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100, Rue des Maths, 38610 Gières, Grenoble, France
On leave of absence from Departamento de Matemática, FCEyN, UBA,
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Abstract. The goal of this article is to study the coaugmented curved A∞-
coalgebra structure of the Koszul codual of a filtered dg algebra over a field k. More
precisely, we first extend one result of B. Keller that allowed to compute the A∞-
coalgebra structure of the Koszul codual of a nonnegatively graded connected algebra
to the case of any unitary dg algebra provided with a nonnegative increasing filtration
whose zeroth term is k. We then show how to compute the coaugmented curved
A∞-coalgebra structure of the Koszul codual of a Poincaré-Birkhoff-Witt (PBW)
deformation of an N-Koszul algebra.
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1. Introduction. The objective of this article is twofold:

(i) extend one result of B. Keller that allowed to compute the A∞-coalgebra structure
of the Koszul codual of a nonnegatively graded connected graded algebra to the
case of any unitary dg algebra provided with a nonnegative increasing filtration
whose zeroth term is the field k (see Theorem 5.2);

(ii) apply the previous result to compute the coaugmented curved A∞-coalgebra
structure of the Koszul codual of a PBW deformation of an N-Koszul algebra
(see Theorems 6.2 and 6.4).

The paper is organised as follows. In Section 2, we first recall some of the basic
definitions on curved A∞-coalgebras, following essentially [9]. The only new result is
Proposition 2.1, which is only an exercise in specializing the general definition to a
particular case. In Sections 3 and 4, we present the rudimentary and well-known facts
we will need on generalised Koszul algebras and their PBW deformations, respectively.

In Section 5, we present the first two main results of this article, which generalise
the mentioned theorem by Keller (see Proposition 5.1 and Theorem 5.2).

In Section 6, we apply the previous results to recursively compute the coaugmented
curved A∞-coalgebra of the Koszul codual of a PBW deformation U of an N-
Koszul algebra A. More precisely, we first show that a PBW deformation U of an
N-Koszul algebra A determines a unique coaugmented curved A∞-coalgebra structure
on TorA

• (k, k) satisfying some assumptions (see Theorem 6.2). The results required
to prove this theorem are relegated to Sections 6.2–6.5, and they follow but also
complete the ideas in [3, Section 3]. Indeed, using the notation of that article, the
authors never proved that m1 ◦ d = 0 = d ◦ m1 (cf. Lemma 6.20). Moreover, they also
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used the previously mentioned result of Keller, which only applies to nonnegatively
graded connected algebras, even though the PBW deformations they consider are not
nonnegatively graded (they are just connected). Our Theorem 5.2 fills this gap as well.
Furthermore, some of our proofs are shorter and clearer (cf. [3, Lemmas 3.6 and 3.7]
and our Lemmas 6.19 and 6.21, resp.), and mostly with less signs (cf. [3, Lemma 3.5] and
our Fact 6.18). Finally, as an application of Theorem 5.2, we prove that the previous
coaugmented curved A∞-coalgebra structure on TorA

• (k, k) is filtered quasi-equivalent
to the curved bar construction of U (see Theorem 6.4). In particular, this also gives
a description of a ‘small’ projective resolution of the standard U-bimodule U , and it
generalises the Koszul bimodule complex given by R. Berger and V. Ginzburg for a
particular case in [2, Section 5] (see Remark 6.5).

2. Some definitions and a basic result. In what follows, k will denote a field. For
A∞-(co)algebras, we shall use the conventions and terminology given in [5, Section
2.1]. We recall that, if V = ⊕n∈�Vn is a (cohomological) graded vector space, V [m] is
the graded vector space over k whose n-th homogeneous component V [m]n is given by
Vm+n, for all n, m ∈ �, and it is called the shift of V . We will denote by sV : V → V [1]
the suspension morphism, whose underlying map is the identity of V . We are not going
to consider any shift on other gradings, such as the Adams grading. All morphisms
between modules will be k-linear (satisfying further requirements if the modules are
decorated). All unadorned tensor products ⊗ would be over k.

