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A SYSTEM OF OPERATOR EQUATIONS 

BY 

BOJAN MAGAJNA 

ABSTRACT. Let W be a separable Hilbert space, 9&{CK) the algebra of all 
bounded operators on CK and A,-, B,• E ^(K), i = 1,. . . , r. It is shown that 
if no nontrivial linear combination of the operators A, is compact, then there 
exist X, Y <E r$>(K) such that XA,Y = B, for all /. A related (but much 
milder) result is discussed in other algebras with the unique maximal ideal 
and an application to elementary operators is given. 

1. Introduction and the main results. Let ^t be a separable Hilbert space and 
2ft($0 the algebra of all bounded linear operators on "K. The main result of this note is 

THEOREM 1. Let A,, Bt be elements of 9J(2Q, / = 1,. . . , r {where r is a positive 
integer). If no nontrivial linear combination of the operators Ai is compact, then there 
exist X, Y G Sft(^) such that 

(1.1) XA,Y = £,, i = l , . . . , r . 

This theorem is a little surprising, since the system (1.1) can consist of many 
equations with only two unknowns X and Y. In a much milder form this theorem holds 
for more general algebras then 20(3^), as will be shown by the following algebraic 
considerations. 

Let si be a unital algebra over some field 5F. For each A E si the left and the right 
multiplication by A are linear operators on si defined by LA(X) — AX and RA(X) = XA 
respectively, for all X E si. For each A = (A \,. . . ,Ar) E ^4r and B — (B,,. . . , Br) 
E s£r the elementary operator EAB is defined by 

r 

(1-2) EAB = 2 LAIRBI 

(In the past such operators have been vigorously studied; see e.g. the bibliography in 
[4].) The set of all elementary operators on si, %{s&), is obviously an SF-algebra (often 
called the multiplication algebra of si [8]). The algebra si itself can be regarded as an 
%(sâ)-moà\x\t in an obvious way, the submodules of which are precisely the two-sided 
ideals of si. Thus, if si contains only one maximal ideal % (as is the case if si = 2&(3Q), 
then % is the only maximal submodule of the ^(,s4)-module si. For such modules the 
following variant of the classical Jacobson density theorem can be proved. 
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THEOREM 2. Let *3lbe a ring and M an ^-module. Suppose that M contains a proper 
submodule % such that every proper submodule of M is contained in % and that 
<3l(M/%) =£ 0. Let JC, , y,- E M,i = 1, . . . , r, and assume that the cosets xf + 3{ E M/% 
are linearly independent over the division ring End^(J/l/3{). Then there exists an 
a E 2ft such that ax, = ytfor all i. 

Note that by the lemma of Schur [9] the ring End^(M/%) is indeed a division ring, 
since M/% is a simple module (does not contain any proper non-zero submodule). The 
Jacobson density theorem for simple modules is a special case of theorem 2, when 
% = 0. The proof of theorem 2 is essentially the same as the proof of the classical 
Jacobson density theorem (see [9, p. 221, Exercise 1]) and will be given in the appendix 
only for the sake of completeness. Here we state a consequence of theorem 2, which 
is closely related to theorem 1. 

COROLLARY 1. Let si be an algebra with unit over some field 3*. Suppose that % is 
the only maximal ideal of si and let 2£ be the centre of the algebra si/%. Let Ai9 

BjŒsi,i= \,...,r.Ifthe cosets A,: + % E si/% are linearly independent over 2£, 
then there exists a positive integer m and X,-., Yj E si for j — 1,. . . , m, such that 

m 

X XJAiYj = Bi,i = l , . . . , r 
7 = 1 

To prove the corollary, just apply theorem 2 to the ^(^)-module si and note that the 
division ring End(si/%) can be naturally identified with the commutative ring 2£. 
(Indeed, it is well known and easy to see that the map End(si/%) —> si/%, X —» X(l), 
induces an isomorphism of Er\d{si/%) onto the centre S of si/%.) 

Note that if si is a complex normed algebra satisfying the hypothesis of corollary 1, 
then % — C • 1, since C is (up to an isomorphism) the only complex normed division 
algebra [3, p. 23]. 

