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Abstract. Let {xi}∞i=1 be an arbitrary strictly increasing infinite sequence of
positive integers. For an integer n ≥ 1, let Sn = {x1, . . . , xn}. Let r > 0 be a real
number and q ≥ 1 a given integer. Let λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the

reciprocal power LCM matrix ( 1
[xi,xj ]r

) having the reciprocal power 1
[xi,xj ]r

of the least
common multiple of xi and xj as its i, j-entry. We show that the sequence {λ(q)

n }∞n=q
converges and limn → ∞λ

(q)
n = 0. We show that the sequence {λ(n−q+1)

n }∞n=q converges
if sr := ∑∞

i=1
1
xr

i
< ∞ and limn → ∞λ

(n−q+1)
n ≤ sr. We show also that if r > 1, then the

sequence {λ(tn−q+1)
ln }∞n=1 converges and limn → ∞λ

(tn−q+1)
ln = 0, where t and l are given

positive integers such that t ≤ l − 1.

2000 Mathematics Subject Classification. Primary 11C20, 11A05, 15A36.

1. Introduction. Let 1 ≤ x1 < . . . < xn < . . . be a given arbitrary strictly
increasing infinite sequence of positive integers. For any integer n ≥ 1, let

Sn = {x1, . . . , xn}.
Now let r > 0 be a real number. The n × n matrix having the power (xi, xj)r of the
greatest common divisor of xi and xj as its i, j-entry is called the power greatest common
divisor (GCD) matrix defined on Sn, denoted by ((xi, xj)r), or abbreviated by ((Sn)r). The
matrix having the power [xi, xj]r of the least common multiple of xi and xj as its i, j-
entry is called the power least common multiple (LCM) matrix, denoted by ([xi, xj]r),
or abbreviated by [(Sn)r]. If we let r = 1, then the power GCD matrix and the power
LCM matrix are said to be the GCD matrix defined on Sn and the LCM matrix
defined on Sn, respectively, and denoted by (Sn) and [Sn], respectively. Smith was the
first mathematician who studied the power GCD matrices and power LCM matrices
(see [9, 33, 35]). Later on, many generalizations of Smith’s determinant have been
published, see [1, 2, 4–8, 11, 12, 14–26, 29–32, 34, 36, 37] and the references listed
there. In 1989, Beslin and Ligh [4] initiated the study of the GCD matrix (Sn) on any
set Sn in the direction of structure, determinant and inverse. In particular, they proved
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that the GCD matrix (Sn) on any set Sn of n distinct positive integers is positive definite.
However, the LCM matrix [Sn] on any set Sn is not positive definite in general. It may
not even be nonsingular. In fact, Hong [16] showed that the LCM matrix [Sn] defined on
any gcd-closed set Sn (i.e. (xi, xj) ∈ Sn for all 1 ≤ i, j ≤ n) is nonsingular if n ≤ 7, and for
every integer n ≥ 8, there exist gcd-closed sets Sn such that the LCM matrix [Sn] on Sn

is singular (see [16, 21, 22]). Notice that Haukkanen et al. [12] also found a gcd-closed
set Sn such that the LCM matrix [Sn] on Sn is singular when n = 9. Recently Hong [23]
proved that there are gcd-closed sets Sn and lcm-closed sets Sn (i.e. [xi, xj] ∈ Sn for all
1 ≤ i, j ≤ n) such that the reciprocal GCD matrix ( 1