Finally, � will denote the set of (strictly) positive integers, whereas �0 will be
the set of nonnegative integers. Similarly, for N ∈ �, we denote by �≥N the set of
positive integers greater than or equal to N. The analogous conventions hold for other
inequality symbols. When working with �p or �

p
0, we will denote by ej ∈ �

p
0 the p-tuple

whose i-th coordinate is δi,j, the Kronecker’s delta. We also recall the convention that
a sum over an empty set of indices is zero.

2.1. Basics on curved (strongly homotopic) coalgebras. We will now recall the
basic definitions of curved (strongly homotopic) coalgebras, since they are not so
widely known. We follow the basic conventions of [9] (see also [5, 10]), to which we
refer.

Let (C,�C, εC) be a counitary (coassociative) graded coalgebra, i.e., the
homogeneous maps �C : C → C ⊗ C and εC : C → k of degree zero satisfy that
(�C ⊗ idC) ◦ �C = (idC ⊗ �C) ◦ �C , (εC ⊗ idC) ◦ �C = idC = (idC ⊗ εC) ◦ �C . Let
(M, ρ) be a (counitary) graded bicomodule over C. We recall that this means that
we are given a homogeneous map ρ : M → C ⊗ M ⊗ C of degree zero satisfying that
(�C ⊗ idM ⊗ �C) ◦ ρ = (idC ⊗ ρ ⊗ idC) ◦ ρ and (εC ⊗ idM ⊗ εC) ◦ ρ = idM . Setting
ρl : M → C ⊗ M and ρr : M → M ⊗ C by ρl = (idC ⊗ idM ⊗ εC) ◦ ρ and ρr =
(εC ⊗ idM ⊗ idC) ◦ ρ, respectively, we see that they satisfy that (M, ρl) is a left
comodule over C and (M, ρr) is a right comodule over C, i.e., (�C ⊗ idM) ◦ ρl =
(idC ⊗ ρl) ◦ ρl, (idM ⊗ �C) ◦ ρr = (ρr ⊗ idC) ◦ ρr, (εC ⊗ idM) ◦ ρl = idM = (idM ⊗
εC) ◦ ρr. It is clear that a C-bicomodule is a left and right comodule over C satisfying
the compatibility (idC ⊗ ρr) ◦ ρl = (ρl ⊗ idC) ◦ ρr.

Assume that C is concentrated in even degrees and M is concentrated in
odd degrees. Define D = C[M] the counitary graded coalgebra whose underlying
graded space is C ⊕ M, with the induced grading, the comultiplication given by
�D = �C ◦ πC + ρl ◦ πM + ρr ◦ πM and the counit εD = εC ◦ πC , where πC : D → C
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and πM : D → M are the canonical projections. It is easy to see that, if ηC : k → C is a
coaugmentation of C, i.e., a homogeneous map such that �C ◦ ηC = (ηC ⊗ ηC) ◦ �k,
where �k : k → k ⊗ k is the obvious isomorphism, and εC ◦ ηC = idk, then ηD =
iC ◦ ηC is a coaugmentation of (D,�D, εD), where iC : C → D is the canonical
inclusion.

We recall that a noncounitary curved A∞-coalgebra is a derivation DC of
cohomological degree 1 on the unitary graded tensor algebra T(C[−1]) provided with
the concatenation product, such that DC ◦ DC = 0. The previous unitary dg algebra is
called the (noncounitary curved) cobar construction of C and is typically denoted by
�nc(C). If n ∈ �, we will typically denote an element s−1(c1) ⊗ · · · ⊗ s−1(cn) ∈ C[−1]⊗n

by 〈c1| . . . |cn〉, where c1, . . . , cn ∈ C, and s = sC[−1] : C[−1] → C is the suspension on
C[−1].

