed tm. Also B(y, tm) ⊂ E∗ by Lemma 4.3 so that tm < t since
B(y, t) 1 E∗, which shows that (y, t) ∈ Γ(xm). �

We are now ready to state and prove the atomic decomposition for T 1(X) functions.

Theorem 4.5. For every function f in T 1(X) there exist countably many atoms ak and
real numbers λk such that

f =
∑

k

λkak and
∑

k

|λk| . ‖ f ‖T 1(X).

Proof. Let f be a function in T 1(X) and write

Ek =

{
x ∈ Rn :

(
E

∥∥∥∥∥∫
Γ(x)

f dW
∥∥∥∥∥2)1/2

> 2k
}

for each integer k. By Lemma 3.1, each Ek is open. For each k, apply Lemma 4.2 to
the open set E∗k in order to get disjoint balls B j

k ⊂ E∗k for which

Ê∗k ⊂
⋃
j≥1

5̂B j
k.
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Further, for each of these covers, take a (rough) partition of unity, that is, a collection
of functions χ j

k for which

0 ≤ χ j
k ≤ 1,

∞∑
j=1

χ
j
k = 1 on Ê∗k and supp χ j

k ⊂ 5̂B j
k.

For instance, one can define χ1
k as the indicator of 5̂B1

k and χ j
k for j ≥ 2 as the indicator

of

5̂B j
k

∖ j−1⋃
i=1

5̂Bi
k.

Write Ak = Ê∗k \ Ê∗k+1. We are now in the position to decompose f as

f =
∑
k∈Z

1Ak f =
∑
k∈Z

∑
j≥1

χ
j
k1Ak f =

∑
k∈Z

∑
j≥1

λ
j
ka j

k,

where

λ
j
k = |5B j

k|
1/2

(∫
5B j

k

E

∥∥∥∥∥∫
Γ(x)∩Ak

f dW
∥∥∥∥∥2

dx
)1/2

.

Observe that a j
k = χ

j
k1Ak f /λ j

k is an atom supported in 5̂B j
k.

It remains to estimate the sum of λ j
k. For x < Ek+1,

E

∥∥∥∥∥∫
Γ(x)∩Ak

f dW
∥∥∥∥∥2

dx ≤ 4k+1

by the definition of Ek+1. The cones at points x ∈ Ek+1 are the problematic ones and
so in order to estimate λ j

k, we need to exploit the fact that 1Ak f vanishes on Ê∗k+1. Let
x ∈ Ek+1 and use Lemma 4.4 to pick x1, . . . , xN ∈ ∂Ek+1, where N ≤ c′(n), such that

Γ(x) \ Ê∗k+1 ⊂

N⋃
m=1

Γ(xm).

Now x1, . . . , xN < Ek+1 which allows us to estimate

E

∥∥∥∥∥∫
Γ(x)∩Ak

f dW
∥∥∥∥∥2
≤

( N∑
m=1

(
E

∥∥∥∥∥∫
Γ(xm)

f dW
∥∥∥∥∥2)1/2)2

≤ N24k+1.

Hence, integrating over 5B j
k we obtain∫

5B j
k

E

∥∥∥∥∥∫
Γ(x)∩Ak

f dW
∥∥∥∥∥2

dx ≤ |5B j
k|c
′(n)24k+1.
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Consequently, ∑
k∈Z

∑
j≥1

λ
j
k ≤ c′(n)

∑
k∈Z

2k+1
∑
j≥1

|5B j
k|

≤ c′(n)5n
∑
k∈Z

2k+1|E∗k |

≤ c′(n)λ(n)−15n
∑
k∈Z

2k+1|Ek|

≤ c′(n)λ(n)−15n‖ f ‖T 1(X).

�

It is perhaps surprising that the UMD assumption is not needed for the atomic
decomposition.

4.2. Embedding T1(X) into H1(Rn; γ(X)) and T∞(X) into BMO(Rn; γ(X)).
Armed with the atomic decomposition we proceed to the embeddings. Suppose that
ψ : [0,∞)→ R is smooth, that 1[0,1) ≤ |ψ| ≤ 1[0,α) for some α > 2 and that

∫
Rn ψ(|x|) dx =

0. For functions f : Rn+1
+ → X we define

Jψ f (x; y, t) = ψ
(
|x − y|

t

)
f (y, t), x ∈ Rn, (y, t) ∈ Rn+1

+ ,

and note immediately that
∫
Rn Jψ f (x) dx = 0.