Several important operator algebras satisfy the hypothesis of corollary 1 ; for ex
ample, the algebras of all bounded operators on the Banach spaces c0 and lp (1 < p 
< oo) [3, p. 95], the algebra 2S(3̂ ) where % is not necessarily separable Hilbert space 
[7], and the von Neumann factors [10, p. 350]. 

Corollary 1 can be used to generalize some results of [6] and [1] about elementary 
operators. 

COROLLARY 2. Suppose that si,%,^t are as in corollary 1. Let A = (A,,. . . , Ar) 
E sir, B = (Bu . . . ,Br) E sir and let EAB be the elementary operator on si (defined 
by (12)). Assume that the elements A, + % of si/% are linearly independent over the 
centre 2£ of si/%. Then: (i) For arbitrary two sided ideal $ of si the range of the 
elementary operator EAB is a subset of $ if and only if Bt E $ for all i — 1,. . . , r. 

(ii) If EAB is an element of some proper ideal $ of the algebra %($i), then B, Œ % 
for all i — 1, . . . , r. 

PROOF, (i) If B, E $ for all /, then clearly the range of EAB is a subset of J>, since 
$ is an ideal in si. To prove the converse, note first that by corollary 1 there exist Xj9 
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Yj E si such that 
in 

S XjAiYj = 8W-1, / = 1, . . . , r 

Now we have 
r i m x m i r , r 

B\ = E ( X x^r,k - S x,.( S A, W - Z x^*^,-) 
/ = i \ / = i . /= i \ - = i j=i 

From this we see that Bx E $ if the range of Z^B is a subset of J>. The proof that 
Bj E: $ for i = 2 , . . . , r is the same. 

(ii) Suppose that EAB E ^ for some proper ideal $ of %(si) and let X,, K, E sî, 
y = 1,. . . , ra, be chosen as in the proof of (i). Then an easy computation shows that 

2J LXJEABLYJ — RB{ 

7 = 1 

This implies that/?/?, E $. If 5 , were not an element of 3(, then the same argument (but 
with the right multiplications instead of the left ones) would show that the identity 
operator / is an element of $>. Since $ is a proper ideal, / ÇË $>, hence Z?) E J{. In the 
same way it can be shown that 5, E 3{ for / =- 2 , . . . , r. / / 

REMARKS. In the case si = <3h(M) and 3{ = 3f{($C) (= the ideal of compact operators 
on M) corollary 2(i) was proved by Fong and Sourour in [6]. Apostol and Fialkow 
proved in [1] corollary 2(i) for the general ideal $ in SS(^). The general question, when 
is the range of an elementary operator contained in a fixed ideal of 2ô(3f) (if A, are not 
linearly independent modulo 3C($0), seems to be still open, except in some special 
cases considered in [4]. 

Corollary 2(ii) shows in particular that for a simple algebra si the algebra %(si) is 
also simple (since % = 0 in this case). This observation applies for example to the 
Calkin algebra [2]. In particular there are no non-zero compact elementary operators on 
the Calkin algebra. This last statement was conjectured in [6] and proved in [1] using 
the well known theorem of Voiculescu. 

Theorem 1 will be proved in section 3, while section 2 contains the necessary 
preliminary result. 

2. Linear independence modulo compact operators. From now on let 3€, if be 
separable Hilbert spaces, 28(i£, 3€) the vector space of all bounded linear operators from 
£ to 3K, 9K20 = 9K3e, 20, %(K) the ideal of compact operators in ^(K) and 
%Ot) = ®(30/3C(20 the Calkin algebra [2], [3]. 

For every A E 2&(i£, %t) the minimum modulus m{A) is defined by 

m(A) = inf{||AJC||; x E L, ||JC|| = 1} 

For each X = (X,,. . . , Xr) E Cr and each A = (A,,. . . , Ar) E ^&, "K)r denote 

X-A = 2 X,A, 
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The unit sphere in C is denoted by Sr. For each compact subset S of C and each 
A = (A , , . . . ,A r ) E 28(i£, 20rlet 

d(A\S) = min{m(X-A); K E S} 

In the case S = Sr we shall write simply d(A) instead of d(A; Sr). Finally, if ££ is a 
subspace of 3^ and A - (A,,. . . ,A r) G 2ft(XT, we denote 

A |ig = (A, | i£ , . . . ,A r | i£ ) 

(Thus A|i£ G 2&(i£, X)r.) The next proposition will be needed in the proof of 
theorem 1. 