Since �nc(C) is a free graded algebra, DC is uniquely determined by its restriction
to C[−1], which we denote by d = ∑

i∈�0
di for di : C[−1] → C[−1]⊗i. Set �i : C →

C⊗i by means of di = (−1)i(s⊗i
C[−1])

−1 ◦ �i ◦ sC[−1]. Then, the collection of maps �i :
C → C⊗i for i ∈ �0 is locally finite, each of homological degree i − 2, and satisfy the
following identities:

∑
(r,s,t)∈In

(−1)rs+t(id⊗r
C ⊗ �s ⊗ id⊗t

C ) ◦ �r+1+t = 0, (SI(n))

for n ∈ �0, where In = {(r, s, t) ∈ �3
0 : r + s + t = n}. Reciprocally, starting from a

locally finite collection of maps �i : C → C⊗i fulfilling the previous properties we
obtain a noncounitary curved A∞-coalgebra structure. A noncounitary curved dg
coalgebra is a noncounitary curved A∞-coalgebra such that �i = 0 for all i ≥ 3.
We recall that a noncounitary curved A∞-coalgebra (C,�•) is called cocomplete (or
conilpotent) if the cobar construction �nc(C) is a cofibrant dg algebra with respect to
the model structure constructed by V. Hinich in [7].

Given two noncounitary curved A∞-coalgebras C and C′, a morphism f• : C →
C′ is a morphism of unitary dg algebras �nc(f•) : �nc(C) → �nc(C′) of the cobar
constructions. Since �nc(C) is a free graded algebra, such a morphism is completely
determined by its restriction to C[−1], which we denote by F = ∑

i∈�0
Fi, where Fi :

C[−1] → C′[−1]⊗i. Define fi : C → (C′)⊗i by Fi = (−1)i+1(s⊗i
C′[−1])

−1 ◦ fi ◦ sC[−1], for
i ∈ �0. Then, fi : C → (C′)⊗i is a locally finite collection of maps, each of homological
degree i − 1 for i ∈ �0, satisfying

∑
(r,s,t)∈In

(−1)rs+t(id⊗r
D ⊗ �D

s ⊗ id⊗t
D ) ◦ fr+1+t =

∑
q∈�0

∑
ı̄∈�

q,n
0

(−1)w
′
(fi1 ⊗ · · · ⊗ fiq ) ◦ �C

q ,

(MI(n))
for n ∈ �0, where w′ = ∑q

j=1(j − 1)(ij + 1) and �
q,n
0 is the subset of elements ī of �

q
0

satisfying that |ī| = i1 + · · · + iq = n, and the term of the right member of (MI(n))
for q = 0 is δn,0�

C
0 . Reciprocally, starting from a locally finite collection of maps

fi : C → (C′)⊗i fulfilling the previous properties we obtain a morphism of coaugmented
A∞-coalgebras. If f• : C → C′ and g• : C′ → D are morphisms of noncounitary curved
A∞-coalgebras, we can consider their composition �nc(g•) ◦ �nc(f•). Using the previous
comments we see that �nc(g•) ◦ �nc(f•) = �nc(h•) where {hn : C → D⊗n}n∈�0 is of the
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form

hn =
∑
q∈�0

∑
ī∈�

q,n
0

(−1)w
′
(gi1 ⊗ · · · ⊗ giq ) ◦ fq, (1)

where w′ = ∑q
j=1(j − 1)(ij + 1) and the term with q = 0 is δn,0f0. A morphism {f•}•∈�0

of noncounitary A∞-coalgebras is called strict if fn = 0 for all n ∈ �0 \ {1}, and it is
said to be a quasi-equivalence if the map �nc(f•) is a quasi-isomorphism. The identity
morphism of a noncounitary A∞-coalgebra C is the strict morphism satisfying that
f1 = idC . Moreover, if C and C′ are noncounitary curved dg coalgebras, a morphism
from C to C′ is a morphism of noncounitary A∞-coalgebras f• such that fn = 0 for all
n ∈ � \ {1}. It is easy to check that the previous composition rule preserves morphisms
of curved dg coalgebras.