Recall also that functions in the Hardy space H1(Rn; γ(X)) are composed of atoms
A : Rn → γ(X) each of which is supported on a ball B ⊂ Rn, has zero integral and
satisfies ∫

B
E

∥∥∥∥∥∫
Rn+1

+

A(x; y, t) dW(y, t)
∥∥∥∥∥2

dx ≤
1
|B|
.

For further references, see Blasco [1] and Hytönen [6].

Theorem 4.6. Suppose that X is UMD. Then Jψ embeds T 1(X) into H1(Rn; γ(X)) and
T∞(X) into BMO(Rn; γ(X)).

Proof. We argue that Jψ takes T 1(X) atoms to (multiples of) H1(Rn; γ(X)) atoms. If a
T 1(X) atom a is supported in B̂ for some ball B ⊂ Rn, then Jψa is supported in αB and∫

Jψa = 0. Moreover, since X is UMD, we may use the equivalence of T 2(X) norms
(Theorem 3.4) and write∫

αB
E

∥∥∥∥∥∫
Rn+1

+

ψ
(
|x − y|

t

)
a(y, t) dW(y, t)

∥∥∥∥∥2
dx .

∫
B
E

∥∥∥∥∥∫
Γ(x)

a dW
∥∥∥∥∥2

dx ≤
1
|B|
.

The boundedness of Jψ from T 1(X) to H1(Rn; γ(X)) follows. In addition, since
1[0,1) ≤ |ψ|, it follows that ‖ f ‖T 1(X) ≤ ‖Jψ f ‖L1(Rn;γ(X)) ≤ ‖Jψ f ‖H1(Rn;γ(X)) and so Jψ is also
bounded from below.
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To see that Jψ maps T∞(X) boundedly into BMO(Rn; γ(X)), we need to show that(?
B
E

∥∥∥∥∥∫
Rn+1

+

(
Jψg(x; y, t) −

?
B

Jψg(z; y, t) dz
)

dW(y, t)
∥∥∥∥∥2

dx
)1/2
. ‖g‖T∞(X)

for all balls B ⊂ Rn. We partition the upper half-space into Rn × (0, rB) and the sets
Ak = Rn × [2k−1rB, 2krB) for positive integers k and study each piece separately.

On Rn × (0, rB),(?
B
E

∥∥∥∥∥∫
Rn×(0,rB)

ψ
(
|z − y|

t

)
g(y, t) dW(y, t)

∥∥∥∥∥2
dz

)1/2
≤

(?
B
E

∥∥∥∥∥∫
Γα(x;rB)

g dW
∥∥∥∥∥2

dx
)1/2

. ‖g‖T∞

since |ψ| ≤ 1[0,α) and the T 2(X) norms are comparable (Theorem 3.4). Furthermore, as
one can justify by approximating ψ with simple functions,(

E

∥∥∥∥∥∫
Rn×(0,rB)

g(y, t)
?

B
ψ
(
|z − y|

t

)
dz dW(y, t)

∥∥∥∥∥2)1/2

≤

(?
B
E

∥∥∥∥∥∫
Rn×(0,rB)

ψ
(
|z − y|

t

)
g(y, t) dW(y, t)

∥∥∥∥∥2
dz

)1/2
,

which can be estimated from above by ‖g‖T∞ , as above.
For each k and x ∈ B, we claim that∣∣∣∣∣?

B

(
ψ
(
|x − y|

t

)
− ψ

(
|z − y|

t

))
dz

∣∣∣∣∣ . 2−k1Γα+2(x)(y, t),

whenever (y, t) ∈ Ak. Indeed, if (y, t) ∈ Ak ∩ Γα+2(x), we may use the fact that∣∣∣∣∣ψ( |x − y|
t

)
− ψ

(
|z − y|

t

)∣∣∣∣∣ . sup |ψ′|
|x − z|

t
.

rB

2krB
= 2−k

for all z ∈ B, while for (y, t) ∈ Ak \ Γα+2(x) we have |y − x| ≥ (α + 2)t ≥ αt + 2rB so that
|y − z| ≥ |y − x| − |x − z| ≥ αt for each z ∈ B, which results in∫

B

(
ψ
(
|x − y|

t

)
− ψ

(
|z − y|

t

))
dz = 0.