PROPOSITION 1. If A = (A,,. .. ,Ar) G <&(3ty is such that X- A g 3fC(3£) holds for 
every X E C — {0}, f/iew r/ẑ r̂  emfs « closed infinite dimensional subspace ^EofW 
such that d(A | i£) > 0. 

REMARK. If X -A £ 3f{($Q, then it is well known that there exists an infinite dimen
sional subspace i£x of 3€ such that the operator X-A |i£x is bounded below. But the 
proposition claims more: there is a subspace ££ of 3^ such that all the operators X • A | ££ 
are bounded below for X G C — {0}. 

In the proof of proposition 1 a few facts that are either well known or easy to see will 
be used several times. For the convenience of the reader we now state this facts as 
lemmas. 

Recall that an operator A G 9J(^, 2Q is left Fredholm iff there exists B G 28(3K, ££) 
such that / — BA is a compact operator (where / is the identity operator on ££). 

LEMMA 1. An operator A G 2&(i£, 3€) w not left Fredholm if and only if there exists 
an infinite dimensional closed subspace M of i£ such that the restriction A \ M is a 
compact operator. 

LEMMA 2. Let A G 2S(i£, 3Qr. Suppose that S is a compact subset ofCr such that 
0 ^ 5 and such that S intersects every line through 0 G Cr. Then d{A\ S) > 0 if and 
only ifm(\-A) > 0 for every X G Cr - {0}. 

Lemma 1 is well known [3, p. 70]; lemma 2 follows by an obvious compactness 
argument from the continuity of the function X —» ra(X-A). 

LEMMA 3. Let A G 28(i£, W)r. If the operator X-A is left Fredholm for every 
X G Sr, then there exists a subspace M of finite codimension in iE such that 
d(A\M) > 0. 

PROOF. Since X-A is a left Fredholm operator, there exists a subspace Mk of finite 
codimension in !£ such that the operator X-A |Mx is bounded below [5]. Then each 
X G Sr has an open neighborhood Ux such that the operator |JL • A | Mx is bounded below 
for every |JL E Uk. If {£/X|,. . . , £/X/J is a finite covering of Sr by such neighborhoods, 
then the subspace 

M — H J/L 
7 = 1 
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is of finite codimension in !£ and ra(X-A \ M) > 0 for all X E Sr. The lemma now 
follows from lemma 2. / / 

For a subset S of some Banach space let y S denote the closed linear span 
of S. As usual, the symbol A will indicate the non-present term (for example, 
( \ i , . . . , A.*,. . . , Xr) = (Xi,. . . , X*_ i, \k+ i , . . . , Xr)). 

PROOF OF PROPOSITION 1. In this proof by a subspace of a Hubert space we always 
mean an infinite dimensional closed subspace. The proof is by an induction on r. In 
the case r — 1 the proposition reduces to the well known fact that a noncompact 
operator is bounded below on some subspace. Suppose inductively that the proposition 
holds for arbitrary B E 28(9^)r_1. Then we will show that the assumption 

(a) d(A | £) = 0 for all subspaces i£ of Vt 

leads to a contradiction. The proof is divided in three steps. 

Step 1. We shall prove that there exist operators A \,. . . , A [ on 3C and subspaces 
i g , , . . . , % of W such that: 

(1) The sets {A\,. . . ,A'r} and {A]y.. . ,Ar} have the same linear span in 2ft(X); 
(2) A ! | ££, is a compact operator for each / = 1,. . . , r; 

/ \ 
0)d, := d(A\\%, ...,A\\%,. . . ,A'r\%) > 0 for each / = 1 , . . . , r . 

Assume inductively that for some i E {1, . . . , r} the operators A [ and the subspaces 
££i-\,k have been found for all k — 1 , . . . , / — 1, such that: 

( 1 ,• - i ) The sets {A \,. . . , A,-,L ,, A,:,. . . , A r} and {A,,. . . , A r} have the same linear 
span in 2ft(20; 

(2/ _ i ) A'k\Xi-\ k is a compact operator for all k = 1 , . . . , / — 1 ; 
/ \ 

(3,--,) ^ A i l ^ - , , * , . . . ^ ; ! ^ - - , , * , . . . ^ ; - . ! ^ - , , * ^ , ! ^ - , , , , . . . ) > Ofor all 
it = 1 , . . . , / - 1. 