A noncounitary curved A∞-coalgebra (C,�•) is called (strictly) counitary if there
exists a homogeneous linear map εC : C → k of degree zero such that (id⊗r

C ⊗ εC ⊗
id⊗t

C ) ◦ �i vanishes for all i ∈ � \ {2} and all r, t ∈ �0 such that r + 1 + t = i, and
(idC ⊗ εC) ◦ �2 = idC = (εC ⊗ idC) ◦ �2. A morphism of (strictly) counitary curved
A∞-coalgebras f• : C → C′ is a morphism of noncounitary curved A∞-coalgebras
such that (id⊗(j−1)

C′ ⊗ εC′ ⊗ id⊗(i−j)
C′ ) ◦ fi vanishes for all i ≥ 2 and j ∈ {1, . . . , i}, and

εC′ ◦ f1 = εC . A counitary curved A∞-coalgebra (C,�•, εC) is said to be (strictly)
coaugmented if there is homogeneous linear map ηC : k → C satisfying that εC ◦ ηC =
idk, �2 ◦ ηC(1k) = ηC(1k)⊗2 and �i ◦ ηC(1k) = 0 for all i ∈ �0 \ {2}. This is tantamount
to say that ηC is a strict morphism of counitary curved A∞-coalgebras, where k has the
trivial structure given by �i = 0 if i ∈ �0 \ {2}, �2 is the obvious map k → k ⊗ k and εk

is the identity. A morphism of (strictly) coaugmented curved A∞-coalgebras f• : C → C′

is a morphism of counitary curved A∞-coalgebras such that its composition with εC′

gives εC . Given a coaugmented curved A∞-coalgebra, we will denote the cokernel of
ηC by JC . Let us consider the functor from the category of coaugmented curved A∞-
coalgebras to the category of noncounitary curved A∞-coalgebras given by sending
(C,�•, εC, ηC) to JC provided with the comultiplications �̄• induced by �• by means
of

�̄n ◦ coker(ηC) = coker(ηC)⊗n ◦ �n,

for all n ∈ �0, where coker(ηC) : C → JC is the cokernel morphism. We remark that �̄n

is well-defined and unique for coker(ηC)⊗n ◦ �n ◦ ηC vanishes for all n ∈ �0. A similar
expression gives the action of the functor on the morphisms. It is clear that this functor
is an equivalence of categories, whose inverse sends the noncounitary curved A∞-
coalgebra (C̄, �̄•) to the coaugmented curved A∞-coalgebra structure over C = C̄ ⊕ k
with counit εC given by the canonical projection on k, coaugmentation ηC given by the
canonical inclusion of k, �n : C → C⊗n is the composition of the canonical projection
C → C̄, �̄n and the canonical inclusion C̄⊗n → C⊗n if n = 2, and �2 : C → C⊗2

satisfies that �2(1) = 1 ⊗ 1 and �2(c̄) = 1 ⊗ c̄ + c̄ ⊗ 1 + �̄2(c̄), for all c̄ ∈ C̄, where
1 ∈ k. A coaugmented curved A∞-coalgebra (C,�•, εC, ηC) is said to be cocomplete
(or conilpotent) if the corresponding noncounitary curved A∞-coalgebra structure on
JC is cocomplete. Moreover, if (C,�•, εC, ηC) is a coaugmented curved A∞-coalgebra,
its (coaugmented curved) cobar construction �+(C) is defined as �nc(JC).

All the previous definitions of this section make also perfect sense if we drop the
adjective ‘curved’, by which we mean that the curvature terms �0 and f0 vanish.