This gives(?
B
E

∥∥∥∥∥∫
Ak

g(y, t)
|B|

∫
B

(
ψ
(
|x − y|

t

)
− ψ

(
|z − y|

t

))
dz dW(y, t)

∥∥∥∥∥2
dx

)1/2

≤ 2−k
(?

B
E

∥∥∥∥∥∫
Ak∩Γα+2(x)

g dW
∥∥∥∥∥2

dx
)1/2

.

But every Ak ∩ Γα+2(x) with x ∈ B is contained in any Γα+6(z) with z ∈ 2kB. Indeed, for
all (y, t) ∈ Ak ∩ Γα+2(x),

|y − z| ≤ |y − x| + |x − z| ≤ (α + 2)t + (2k + 1)rB ≤ (α + 6)t.
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Hence, ?
B
E

∥∥∥∥∥∫
Ak∩Γα+2(x)

g dW
∥∥∥∥∥2

dx ≤
?

2k B
E

∥∥∥∥∥∫
Γα+6(z)

g dW
∥∥∥∥∥2

dz.

Summing up, we obtain

∞∑
k=1

(?
B
E

∥∥∥∥∥∫
Ak

g(y, t)
?

B

(
ψ
(
|x − y|

t

)
− ψ

(
|z − y|

t

))
dz dW(y, t)

∥∥∥∥∥2
dx

)1/2

≤

∞∑
k=1

2−k
(?

2k B
E

∥∥∥∥∥∫
Γα+6(z)

g dW
∥∥∥∥∥2

dz
)1/2

. ‖g‖T∞(X).

To see that ‖g‖T∞(X) . ‖Jψg‖BMO(Rn;γ(X)) it suffices to fix a ball B ⊂ Rn and show, that
for every x ∈ B,

1Γ(x;rB)(y, t) ≤
∣∣∣∣∣ψ( |x − y|

t

)
−

?
(α+2)B

ψ
(
|z − y|

t

)
dz

∣∣∣∣∣,
since this gives us?

B
E

∥∥∥∥∥∫
Γ(x;rB)

g dW
∥∥∥∥∥2

dx ≤
?

B
E

∥∥∥∥∥∫
Rn+1

+

g(y, t)
(
ψ
(
|x − y|

t

)
−

?
(α+2)B

ψ
(
|z − y|

t

)
dz

)∥∥∥∥∥2
dx

≤ (α + 2)n‖Jψg‖BMO(Rn;γ(X)).

Now that 1[0,1) ≤ |ψ| and
∫
Rn ψ(|x|) dx = 0, it is enough to prove for a fixed x ∈ B, that

suppψ
(
| · −y|

t

)
⊂ (α + 2)B

for every (y, t) ∈ Γ(x; rB), i.e. that B(y, αt) ⊂ (α + 2)B whenever |x − y| < t < rB. This
is indeed true, as every z ∈ B(y, αt) satisfies

|z − x| ≤ |z − y| + |y − x| < (α + 1)rB.

We have established that, also in this case, Jψ is bounded from below. �

It follows that different T 1(X) norms are equivalent in the sense that whenever
1[0,1) ≤ |φ| ≤ 1[0,α) for some α > 1, we can take smooth ψ : [0,∞)→ R with |φ| ≤ |ψ| ≤
1[0,2α) to obtain

‖ f ‖T 1(X) ≤ ‖Jφ f ‖L1(Rn;γ(X)) ≤ ‖Jψ f ‖L1(Rn;γ(X)) ≤ ‖Jψ f ‖H1(Rn;γ(X)) . ‖ f ‖T 1(X).

To identify T 1(X) as a complemented subspace of H1(Rn; γ(X)) we define a
projection first on the level of test functions. Let us write

T (X) = { f : Rn+1
+ → X : 1Γ(x) f ∈ L2(Rn+1

+ ) ⊗ X for almost every x ∈ Rn}
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and

S (γ(X)) = span {F : Rn × Rn+1
+ → X : F(x; y, t) = Ψ(x; y, t) f (y, t)

for some Ψ ∈ L∞(Rn × Rn+1
+ ) and f ∈ T (X)}.