(Sn) ) on Sn is singular.
For the following form of a power GCD matrix

Nn :=
(

(i, j)2r

ir · jr

)
1 ≤ i,j ≤ n

=
(

(i, j)r

[i, j]r

)
1 ≤ i,j ≤ n

,

Wintner [36] proved in 1944 that lim supn → ∞�n(r) < ∞ if and only if r > 1, where
�n(r) denotes the largest eigenvalue of the matrix Nn. Let λn(r) denote the smallest
eigenvalue of the matrix Nn. Lindqvist and Seip [31] in 1998 used the work of [13]
about Riesz bases to investigate the asymptotic behavior of λn(r) and �n(r) as n → ∞.
In particular, they got a sharp bound for λn(r) and �n(r). In 1993, Bourque and Ligh
[5] extended Beslin and Ligh’s result [4] by showing that for any r > 0, the power GCD
matrix ((Sn)r) on Sn is positive definite. From this, one can only conclude that its
eigenvalues are positive. Hong and Loewy [24, 25] investigated the eigen-structure of
the power GCD matrices and made some significant progress in this topic. In fact, it
was proved in [24] that if 0 < r ≤ 1 and q ≥ 1 is any fixed integer, then the q-th smallest
eigenvalue of the n × n power GCD matrix ((i, j)r) approaches zero as n tends to infinity.
We also note that Cao [8], Hong [20], Hong-Shum-Sun [26] and Li [30] investigated
the nonsingularity of power LCM matrices while Hong [18, 19], Haukkanen-Korkee
[11] and Zhao-Hong-Liao-Shum [37] studied the divisibility of power LCM matrices
by power GCD matrices.

In the present paper, our main aim is to consider the asymptotic behavior of
eigenvalues of reciprocal power LCM matrices. Let r > 0 be a real number and
q ≥ 1 a given integer. Let λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the reciprocal power

LCM matrix ( 1
[xi,xj ]r

) having the reciprocal power 1
[xi,xj ]r

of the least common multiple
of xi and xj as its i, j-entry. We show that the sequence {λ(q)

n }∞n=q converges and
limn → ∞λ

(q)
n = 0. We show also that the sequence {λ(n−q+1)

n }∞n=q converges if
∑∞

i=1
1
xr

i
< ∞

and limn →∞λ
(n−q+1)
n ≤ ∑∞

i=1
1
xr

i
. Finally we investigate asymptotic behavior of the

mediate eigenvalues of reciprocal power LCM matrices. Actually we show that if r > 1,
then the sequence {λ(tn−q+1)

ln }∞n=1 converges and limn → ∞λ
(tn−q+1)
ln = 0, where t and l are

given positive integers such that t ≤ l − 1.

2. On the smallest eigenvalue of reciprocal power LCM matrices. We first show
that the reciprocal power LCM matrix defined on any set of positive integers is positive
definite. We also give bounds for its determinant. Denote by gcd(A) the greatest
common divisor of the elements of a finite set A of positive integers.

THEOREM 2.1. Let r > 0 be a real number and Sn = {x1, . . . , xn} be a set of n distinct
positive integers. Then each of the following is true:

https://doi.org/10.1017/S0017089507003953 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003953


RECIPROCAL POWER LCM MATRICES 165

(i)
∏n

k=1
1

x2r
k

∑
I⊆{x|x ∈ Sn,x < xk}(−1)|I |(gcd({xk} ∪ I))r ≤ det( 1

[xi,xj ]r
) ≤ ∏n

k=1
1

xr
k
. Fur-

thermore, the equality on the left-hand side inequality holds if and only if Sn

is gcd closed.
(ii) The n × n matrix ( 1

[xi,xj ]r
) is positive definite.

Proof. Since xixj = [xi, xj](xi, xj) for all 1 ≤ i, j ≤ n, we get(
1

[xi, xj]r

)
= D · ((xi, xj)r) · D,

where D = diag( 1
xr

1
, . . . , 1

xr
n
). Then we derive that

det
(

1
[xi, xj]r

)
= det((xi, xj)r) ·

n∏
k=1

1

x2r
k

.

By Theorem 1 of [15] we have det((xi, xj)r) ≥ ∏n
k=1 αk,r, where

αk,r =
∑
d|xk

d 	 |xt ,xt < xk

Jr(d)

and Jr denotes the generalized Jordan function, i.e. Jr = ξr ∗ µ with ξr(m) = mr for
any positive integer m. But Claim 2.2 of [21] applied to f = ξr gives us that (note that
Claim 2.2 of [21] is stated under the condition that Sn is gcd closed but clearly this is
not necessary)

αk,r =
∑

I⊆{x|x ∈ Sn,x < xk}
(−1)|I |(gcd({xk} ∪ I))r.

Thus the inequality on the left-hand side of part (i) follows immediately. Furthermore,
by Theorem 1 of [15] we know that the equality in the above inequality holds if and
only if Sn is gcd closed. Thus the second assertion of part (i) follows immediately.