578

https://doi.org/10.1017/S001708951800037X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951800037X


THE CURVED A∞-COALGEBRA OF THE KOSZUL CODUAL

We also recall that given any unitary dg algebra A, there exists a canonical curved
dg coalgebra B+(A) associated to A, called the (curved) bar construction of A, and it
is constructed as follows. Let v : A → k be a linear map satisfying that v ◦ ηA = idk,
and let V = Ker(v). Define μV (resp., μk) as the composition of μA|V⊗V and the
projection idA − ηA ◦ v : A → V (resp., and v), and dV (resp., dk) as the composition
of dA|V and the projection idA − ηA ◦ v : A → V (resp., and v). Let Bv(A) = T(V [1])
be the (cocomplete) graded tensor coalgebra cogenerated by V [1]. An element
s(v1) ⊗ · · · ⊗ s(vn) is typically denoted by [v1| . . . |vn], where v1, . . . , vn ∈ V . Let B be
the unique coderivation of T(V [1]) whose composition with the canonical projection
onto V [1] is the map b : T(V [1]) → V [1] sending [v1| . . . |vn] to zero if n ∈ �≥2 ∪ {0},
[v1|v2] �→ (−1)|v1|+1[μV (v1, v2)] and [v] �→ −[dV (v)]. Moreover, set h : T(V [1]) → k
by h([v1| . . . |vn]) = 0 if n ∈ �≥2 ∪ {0}, h([v1|v2]) = (−1)|v1|+1μk(v1, v2) and h([v]) =
−dk(v). Then, Bv(A) = T(V [1]) provided with the deconcatenation coproduct, the
coderivation B and �0 = h is a curved dg coalgebra. It is clearly counitary for the
counit εBv (A) given by the canonical projection T(V [1]) → k and even coaugmented
for the coaugmentation ηBv(A) defined as the canonical inclusion k → T(V [1]). Given
another linear map v′ : A → k satisfying that v ◦ ηA = idk, the coaugmented curved
dg coalgebra Bv′ (A) is isomorphic to Bv(A), as coaugmented curved dg coalgebras.
Indeed, let g : V ′ → V be the linear isomorphism idV ′ − ηA ◦ v|V ′ (with inverse
idV − ηA ◦ v′|V ), and f1 = ∑

n∈�0
(g[1])⊗n : T(V ′[1]) → T(V [1]). Let f0 : T(V ′[1]) → k

be the composition of the canonical projection onto V ′[1], s−1
V ′ and v|V ′ . Then, (f0, f1)

determines an isomorphism of coaugmented curved dg coalgebras from Bv′ (A) to
Bv(A). The inverse is obtained from interchanging v and v′ in the previous expressions.
Hence, we may drop the explicit dependence on the retraction v and will denote Bv(A)
simply by B+(A). It will be called the (curved) bar construction of A, or also, the Koszul
codual coalgebra of A.

Finally, it is clear that, given a morphism f : A → A′ of unitary algebras, it induces
a strict morphism B+(f ) : B+(A) → B+(A′) of coaugmented curved dg coalgebras.
Indeed, given v′ : A′ → k satisfying that v′ ◦ ηA′ = idk, define v = v′ ◦ f . Then, v ◦ ηA =
idk, and f sends V = Ker(v) to V ′ = Ker(v′). The mentioned strict morphism Bv(A) →
Bv′ (A′) of coaugmented curved dg coalgebras is finally given by

∑
n∈�0

(f |V [1])⊗n.

2.2. A particular result. The next result follows directly from the definition of
coaugmented curved A∞-coalgebra.

PROPOSITION 2.1. Let (C,�C, εC) be a counitary (coassociative) graded coalgebra
concentrated in even degrees and (M, ρ) be a (counitary) graded bicomodule over C
concentrated in odd degrees. We consider the counitary graded coalgebra D = C[M]
defined before, with coproduct �D and counit εD. Assume we are given linear maps

�′
p : C → M⊗p, (2)

for all p ∈ �0, of degree p − 2, and a bicoderivation

∂ : M → C, (3)

of degree −1, i.e., �C ◦ ∂ = (idC ⊗ ∂) ◦ ρl + (∂ ⊗ idC) ◦ ρr. For p ∈ �0, set �p :
D → D⊗p by �p = �′

p ◦ πC + δp,1∂ ◦ πM + δp,2�D. Then, (D,�•)•∈�0 is a curved
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A∞-coalgebra if and only if