Observe that Jψ maps T (X) into S (γ(X)) and that S (γ(X)) intersects Lp(Rn; γ(X))
densely for all 1 < p <∞ and likewise for H1(Rn; γ(X)).

For F in S (γ(X)) we define

(NψF)(x; y, t) = ψ
(
|x − y|

t

) 1
cψtn

∫
Rn
ψ
(
|z − y|

t

)
F(z; y, t) dz,

where cψ =
∫
Rn ψ(|x|)2 dx. Now Nψ is a projection and satisfies NψJψ = Jψ. Also, for

every F ∈ S (γ(X)) we find an f ∈ T (X) so that NψF = Jψ f , namely

f (y, t) =
1

cψtn

∫
Rn
ψ
(
|z − y|

t

)
F(z; y, t) dz, (y, t) ∈ Rn+1

+ .

Theorem 4.7. Suppose that X is UMD. Then Nψ extends to a bounded projection
on H1(Rn; γ(X)) and Jψ extends to an isomorphism from T 1(X) onto the image of
H1(Rn; γ(X)) under Nψ.

Proof. Let 1 < p <∞. For simple L2(Rn+1
+ ) ⊗ X -valued functions F defined on Rn the

mapping (y, t) 7→ F(·; y, t) : Rn+1
+ → Lp(Rn; X) is in L2(Rn+1

+ ) ⊗ Lp(Rn; X) and we may
express Nψ using the averaging operators as

(NψF)(·; y, t) = Aψ
y,t(F(·; y, t)).

Since X is UMD, Stein’s inequality guarantees γ-boundedness for the range of the
strongly Lp(Rn; X)-measurable function (y, t) 7→ Aψ

y,t, and so by Lemma 2.1,

E

∥∥∥∥∥∫
Rn+1

+

Aψ
y,t(F(·; y, t)) dW(y, t)

∥∥∥∥∥p

Lp(Rn;X)
. E

∥∥∥∥∥∫
Rn+1

+

F(·; y, t) dW(y, t)
∥∥∥∥∥p

Lp(Rn;X)
.

In other words, ‖NψF‖pLp(Rn;γ(X)) . ‖F‖
p
Lp(Rn;γ(X)).

We wish to define a suitable L(γ(X))-valued kernel K that allows us to express Nψ

as a Calderón–Zygmund operator

NψF(x) =

∫
Rn

K(x, z)F(z) dz, F ∈ Lp(Rn; γ(X)).

For distinct x, z ∈ Rn and we define K(x, z) as multiplication by

(y, t) 7→ ψ
(
|x − y|

t

) 1
cψtnψ

(
|z − y|

t

)
,

and so
‖K(x, z)‖L(γ(X)) = sup

(y,t)∈Rn+1

∣∣∣∣∣ψ( |x − y|
t

) 1
cψtnψ

(
|z − y|

t

)∣∣∣∣∣.
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For |x − z| > αt,

ψ
(
|x − y|

t

) 1
cψtnψ

(
|z − y|

t

)
= 0

while |x − z| ≤ αt guarantees that∣∣∣∣∣ψ( |x − y|
t

) 1
cψtnψ

(
|z − y|

t

)∣∣∣∣∣ ≤ 1
cψtn ≤

αn

cψ|x − z|n
.

Hence,

‖K(x, z)‖L(γ(X)) .
1

|x − z|n
.

Similarly,

‖∇xK(x, z)‖L(γ(X)) = sup
(y,t)∈Rn+1

+

∣∣∣∣∣ψ′( |x − y|
t

) 1
cψtn+1ψ

(
|z − y|

t

)∣∣∣∣∣ . 1
|x − z|n+1 .