We shall then find an operator A- E \j{A{,. . . ,Ar} and subspaces %k of Ĉ for 
k= 1,. . . , /, such that the corresponding conditions (1,) — (3,) will be satisfied. Then, 
putting !£k = i£rk, k = 1,. . . , r, we see, that the conditions ( l)-(3) will be satisfied. 

Since the proposition holds for any (r — l)-tuple of operators, there exists a subspace 
M of W such that 

(2.1) d(A[\M,. .. ,A'i-i\M,Ai+ i\M,. . . ,Ar\M) > 0 

Note that for at least one a E Sr the operator a • A \ M is not left Fredholm. (If X • A | M 
were a left Fredholm operator for all X E Sr, then by lemm 3 there would exist a 
subspace N of M such that d(A \ X) > 0, but this would contradict the assumption (a).) 
Thus (by lemma 1) there exists a subspace ££,-,• of M such that a-A\ %-t is a compact 
operator. Put A/ = a-A. By (l;-_i) we can write A- as 

(2.2) A! = P , A ; + ••• + fr-.A/-, + P/A,- + ••• + prAr, p7 E C 

https://doi.org/10.4153/CMB-1987-029-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-029-2


1987] OPERATOR EQUATIONS 205 

Observe that p, =£ 0. (If p, were 0, then the operator A-\M would be left 
Fredholm, since (2.1) would imply that m(Aj\M) > 0.) Therefore the sets 
{A|,. . . ,A'j ,Ai+l,. . . ,Ar}and{A!,. . . ,A/_i,A/, . . . ,Ar} have the same linear span 
in 2ft (3€), hence the condition (1,) is satisfied. The fact that A- | i£u is a compact operator 
and (2,-_ i) imply that the conditions (2,-) are satisfied if %k is any subspace of i£,_ uk 

for k = 1 , . . . , / — 1. It remains to show that the subspaces %k Q%-\,k can be chosen 
in such a way that (3,-) is satisfied, that is, !£ik must be such that 

(2.3) d(A[\%k,. .. ,Ai\£ik,.. . ,A; \%k,Ai+]\$ik,. . . ,Ar\$ik) > 0 

for all k= 1 , . . . , / . 
Observe that for k = i (2.3) holds by (2.1), since %-t C M. Let k = 1 , . . . , / - 1 be 

fixed and for every X = ( \ , , . . . , kk,..., Xr) E Sr- i put 
/ \ 

£(X) = X , A ; + ••• + xkA
f
k + ••• + ^A; + X / + , A / + , + ••• + xrAr 

By lemma 2 the condition (2.3) is equivalent to the requirement 

(2.4) m(B(k) | %k) > 0 for all X E C r" ' - {0} 

Thus, it suffices to prove the existence of a subspace %k in %-\^k such that (2.4) is 
satisfied. Now inserting the expression (2.2) for A- into the expression for B(k) we 
obtain 

(2.5) B(k) = M i + — + ^i-i^Z-i + M / + • - + M , 

where JJL, = X,p,, (JL̂  = X/0* and |Xy = X7 + X/0,- for 7 ^ /, k. Let 5 be the image of the 
sphere Sr-, under the non-degenerate linear map (Xi,. . . , X*,. . . , Xr) —» 
|JLI , . . . , ji*,. . . , jxr). The condition (3,-_ 1) and lemma 2 imply that 

O* — " ( A 1 | ~W- l,*> • - • > Aj- I «W- 1,*> • • • > A ; _ 1 I «W- 1,*>^/ I «£ / - !,*> • • • »«J ) 

satisfy 

8* > 0 

Since Ak \ i£/_1 ^ is a compact operator by (2,_ 1 ), there exists a subspace i£/it in i£,_ 1 ̂  
such that ||A* | &ik\\ | P* | < 8*. With such a subspace i£,* we have by (2.5) 

m(B(k)\£ik) > / n [ ( M ! + - • + M * + — + to-iA'i-i 

+ M/ + — + Mr)|2/-,,J - ||M*I^/*II 
> 8 , - |X,P,|||A;|^-,|| 

^ s , - IP.HIA;!^,!! 