For any 1 ≤ l ≤ n, the inequality on the left-hand side of (i) implies that the
determinant of any principal submatrix of order l of ( 1

[xi,xj ]r
) is positive. This concludes

part (ii). From (ii) the inequality on the right-hand side of (i) follows immediately.
Hence the proof of Theorem 2.1 is complete. �

REMARK. In Theorem 2.1, the condition r > 0 is necessary. In fact, letting r < 0
gives us a power LCM matrix ([xi, xj]−r). As mentioned in the introduction section, this
matrix is not necessarily positive definite. It may even be singular, see [16, 21, 22] for
the examples when r = −1. On the other hand, it follows from part (ii) of Theorem 2.1
that Conjectures 4.1 and 4.5 of Hong [21] are true when ε < 0 (see [21]). Note that Li
[30] made some progress towards Conjectures 4.1 and 4.5 of Hong [21] when ε > 0.
Given d, x ∈ Sn with d < x, we say that d is a greatest-type divisor of x in Sn if d|x and
there is no other y ∈ Sn such that d|y and y|x (see [16, 21–23]). We also remark that if
Sn is gcd closed, then by Theorem 1.2 of [21] we have the following further reduced
formula:

αk,r =
∑

I⊆GSn (xk)

(−1)|I |(gcd({xk} ∪ I))r,

where GSn (xk) means the set of all greatest-type divisors of xk in the set Sn.
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Consequently, we investigate the asymptotic behavior of the smallest eigenvalue
of the reciprocal power LCM matrices. We have the following result.

THEOREM 2.2. Let r > 0 be a real number, q ≥ 1 a given arbitrary integer and {xi}∞i=1 an
arbitrary given strictly increasing infinite sequence of positive integers. Let λ

(1)
n ≤ . . . ≤ λ

(n)
n

be the eigenvalues of the n × n reciprocal power LCM matrix ( 1
[xi,xj ]r

) defined on the set
Sn := {x1, . . . , xn}. Then each of the following is true:

(i) We have

0 < λ(1)
n ≤ 1

n

(
1
xr

1

+ · · · + 1
xr

n

)
.

(ii) The sequence {λ(q)
n }∞n=q converges. Further, we have limn → ∞λ

(q)
n = 0.

Proof. Let 1 ≤ q ≤ n be a fixed integer and r > 0. Then it follows from part (ii) of
Theorem 2.1 that the reciprocal power LCM matrix ( 1

[xi,xj ]r
) is positive definite and so

we have

λ(q)
n > 0. (1)

On the other hand, by Cauchy’s interlacing inequalities (see [27] and a new proof
of it, see [28]) we have

λ
(q)
n+1 ≤ λ(q)

n .

Thus the sequence {λ(q)
n }∞n=q is a non-increasing infinite sequence of positive real

numbers and so it is convergent. In what follows we use induction on q to show
the second statement. First we prove the case q = 1, i.e. limn →∞λ

(1)
n = 0. Since

λ
(1)
n ≤ · · · ≤ λ

(n)
n and

λ(1)
n + · · · + λ(n)

n = 1
[x1, x1]r

+ · · · + 1
[xn, xn]r

= 1
xr

1

+ · · · + 1
xr

n
, (2)

we get

λ(1)
n ≤ 1

n

(
1
xr

1

+ · · · + 1
xr

n

)
.

Hence part (i) is proved. Since r > 0 and xi ≥ i for all integer i ≥ 1, we then deduce that

λ(1)
n ≤ 1

n

(
1 + 1

2r
+ · · · + 1

nr

)
. (3)

Let first r ≥ 1. Then by (3) we have

λ(1)
n ≤ 1

n

(
1 + 1

2
+ · · · + 1

n

)
.

But it is well known (see [10] or part (a) of Theorem 3.2 of [3]) that

1 + 1
2

+ · · · + 1
n

= log n + γ + O
(

1
n

)
,
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where γ is Euler’s constant. So there is a constant C > 0 such that

1 + 1
2

+ · · · + 1
n

≤ log n + γ + C
n

.

Therefore

λ(1)
n ≤ log n

n
+ γ

n
+ C

n2
. (4)

Then taking the limit in (1) (let q = 1) and (4) gives limn → ∞λ
(1)
n = 0 as required.