Thus K is indeed a Calderón–Zygmund kernel.
Now

∫
Rn ψ(|x|) dx = 0 implies that

∫
Rn NψF(x) dx = 0 for F ∈ H1(Rn; γ(X)), which

guarantees that Nψ maps H1(Rn; γ(X)) into itself (see Meyer and Coifman [12, Ch. 7,
Section 4]). �

We proceed to the question of duality of T 1(X) and T∞(X∗). Assuming that X is
UMD, it is both reflexive and K-convex so that the duality

H1(Rn; γ(X))∗ ' BMO(Rn; γ(X)∗) ' BMO(Rn; γ(X∗))

holds (recall the discussion in Section 2) and we may define the adjoint of Nψ by
〈F, N∗ψG〉 = 〈NψF,G〉, where F ∈ H1(Rn; γ(X)) and G ∈ BMO(Rn; γ(X∗)). Moreover,
as T 1(X) is isomorphic to the image of H1(Rn; γ(X)) under Nψ, its dual T 1(X)∗ is
isomorphic to the image of BMO(Rn; γ(X∗)) under the adjoint N∗ψ and the question
arises whether the latter is isomorphic to T∞(X∗). For Jψ to give this isomorphism
(and to be onto) one could try and follow the proof strategy of the case 1 < p <∞ and
give an explicit definition of N∗ψ on a dense subspace of BMO(Rn;γ(X∗)). Even though
the properties of the kernel K of Nψ guarantee that N∗ψ formally agrees with Nψ on
Lp(Rn; γ(X∗)), it is problematic to find suitable dense subspaces of BMO(Rn; γ(X∗)).

In order to address these issues in more detail, we specify another pair of test
function classes, namely

T̃ (X) = {g : Rn+1
+ → X : 1Γ(x;r)g ∈ L2(Rn+1

+ ) ⊗ X for every r > 0
and for almost every x ∈ Rn}

and

S̃ (γ(X)) = span {G : Rn × Rn+1
+ → X : G(x; y, t) = Ψ(x; y, t)g(y, t)

for some Ψ ∈ L∞(Rn × Rn+1
+ ) and g ∈ T̃ (X)} / {constant functions}.
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Since
∫
Rn ψ(|x|) dx = 0, the projection Nψ is well-defined on S̃ (γ(X)). Moreover,

given any G ∈ S̃ (γ(X)) we can write

g(y, t) =
1

cψtn

∫
Rn
ψ
(
|z − y|

t

)
G(z; y, t) dz

to define a function g ∈ T̃ (X) for which NψG = Jψg. But S̃ (γ(X)) has only weak*-
dense intersection with BMO(Rn; γ(X)) (recall that X ' X∗∗). Nevertheless, Jψ is an
isomorphism from T∞(X) onto the closure of the image of S̃ (γ(X)) ∩ BMO(Rn; γ(X))
under Nψ. It is not clear whether test functions are dense in the closure of their image
under the projection.

The following relaxed duality result is still valid.

Theorem 4.8. Suppose that X is UMD. Then T∞(X∗) isomorphic to a norming
subspace of T 1(X)∗ and its action is realized for functions f ∈ T 1(X) and g ∈ T∞(X∗)
via

〈 f , g〉 = c
∫
Rn+1

+

〈 f (y, t), g(y, t)〉
dy dt

t
,

where c depends on the dimension n.

Proof. Fix a smooth ψ : [0,∞)→ R such that 1[0,1) ≤ |ψ| ≤ 1[0,α) for some α > 2 and∫
Rn ψ(|x|) dx = 0. By Theorem 4.7, T 1(X) is isomorphic to the image of H1(Rn; γ(X))

under Nψ, from which it follows that the dual T 1(X)∗ is isomorphic to the image of
BMO(Rn; γ(X∗)) under the adjoint projection N∗ψ, which formally agrees with Nψ.
The space T∞(X∗), on the other hand, is isomorphic to the closure of the image
of S̃ (γ(X∗)) ∩ BMO(Rn; γ(X∗)) under Nψ in BMO(Rn; γ(X∗)) and hence is a closed
subspace of T 1(X)∗. We can pair a function f ∈ T 1(X) with a function g ∈ T∞(X∗)
using the pairing of Jψ f and Jψg and the atomic decomposition of f to obtain

〈 f , g〉 =
∑

k

〈Jψak, Jψg〉 =
∑

k

λk

∫
Rn

∫
Rn+1

+

ψ
(
|x − y|

t

)2
〈ak(y, t), g(y, t)〉

dy dt
tn+1

= cncψ
∑

k

λk

∫
Rn+1

+

〈ak(y, t), g(y, t)〉
dy dt

t

= cncψ

∫
Rn+1

+

〈 f (y, t), g(y, t)〉
dy dt

t
,

where cn denotes the volume of the unit ball in Rn. The space L∞(Rn) ⊗ L2(Rn+1
+ ) ⊗ X∗

is weak*-dense in BMO(Rn; γ(X∗)) and hence a norming subspace for H1(Rn; γ(X)).
As it is contained in S̃ (γ(X∗)) ∩ BMO(Rn; γ(X∗)), we obtain