�′
0 ◦ ∂ = 0, ∂ ◦ �′

1 = (�′
0 ⊗ idC) ◦ �C − (idC ⊗ �′

0) ◦ �C, (4)

�′
p+1 ◦ ∂ = (�′

p ⊗ idM) ◦ ρl − (−1)p(idM ⊗ �′
p) ◦ ρr, (5)

(ρl ⊗ id⊗(q−1)
M ) ◦ �′

q = (idC ⊗ �′
q) ◦ �C + (∂ ⊗ id⊗q

M ) ◦ �′
q+1, (6)

(id⊗j
M ⊗ ρl ⊗ id⊗(q−j−1)

M ) ◦ �′
q = (id⊗(j−1)

M ⊗ ρr ⊗ id⊗(q−j)
M ) ◦ �′

q (7)

+ (−1)j(id⊗j
M ⊗ ∂ ⊗ id⊗(q−j)

M ) ◦ �′
q+1,

(id⊗(q−1)
M ⊗ ρr) ◦ �′

q = (�′
q ⊗ idC) ◦ �C + (−1)q+1(id⊗q

M ⊗ ∂) ◦ �′
q+1, (8)

for all p ∈ �0, q ∈ � and j ∈ {1, . . . , q − 1}, where the latter set (so equation (7)) is empty
if q = 1. It is strictly counital with counit εD if and only if we further have εC ◦ ∂ = 0.
Moreover, assuming that the previous conditions hold, ηD is a (strict) coaugmentation of
(D,�•) if and only if �′

p ◦ ηC = 0, for all p ∈ �0.

Proof. Note that SI(0) coincides with the first equation in (4). Moreover, using
that C is a graded coalgebra and M is a graded C-bicomodule, and some basic
computations, we see that

(i) SI(1)|C is equivalent to the second equation in (4);
(ii) SI(p + 1)|M is equivalent to the third equation (5), where we have used that ∂ is a

bicoderivation for p = 1 and that ρ is a bicoaction for p = 2;
(iii) SI(2)|C is equivalent to the equations (6) and (8) for q = 1, respectively;
(iv) π0 ◦ SI(q + 1)|C (resp., πj ◦ SI(q + 1)|C , πq ◦ SI(q + 1)|C) is equivalent to the

antepenultimate (resp., penultimate, last) equation (6) (resp., (7), (8)), for q ≥ 2,
where πj : D⊗(q+1) → M⊗j ⊗ C ⊗ M⊗(q−j) is the canonical projection.

On the other hand, D is strictly counital if and only if εD ◦ �1 = 0, for the other
equations are automatically satisfied. The former equation is tantamount to εC ◦ ∂ = 0.
Finally, ηD is a strict coaugmentation if and only if �2 ◦ ηD = (ηD ⊗ ηD) ◦ �k, where
�k : k → k ⊗ k is the obvious isomorphism, and �p ◦ ηD = 0, for all p ∈ �0 \ {2}.
Since �D is a coaugmentation of (D,�D, εD), the first of the previous identities is
tantamount to �′

2 ◦ ηC = 0, whereas, the second collection of identities is equivalent
to �′

p ◦ ηC = 0, for all p ∈ �0 \ {2}. The proposition follows. �

3. Koszul algebras. In this section, we recall the basic results we will need on
homogeneous generalised Koszul algebras. Let V be a vector space over k, and let
A = TV/(R) be an N-homogeneous algebra for N ∈ �≥2, i.e., R ⊆ V⊗N . We say that
A is generalised Koszul (or N-Koszul, if we want to emphasise the degree of R) if the
minimal projective resolution P• of (either left or right) A-module k satisfies that Pn is
(a graded free module) generated in degree φN(n), for all n ∈ �0, where φN(2m) = Nm
and φN(2m + 1) = Nm + 1, for all m ∈ �0. We recall that, if A is N-Koszul, then

(V⊗j ⊗ R) ∩
( j−1∑

�=0

V⊗� ⊗ R ⊗ V⊗(j−�)
)