Now let 0 < r < 1. By part (b) of Theorem 3.2 of [3] we have

1 + 1
2r

+ · · · + 1
nr

= n1−r

1 − r
+ ζ (r) + O

(
1
nr

)
,

where ζ (r) is the Riemann zeta function. Then there is a constant C′ > 0 such that

λ(1)
n ≤ 1

n

(
n1−r

1 − r
+ ζ (r) + C′

nr

)
= 1

nr(1 − r)
+ ζ (r)

n
+ C′

n1+r
. (5)

Thus the desired result limn →∞λ
(1)
n = 0 follows immediately by taking the limit in (1)

(let q = 1) and (5).
Assume that limn → ∞λ

(k)
n = 0 for 1 ≤ k < q. Now we consider the case k = q. Since

λ
(q)
n ≤ . . . ≤ λ

(n)
n , then from (2) we deduce that

λ(1)
n + · · · + λ(q−1)

n + (n − q + 1)λ(q)
n ≤ 1 + 1

2r
+ · · · + 1

nr
.

So we have

1
n − q + 1

(
λ(1)

n + · · · + λ(q−1)
n

) + λ(q)
n ≤ 1

n − q + 1

(
1 + 1

2r
+ · · · + 1

nr

)
. (6)

In the same way as above, we can prove that the right-hand side of (6) approaches
zero when n goes to infinity since r > 0. Note that the left-hand side of (6) is
positive and limn→∞λ

(k)
n = 0 for 1 ≤ k ≤ q − 1. Therefore taking the limit in (6) gives

us limn →∞λ
(q)
n = 0. This completes the proof of part (ii) of Theorem 2.2. �

REMARK. Associated to an arbitrary given strictly increasing infinite sequence of
positive integers, we can form an infinite sequence of power GCD matrices and an
infinite sequence of reciprocal power LCM matrices. Hong and Loewy [24] proved
that the sequence of the smallest eigenvalues of such power GCD matrices converges
and the limit is nonnegative when n approaches infinity. But the limit may be positive
(see Theorem 2.5 of [24]). However, by Theorem 2.2 (ii) we know that the limit of the
smallest eigenvalue of such reciprocal power LCM matrices is zero as n goes to infinity.

The above proofs are number-theoretic. In what follows we give a matrix analysis
proof to the second assertion of part (ii) of Theorem 2.2. Indeed, we prove the following
result which gives an upper bound of λ

(k)
n for 1 ≤ k ≤ n with a different flavor. Note that

the following result is sharper than that of Theorem 2.2 for the case k = 1. Furthermore,
we provide a lower bound for λ

(n)
n .
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THEOREM 2.3. Under the assumptions of Theorem 2.2, we have for 1 ≤ k ≤ n,

λ(k)
n ≤ k

xr
n−k+1

.

Moreover, we have λ
(n)
n ≥ 1

xr
1
.

Proof. First of all, we establish the fact that

y∗
(

1
[xi, xj]r

)
y ≤ ky∗y

xr
n−k+1

(7)

for y ∈ Vk, a k-dimensional subspace of the n-dimensional complex vector space
�n consisting of vectors that have zero entries in the coordinates at 1, . . . , n − k,
namely, y = (y1, . . . , yn)T with yi = 0 for i = 1, . . . n − k, where y∗ denotes the complex
conjugate transpose of y. We also use ā to represent the complex conjugate of a complex
number a. We illustrate our claim by induction. It is clear that

y∗
(

1
[xi, xj]r

)
y = ȳnyn

xr
n

= y∗y
xr

n

where y ∈ V1. Thus it is true for k = 1. Assume for the purpose of induction that the
claim is true for some 1 ≤ k < n. We show the case for k + 1.

Denote by Ce the e-th column of the matrix ( 1
[xi,xj ]r

). Let y ∈ Vk+1. Observe that

y∗
(

1
[xi, xj]r

)
y = y∗Cn−kyn−k + y∗Cn−k+1yn−k+1 + · · · + y∗Cnyn.

Let z ∈ Vk such that zi = yi if i 	= n − k and zi = 0 if i = n − k. Therefore there is a
copy of z∗( 1

[xi,xj ]r
)z embedded into the previous expression. In fact,

y∗
(

1
[xi, xj]r

)
y = y∗Cn−kyn−k + ȳn−k

1
[xn−k, xn−k+1]r

yn−k+1 + · · · +

+ ȳn−k
1

[xn−k, xn]r
yn + z∗

(
1

[xi, xj]r

)
z.