‖ f ‖T 1(X) h ‖Jψ f ‖H1(Rn;γ(X)) = sup
G
|〈Jψ f ,G〉| = sup

G
|〈NψJψ f ,G〉|

= sup
G
|〈Jψ f ,N∗ψG〉| h sup

g
|〈Jψ f , Jψg〉| = sup

g
|〈 f , g〉|,

where the suprema are taken over G ∈ S̃ (γ(X∗)) ∩ BMO(Rn; γ(X∗)) with
‖G‖BMO(Rn;γ(X∗)) ≤ 1 and g ∈ T∞(X∗) with ‖g‖T∞(X∗) ≤ 1. �

https://doi.org/10.1017/S1446788714000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000123


126 M. Kemppainen [20]

Acknowledgements

I would like to thank Tuomas Hytönen, Jan van Neerven, Hans-Olav Tylli and
Mark Veraar for insightful comments and conversations.

References
[1] O. Blasco, ‘Hardy spaces of vector-valued functions: duality’, Trans. Amer. Math. Soc. 308 (1988),

495–507.
[2] J. Bourgain, ‘Vector-valued singular integrals and the H1-BMO duality’, in: Probability Theory

and Harmonic Analysis (Cleveland, Ohio, 1983), Monographs and Textbooks in Pure and Applied
Mathematics, 98 (Dekker, New York, 1986), 1–19.

[3] P. Clément, B. de Pagter, F. A. Sukochev and H. Witvliet, ‘Schauder decomposition and multiplier
theorems’, Studia Math. 138 (2000), 135–163.

[4] R. R. Coifman, Y. Meyer and E. M. Stein, ‘Some new function spaces and their applications to
harmonic analysis’, J. Funct. Anal. 62(2) (1985), 304–335.

[5] E. Harboure, J. L. Torrea and B. E. Viviani, ‘A vector-valued approach to tent spaces’, J. Anal.
Math. 56 (1991), 125–140.

[6] T. Hytönen, ‘Vector-valued wavelets and the Hardy space H1(Rn, X)’, Studia Math. 172 (2006),
125–147.

[7] T. Hytönen, J. M. A. M. van Neerven and P. Portal, ‘Conical square function estimates in UMD
Banach spaces and applications to H∞-functional calculi’, J. Anal. Math. 106 (2008), 317–351.

[8] T. Hytönen and L. Weis, ‘The Banach space-valued BMO, Carleson’s condition, and
paraproducts’, J. Fourier Anal. Appl. 16 495–513.

[9] S. Janson, Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, 129 (Cambridge
University Press, Cambridge, 1997).

[10] N. Kalton and L. Weis, The H∞-functional calculus and square function estimates, in preparation.
[11] T. Mei, ‘BMO is the intersection of two translates of dyadic BMO’, C. R. Math. Acad. Sci. Paris.

336 (2003), 1003–1006.
[12] Y. Meyer and R. R. Coifman, ‘Wavelets’, Calderón–Zygmund and multilinear operators,

Translated from the 1990 and 1991 French originals by David Salinger, Cambridge Studies in
Advanced Mathematics, 48 (Cambridge University Press, Cambridge, 1997).

[13] J. M. A. M. van Neerven, ‘γ-radonifying operators—a survey’, in: The AMSI–ANU Workshop
on Spectral Theory and Harmonic Analysis, Proceedings of the Centre for Mathematics and its
Applications, 44 (Australian National University, Canberra, 2010), 1–61.

[14] J. M. A. M. van Neerven and L. Weis, ‘Stochastic integration of functions with values in a Banach
space’, Studia Math. 166 (2005), 131–170.
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University of Helsinki, Gustaf Hällströmin katu 2b, FI-00014 Helsinki, Finland
e-mail: mikko.k.kemppainen@helsinki.fi

https://doi.org/10.1017/S1446788714000123 Published online by Cambridge University Press

mailto:mikko.k.kemppainen@helsinki.fi
https://doi.org/10.1017/S1446788714000123