⊆ V⊗(j−1) ⊗ R ⊗ V, (9)

for all j = 2, . . . , N − 1 [1, Theorem 2.11 and Proposition 2.5].
We now recall the (strictly) coaugmented A∞-coalgebra structure on TorA

• (k, k),
for an N-Koszul algebra A. The Koszul property of A implies that D = TorA

• (k, k)
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satisfies that

Dp = TorA
p (k, k) =

φN (p−2)⋂
i=0

V⊗i ⊗ R ⊗ V⊗
(
φN (p−2)−i

)
, (10)

for p ≥ 2, together with D0 = TorA
0 (k, k) = k and D1 = TorA

1 (k, k) = V [1, equation
(2.5)]. Moreover, D has the following A∞-coalgebra structure. We will denote
the corresponding comultiplications by �̄n, for n ∈ �. If N = 2, all the higher
coproducts vanish, as well as �̄1, and �̄2 = �D is given by the usual deconcatenation
formula (see (i) below). Suppose, else that N > 2. There are only two nonvanishing
comultiplications, �̄2 = �D and �̄N , which satisfy that

(i) (pp1 ⊗ pp2 ) ◦ �̄2|Dp is the canonical inclusion if p1 + p2 = p and φN(p1) + φN(p2) =
φN(p) for p1, p2, p ∈ �0, and zero else;

(ii) (pp1 ⊗ · · · ⊗ ppN ) ◦ �̄N |Dp is the canonical inclusion if p1 + · · · + pN = p + N − 2
and φN(p1) + · · · + φN(pN) = φN(p) for p1, . . . , pN, p ∈ �, and zero otherwise;

where pm : D → Dm denotes the canonical projection. Note that the nonvanishing
statement of item (i) implies that either p1 or p2 is even, whereas in the case of item (ii) it
implies that p1, . . . , pN are odd (and p even). It is easy to verify that (D, �̄2, �̄N, εD, ηD)
is a coaugmented A∞-coalgebra for any N ≥ 2, where the canonical projection p0 :
D → D0 = k gives the strict counit εD of D and the canonical inclusion k = D0 → D
is the coaugmentation (this can be seen as an application of Proposition 2.1 to this
particular case). Moreover, by a result by B. Keller (see Theorem 5.2), it is a model for
TorA

• (k, k), i.e., it is quasi-equivalent to the coaugmented dg coalgebra B+(A).

REMARK 3.1. It is easy to see that the previous comultiplication, counit and
coaugmentation of D respect a second grading on that space, induced by the internal (or
Adams) grading of A, given by regarding V to be concentrated in degree 1. We remark
that the Adams grading of a nonzero element in Dp is φN(p), whereas, the homological
degree is p. This can be compactly reformulated as saying that (D, �̄2, �̄N, εD, ηD) is
an Adams graded coaugmented A∞-coalgebra.

4. PBW deformations. In this section, we will recollect the basic results on PBW
deformations of homogeneous algebras. We first recall that a filtered k-algebra B is a
k-algebra provided with an increasing sequence {F•B}•∈�0 of subspaces of B such that
FmB.FnB ⊆ Fm+nB, for all m, n ∈ �0 and 1B ∈ F0B. As usual, such filtrations may also
be seen to be indexed over �, where the negatively indexed terms vanish. Given a vector
space V , the tensor algebra TV has a filtration {F•}•∈�0 defined by Fi = ⊕i

j=0V⊗j. Now,
given P ⊆ FN , we shall consider the algebra U = TV/〈P〉, with the filtration {F•U}•∈�0

induced by the filtration of the tensor algebra, i.e., F•U = π (F•), where π denotes the
canonical projection from TV onto U . Of course, π is a morphism of filtered algebras.
The filtration can be described more concretely as follows: if 〈P〉i = Fi ∩ 〈P〉, then
FiU = Fi/〈P〉i, for i ∈ �0. If πi : TV → V⊗i is the canonical projection, let us denote
R = πN(P) and define the N-homogeneous algebra A = TV/〈R〉.