(8)

A routine computation shows

|y∗Cn−kyn−k| ≤ 1
xr

n−k
(|ȳn−k| + · · · + |ȳn|)|yn−k|

≤ 1
xr

n−k
(|yn−k|2 + 1

2

k∑
i=1

(|yn−k|2 + |yn−k+i|2))

= 1
2xr

n−k
((k + 1)|yn−k|2 + y∗y)

(9)

since |ab| ≤ 1
2 (|a|2 + |b|2) for any complex numbers a and b. Similarly, we have

|ȳn−k
1

[xn−k, xn−k+1]r
yn−k+1 + · · · +ȳn−k

1
[xn−k, xn]r

yn| ≤ 1
2xr

n−k
((k − 1)|yn−k|2 + y∗y).

(10)
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Furthermore by the induction hypothesis we have also

z∗
(

1
[xi, xj]r

)
z ≤ kz∗z

xr
n−k+1

≤ kz∗z
xr

n−k
= k(y∗y − |yn−k|2)

xr
n−k

. (11)

Putting (9)–(11) together, by (8) we have

y∗
(

1
[xi, xj]r

)
y ≤ (k + 1)y∗y

xr
n−k

.

This completes the induction and the claim is proved.
Let v1, . . . , vn−k be n − k orthonormal vectors that span (Vk)⊥. Then by the above

claim (7) we get that

k
xr

n−k+1

≥ max0	=y ∈ Vk

y∗
(

1
[xi ,xj ]r

)
y

y∗y = max0	=y⊥v1,... ,vn−k

y∗
(

1
[xi ,xj ]r

)
y

y∗y

≥ minw1,... ,wn−k ∈ �n max0	=y⊥w1,... ,wn−k

y∗
(

1
[xi ,xj ]r

)
y

y∗y .

Now we apply the Courant-Fisher theorem (see [27]) to obtain

λ(k)
n ≤ k

xr
n−k+1

as desired. Thus the first part of Theorem 2.3 is proved.
We proceed to show the lower bound of λ

(n)
n . We let U1 be the 1-dimensional

subspace of �n consisting of vectors that have zero entries in the coordinates at 2, . . . , n.
Again, by the Courant-Fisher theorem, we immediately have

λ
(n)
n = maxw1,... ,wn−1∈�n min0	=y⊥w1,... ,wn−1

y∗
(

1
[xi ,xj ]r

)
y

y∗y

≥ min0	=y⊥u1,... ,un−1

y∗
(

1
[xi ,xj ]r

)
y

y∗y = min0	=y∈U1

y∗
(

1
[xi ,xj ]r

)
y

y∗y = 1
xr

1

,

where u1, . . . , un−1 denotes n − 1 orthonormal vectors spanning (U1)⊥ and y =
(y1, 0, . . . , 0)T ∈ U1. Therefore, λ

(n)
n ≥ 1

xr
1
. This completes the proof. �

By Theorem 2.3, the second assertion of part (ii) of Theorem 2.2 also follows
immediately. We also remark that n−q

xr
q+1

≥ λ
(n−q)
n for 0 ≤ q < n as a consequence of this

analysis.

3. On the largest and mediate eigenvalues of reciprocal power LCM matrices. In
this section we first turn our attentions to the asymptotic behavior of the largest
eigenvalue of the reciprocal power LCM matrices. Later we consider the asymptotic
behavior of some mediate eigenvalues. We begin with the following results.

THEOREM 3.1. Let r > 0 be a real number, q ≥ 0 a given arbitrary integer and {xi}∞i=1 an
arbitrary given strictly increasing infinite sequence of positive integers. Let λ

(1)
n ≤ . . . ≤ λ

(n)
n

be the eigenvalues of the n × n reciprocal power LCM matrix ( 1
[xi,xj ]r

) defined on the set
Sn := {x1, . . . , xn}. Then each of the following is true:
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(i) If
∑∞

i=1
1
xr

i
< ∞, the sequence {λ(n−q)

n }∞n=q+1 converges. Furthermore, we have

lim
n →∞ λ(n−q)

n ≤
∞∑

i=1

1
xr

i
.