> 0 

for all X E S r_,, hence for all X E C " 1 - {0}. Thus (2.4) is established and this 
concludes the proof of step 1. 

Step 2. Let A-, % and di9 i = 1,. . . , r, be as in step 1, so that conditions (1)—(3) 
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are satisfied. Then, there exist subspaces M{ of i£,for i = 1,. . . , r, such that 

(2.6) if i ï j , then Mf 1 Mj and y{A'kMr, k ï i, k = 1,. .. ,r} 1 \j{A'kM,j\ 

k±j,k= l , . . . , r } 
and 

(2.7) 

where 

|A,'|J/l,|| < e, i 

1 

,r 

iVr 
minj^i,. . . ,dr} 

To see this, construct first a sequence of unit vectors x , , , . . . ,xr\,x]2, • • • ,xr2, 
jc)3,. . . , jc r 3 , . . . as follows. Choose any xu E i£\ such that ||x,,|| = 1. Assume 
inductively that xjm E ££,- have been already chosen for all (j, m) E /V,,,,, where 
/ E {1 , . . . , r} and « G N are fixed integers and where 

/V,,, = ({1,. . . , r} X {1, . . . , n - 1}) U ({1,. . . , i - 1} X {n}) 

(if / = 1, the set { 1 , . . . , / — 1} is to be interpreted as empty.) Then choose xin E % 
so that xin is orthogonal to the finite set 

{xjm, A*Aqxjm\ p, q = 1,. . . , r, (j, m) E Nhn} 

This choice of xin is possible, since % is an infinite dimensional space. Now the 
subspaces 

M' = \/{xin- n = 1 ,2 , . . . } , / = 1,. . . , r 

clearly satisfy (2.6). Since J/t/ Ç i£,, the operators A\ \M\ are compact by (2), hence 
there exists for each / a subspace Mt of M- such that (2.7) holds. 

Step 3. Let U i'.'K—* M( be arbitrary unitary operators for / = 1,. . . , r and let 
M = {U\x + ••• + Urx; x E ^ } 

We shall show that m (X-A' | JH) > 0 for every X G 5 n where A' = (A\,. . . , A'). Since 
the sets {A\,. . . 7A'r} and {A,,. . . ,Ar) have the same linear span, this will imply that 
m(k -A | M) > 0 for all X E Sr, hence J(A | i t ) > 0 by lemma 2. But this will contradict 
the assumption (a), so the proof of the proposition will be completed. 

Now for any X = (Xj,. . . , Xr) E Sr and any z = U\X + ••• + Urx E M with 
II z II = 1 we have 

|(X-A')z|| > 

É (S KADUjxI j " - S |\-|| |A;£/> (by (2.6)) 

11/2 

E ^ I I M 2 -lUjlMjWWUjxi 

(by (3), since it , £ i£,) 
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lin d)\t \\Uix\l2] - r e W | (by (2.7)) mm 
i 

min dj) \\z\\ — re —^ (since J/1/s are orthogonal by (2.6)) 

= e v r (by the definition of e, since ||z|| = 1) 

It follows that m(\-A) > e V r > 0, as required. / / 

3. PROOF OF THEOREM 1. By proposition 1 there exists an infinite dimensional closed 
subspace X of 3^ such that 

d:= d(A\£) > 0 

Let (/„)"= i be an orthogonal sequence of vectors in <S£ such that the subspaces 

Wn = \/{A\fn,-.-,Arfn},n= 1 , 2 , . . . 

of 3€ are orthogonal. (Such a sequence (/„)*=, can be constructed inductively as in the 
proof of step 2 of proposition 1.) Let {gln,. . . , grn} be an orthonormal basis of 3€„ for 
each n and define T„ E &(%„) by 

^(Az/J = £/*,/ = l , . . . , r 

Since J = d(A | $£) > 0, the operators T„ are well defined. Moreover, the sequence of 
their norms is bounded, ||rw|| < 1 /d for all n = 1 ,2 , . . . . (To see this, it suffices to 
verify that \\T~ *|| > d for every unit vector x E 9€„. If x = X\g\n + • • • + krgrn, where 
(X,. . . , \ r ) E Sr, then Hr^jcjl2 = \\kiAJn + ••• + KArfn\\