(ii) In particular, the sequence {λ(n−q)
n }∞n=q+1 converges if r > 1. Furthermore, we have

lim
n → ∞ λ(n−q)

n ≤ ζ (r).

Proof. First the Cauchy’s interlacing theorem tells us that for any integer n ≥ q + 1,
we have

λ(n−q)
n ≤ λ

(n+1−q)
n+1 .

Second, since λ
(i)
n > 0 for 1 ≤ i ≤ n and

∑n
i=1 λ

(i)
n = ∑n

i=1
1
xr

i
, we then deduce

λ(n−q)
n <

n∑
i=1

1
xr

i
<

∞∑
i=1

1
xr

i
. (12)

Suppose now that
∑∞

i=1
1
xr

i
< ∞. Then there exists a constant C > 0 such that∑∞

i=1
1
xr

i
< C. Thus we have

λ(n−q)
n < C.

Therefore the sequence {λ(n−q)
n }∞n=q+1 is monotonic increasing and has an upper bound,

and so it is convergent. From (12) the upper bound of the limit in the second statement
of part (i) follows immediately.

To show part (ii), let r > 1. Then the value of the Riemann zeta function ζ (r) < ∞.
But

∞∑
i=1

1
xr

i
≤

∞∑
i=1

1
ir

= ζ (r). (13)

So we have
∑∞

i=1
1
xr

i
< ∞. Now the first statement of part (ii) follows immediately from

the first statement of part (i). For the second statement of part (ii), it just follows from
(13) and the second statement of part (i). The proof of Theorem 3.1 is complete. �

COROLLARY 3.1. Let r > 0 be a real number, q ≥ 0 a given arbitrary integer and
{xi}∞i=1 an arbitrary given strictly increasing infinite divisor chain sequence of positive
integers, namely xi|xj whenever 1 ≤ i ≤ j. Let λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the

n × n reciprocal power LCM matrix ( 1
[xi,xj ]r

) defined on the set Sn := {x1, . . . , xn}. Then

the sequence {λ(n−q)
n }∞n=q+1 converges and we have

limn → ∞λ(n−q)
n ≤

(
2
x1

)r

· 1
2r − 1

.
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Proof. Since x1| . . . |xn| . . . , we get xi ≥ x1 · 2i−1 for all i ≥ 1. So we deduce that

∞∑
i=1

1
xr

i
≤

∞∑
i=1

1
xr

1 · 2r(i−1)
= 1

xr
1

·
∞∑

i=0

1
2ri

=
(

2
x1

)r

· 1
2r − 1

.

Then Corollary 3.1 follows immediately from Theorem 3.1. �

COROLLARY 3.2. Let r ≥ 1 be a real number, q ≥ 0 a given arbitrary integer. Let
λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the n × n reciprocal power LCM matrix ( 1

[i!,j!]r ) =
( 1

((max(i,j))!)r ) defined on the set Sn := {1!, 2!, . . . , n!}. Then the sequence {λ(n−q)
n }∞n=q+1

converges and we have

limn →∞λ(n−q)
n ≤ e − 1.

Proof. Since xi = i! for all i ≥ 1 and r ≥ 1, we have

∞∑
i=1

1
xr

i
=

∞∑
i=1

1
(i!)r

≤
∞∑

i=1

1
i!

= e − 1.

Thus Corollary 3.2 follows immediately from Theorem 3.1. �

COROLLARY 3.3. Let r > 0 be a real number, q ≥ 0 and a ≥ 1 given arbitrary integers.
Let λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the n × n reciprocal power LCM matrix

( 1
[ai−1,aj−1]r ) = ( 1

ar·(max{i,j}−1) ) defined on the set Sn := {1, a, . . . , an−1}. Then the sequence

{λ(n−q)
n }∞n=q+1 converges and we have

lim
n → ∞ λ(n−q)

n ≤ ar

ar − 1
.

Proof. Since xi = ai−1 for all i ≥ 1, we derive that

∞∑
i=1

1
xr

i
=

∞∑
i=0

1
ari

= ar

ar − 1
.

Then Corollary 3.3 follows immediately from Theorem 3.1. �

EXAMPLE 3.1. Let r > 0 be a real number, q ≥ 0 a given arbitrary integer.
Let λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the n × n reciprocal power LCM matrix

( 1
[2i−1,2j−1]r ) = ( 1

2r·(max{i,j}−1) ) defined on the set Sn := {1, 2, . . . , 2n−1}. Then by Corollary 3.3

we know that the sequence {λ(n−q)
n }∞n=q+1 converges and

lim
n → ∞ λ(n−q)

n ≤ 2r

2r − 1
.

By Theorem 2.3 we have limn →∞λ
(n)
n ≥ 1. For r = 1, by using Maple 9.5 we find that

lim
n → ∞ λ(n)

n = 1.454035950283418071052764297816596195350 . . . .
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REMARK. Although by Theorem 3.1 we know that limn → ∞λ
(n−q)
n exists for any

given integer q ≥ 0 if
∑∞

i=1
1
xr

i
< ∞, the problem of computing the exact limit remains

wide open. In the forthcoming works, we will explore this interesting topic.
Finally we consider the asymptotic behavior of mediate eigenvalues of the

reciprocal power LCM matrices. We have the following results.

THEOREM 3.2. Let r > 1 be a real number and n be a positive integer. Suppose {xi}∞i=1

is an arbitrary strictly increasing infinite sequence of positive integers. Let λ
(1)
n ≤ . . . ≤ λ

(n)
n

be the eigenvalues of the n × n reciprocal power LCM matrix ( 1
[xi,xj ]r

) defined on the set
Sn := {x1, . . . , xn}. Then each of the following is true:

(i) If q is an integer satisfying Cn ≤ q ≤ n − 1, where 0 < C < 1 is a constant, then
we have

λ(n−q)
n ≤ c

nr−1
,

where c > 0 is a constant.
(ii) For any integer-valued function k(n) such that 1 ≤ k(n) ≤ Cn, where 0 < C < 1 is

a constant, the sequence {λ(k(n))
n }n converges. Further we have limn → ∞λ

(k(n))
n = 0.

In particular, we have limn →∞λ
(tn−e)
ln = 0 for any given integers e, t and l such

that e ≥ 0 and 1 ≤ t ≤ l − 1.

Proof. Observe that xk ≥ k. Then from Theorem 2.3 we deduce that

λ(n−q)
n ≤ n − q

(q + 1)r
. (14)

But the condition Cn ≤ q ≤ n − 1, where 0 < C < 1 is a constant, implies that we can
find a constant c so that

n − q
(q + 1)r

≤ c
nr−1

. (15)

In fact, we can take c = 1−C
Cr > 0 since 0 < C < 1. So part (i) follows immediately from

(14) and (15).
On the other hand, by Theorem 2.2 (i) we know that λ

(n−q)
n > 0. Since r > 1, by

part (i) and taking the limit we then obtain that limn →∞λ
(n−q)
n = 0. Clearly from

1 ≤ k(n) ≤ Cn we can deduce that (1 − C)n ≤ n − k(n) ≤ n − 1. Hence picking q = n −
k(n) one gets limn →∞λ

(k(n))
n = 0 as required. We then conclude part (ii). This completes

the proof of Theorem 3.2. �
THEOREM 3.3. Let n be a positive integer. Suppose {xi}∞i=1 is an arbitrary given

strictly increasing infinite sequence consisting of prime numbers except for finite terms.
Let λ

(1)
n ≤ . . . ≤ λ

(n)
n be the eigenvalues of the reciprocal LCM matrix ( 1

[xi,xj ]
) defined on

the set Sn := {x1, . . . , xn}. Then each of the following is true:
(i) If q is an integer satisfying Cn ≤ q ≤ n − 1, where 0 < C < 1 is a constant, then

we have

λ(n−q)
n ≤ c

log(q + 1)
,

where c > 0 is a constant.
(ii) The same statements as that of Theorem 3.2 (ii).
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Proof. By Cauchy interlacing theorem it suffices to show the results for the case
that {xi}∞i=1 consists of all primes except for finite terms. W.L.O.G. we may let xi = pi

denote the i-th prime. Following a well-known fact that 1
6 i log i < pi (see Theorem 4.7

of [3]), by Theorem 2.3 we have

λ(n−q)
n ≤ n − q

pq+1
<

n − q
1
6 (q + 1) log(q + 1)