2 ^ d2 by the definition 
of d.) It follows that the orthogonal sum T = T\ © T2 © • • • is a bounded operator on 
the subspace 

W = © ^ 

of 3^. Note that {g,„; / = 1, . . . , r, n = 1,2,. . .} is an orthonormal basis of W. Let 
(enTn=, be any orthonormal basis of 2t Define U\W -> W = ^ © ••• © <K by 

£/g/fl = ( 0 , . . . , ^ , 0 , . . . , 0 ) 

where e„ is on the /-th position. Let B'.ffl —» 3€ be defined by Z?(x,,. . . ,xr) = B]x] 

+ • • • + Brxr (where the operators #, are as in the statement of the theorem). Then the 
composite BUT is a bounded operator from W to 2£, hence it can be extended to an 
operator X E 2&(2£), With so defined X we have 

XAJn = BUTAJn = BUgin = 5 (0 , . . . ,ea,0,. . . ,0) = £,•*„ 

for all / = 1,. . . , r and all « = 1 ,2 , . . . . Finally, let F: 3^ —» 3^ be an isometry defined 
by 

FÉ>„ = / „ , « = 1,2,. . . 
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Then XAtYen = B,en for all n, hence XAjY = B, for all / = 1,. . . , r (since (e„) is an 
orthonormal basis of (St). / / 

REMARK. Theorem 1 holds also for a non-separable Hilbert space W, but the hypoth
esis "If no nontrivial linear combination of the operators At is compact" must be 
replaced by "If no nontrivial linear combination of the operators Al is contained in the 
maximal ideal of 2S($0". The proof is essentially the same as for a separable space, 
except that transfinite induction has to be used. 

4. Appendix. Since the author couldn't find any reference for the proof of theorem 
2, a sketch of the proof will be given here, although it is essentially the same as the 
proof of the Jacobson density theorem [8]. 

PROOF OF THEOREM 2. Denote by Mr the direct sum of r copies of M and by 
IT:M —> M/% the natural map. It has to be shown that 2ft(xi, • • • ,xr) = Mr (where 
2/i(jC!,. . . ,xr) = {(CJC!,. . . , cxr); c E 91}), and this can be done by an induction on r. 
For r = 1 the theorem clearly holds (by definition of X), so assume inductively that 
it holds for r — 1, where r is a fixed positive integer. It suffices to prove that for each 
/ = 1,. . . , r there exists an element z, E M — 31 such that (0, . . . , z,,. . . , 0) E 
2ft(*i, • • • ,xr), since z, gÊ 3{ implies that 2ftz, = M. To this end assume without loss 
of generality that i = r. Consider the homomorphisms $ : 91 —» Jir ~~ ' and i|i : 2ft —» M/% 
defined by <|)(c) = (ex,,. . . , cxr-\) and i|i(c) = u(cxr), repectively. The existence of 
the element zr is obviously equivalent to the condition Ker (J> (̂  Ker \\t. It will be shown 
that the assumption Ker c() C Ker \\s leads to a contradiction. 

Note that the maps § and \\t are onto by the inductive hypothesis and the simplicity 
of the module M/Vl respectively, hence they induce the isomorphisms cj/:2ft/Ker 
<|> -> M"x and i|/:2ft/Ker i|i -> H/J^{. If Ker <|> C Ker i|i, then we have the 
natural epimorphism 6:2ft/Ker cf) —> 2ft/Ker V)J, which induces an epimorphism 
\:Mr~] -> i l /3ï , X = O ^ ' - 1 - Let \,-:il -> M/% be the components of X, that is, 
\(wi» • • • > wr-i) = X^Mj) + ••• + Xr_,(wr_,) for all (wi,. . . , ur-\) E Jlr~ '. Since the 
module M/% is simple, Ker X7 is either M or the only maximal submodule % of M. In 
any case X; induces an endomorphism X/ E End^ (M/%). By the definition of X we now 
have 

\\lï(cX\) + *•• + \.'r-xlï{cXr-\) = Ti(cXr) 

for all c E 2ft. The last equality implies in particular that XJTT(JCI) + ••• + X;_ ,7r(xr_ ,) 
= Tr(xr), but this is a contradiction, since the elements TT(JC,) are linearly independent 
over the division ring End:# (M/%). / / 
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