. (16)

Since Cn ≤ q ≤ n − 1 with 0 < C < 1 a constant, there exists a constant c so that

n − q
1
6 (q + 1) log(q + 1)

≤ c
log(q + 1)

. (17)

Actually, one may take c = 6(1−C)
C . Then (16) as well as (17) concludes part (i). Note

that λ
(n−q)
n > 0 and q ≥ Cn implying q → ∞ when n → ∞. Therefore, taking the limit in

part (i), we get limn→∞λ
(n−q)
n = 0. As in the proof of Theorem 3.2, letting q = n − k(n)

part (ii) then follows immediately. So Theorem 3.3 is proved. �
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12. P. Haukkanen, J. Wang and J. Sillanpää, On Smith’s determiant, Linear Algebra Appl.
258 (1997), 251–269.

13. H. Hedenmalm, P. Lindqvist and K. Seip, A Hilbert space of Dirichlet series and systems
of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.

14. T. Hilberdink, Determinants of multiplicative Toeplitz matrices, Acta Arith. 125 (2006),
265–284.

15. S. Hong, Bounds for determinants of matrices associated with classes of arithmetical
functions, Linear Algebra Appl. 281 (1998), 311–322.

16. S. Hong, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra
218 (1999), 216–228.

17. S. Hong, Gcd-closed sets and determinants of matrices associated with arithmetical
functions, Acta Arith. 101 (2002), 321–332.

https://doi.org/10.1017/S0017089507003953 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003953


174 SHAOFANG HONG AND K. S. ENOCH LEE

18. S. Hong, On the factorization of LCM matrices on gcd-closed sets, Linear Algebra Appl.
345 (2002), 225–233.

19. S. Hong, Factorization of matrices associated with classes of arithmetical functions,
Colloq. Math. 98 (2003), 113–123.

20. S. Hong, Notes on power LCM matrices, Acta Arith. 111 (2004), 165–177.
21. S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions,

J. Algebra 281 (2004), 1–14.
22. S. Hong, Nonsingularity of least common multiple matrices on gcd-closed sets,

J. Number Theory 113 (2005), 1–9.
23. S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions

on lcm-closed sets, Linear Algebra Appl. 416 (2006), 124–134.
24. S. Hong and R. Loewy, Asymptotic behavior of eigenvalues of greatest common divisor

matrices, Glasgow Math. J. 46 (2004), 551–569.
25. S. Hong and R. Loewy, Asymptotic behavior of the smallest eigenvalue of matrices

associated with completely even functions (mod r), submitted.
26. S. Hong, K. P. Shum and Q. Sun, On nonsingular power LCM matrices, Algebra Colloq.

13 (2006), 689–704.
27. R. Horn and C. R. Johnson, Matrix analysis (Cambridge University Press, 1985).
28. S. Hwang, Cauchy’s interlace theorem for eigenvalues of Hermitian matrices, Amer.

Math. Monthly 111 (2004), 157–159.
29. I. Korkee and P. Haukkanen, On meet and join matrices associated with incidence

functions, Linear Algebra Appl. 372 (2003), 127–153.
30. M. Li, Notes on Hong’s conjectures of real number power LCM matrices, J. Algebra

315 (2007), 654–664.
31. P. Lindqvist and K. Seip, Note on some greatest common divisor matrices, Acta Arith.

84 (1998), 149–154.
32. P. J. McCarthy, A generalization of Smith’s determinant, Canad. Math. Bull. 29 (1986),

109–113.
33. I. Niven and H. Zuckerman, An introduction to the theory of numbers, Third Edition

(Wiley, New York, 1960).
34. J. Sándor and B. Crstici, Handbook of number theory II (Kluwer Academic Publishers,

2004).
35. H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math.

Soc. 7 (1875-1876), 208–212.
36. A. Wintner, Diophantine approximations and Hilbert’s space, Amer. J. Math. 66 (1944),

564–578.
37. J. Zhao, S. Hong, Q. Liao and K. P. Shum, On the divisibility of power LCM matrices

by power GCD matrices, Czechoslovak Math. J. 57 (2007), 115–125.

https://doi.org/10.1017/S0017089507003953 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003953