Since π : TV → U is a morphism of filtered algebras, it induces a morphism of
graded algebras gr(π ) : gr(TV ) → gr(U). Moreover, the filtration of U is induced by
the filtration of TV , so gr(π ) is surjective. On the other hand, since the filtration of
TV comes from a grading on the tensor algebra, we see that there exists a canonical
isomorphism ι : TV � gr(TV ). So, we may consider the surjective morphism of graded
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k-algebras given by the composition gr(π ) ◦ ι : TV → gr(U), which we shall call . It
is easy to see that (R) = 0, since ι(R) = P/FN−1. Hence,  induces a surjective
morphism of graded k-algebras p : A → gr(U). We say that U satisfies the PBW
property or that U is a PBW-deformation of A if p is an isomorphism.

As noticed by R. Berger and V. Ginzburg [2, Proposition 3.2], the filtered algebra
U satisfies the PBW property if and only if 〈P〉n = ∑

i+j≤n−N V⊗iPV⊗j, for all n ∈ �0

(in fact, it is sufficient to prove the equality for n ≥ N − 1). Moreover, if we denote
Jn = ∑

i+j≤n−N V⊗iPV⊗j, for n ∈ �0, Proposition 3.3. in [2] states that U satisfies the
PBW property if and only if Jn ∩ Fn−1 = Jn−1, for all n ∈ �0 (or just n ≥ N). The
identity JN ∩ FN−1 = JN−1 is simply

P ∩ FN−1 = 0, (11)

whereas, JN+1 ∩ FN = JN is easily equivalent to

(V ⊗ P + P ⊗ V ) ∩ FN ⊆ P. (12)

From now on, we shall suppose that identity (11) holds, which implies that the map
πN : FN → V⊗N gives an isomorphism between P and R = πN(P). Then, there exists a
linear map ϕ : R → FN−1 such that id − ϕ is the inverse of πN |P, i.e., P = {r − ϕ(r) : r ∈
R}. We further write, ϕ = ∑N−1

j=0 ϕj, where ϕj : R → V⊗j is the composition of ϕ with the
canonical morphism FN−1 → V⊗j. Let RN+1 = (R ⊗ V ) ∩ (V ⊗ R) ⊆ V⊗(N+1). Then,
it is easy to see that identity (12) is equivalent to [2, Proposition 3.5]

(ϕ ⊗ idV − idV ⊗ ϕ)(RN+1) ⊆ P,

or equivalently [2, Proposition 3.6]

(ϕN−1 ⊗ idV − idV ⊗ ϕN−1)(RN+1) ⊆ R, (13)

ϕ0 ◦ (ϕN−1 ⊗ idV − idV ⊗ ϕN−1)(RN+1) = 0, (14)(
ϕj ◦ (ϕN−1 ⊗ idV − idV ⊗ ϕN−1) + (ϕj−1 ⊗ idV − idV ⊗ ϕj−1)

)
(RN+1) = 0, (15)

for 0 < j < N.

DEFINITION 4.1. Given a filtered algebra U = TV/〈P〉, where P ⊆ FN , we say that
U is a weak PBW-deformation of A = TV/〈R〉, where R = πN(P), if (11) and (13)–(15)
hold.

One very interesting property of Koszul algebras is the following result, called the
Koszul deformation principle (see for instance [2, Theorems 1.2 and 3.4], [3, Theorem
1.1], and [6, Theorem 3.5]).

THEOREM 4.2. Let A be an N-homogeneous algebra satisfying that TorA
3 (k, k) is

concentrated in degree N + 1, and let U = TV/〈P〉 be a weak PBW-deformation of A.
Then, U satisfies the PBW property.

5. Curved A∞-coalgebra of the Koszul codual of a filtered dg algebra.

5.1. Twisting cochains and twisted tensor products. In this section, we will present
an extension of a result that was announced by B. Keller at the X ICRA of Toronto,
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Canada, in 2002. For the definitions and notation used we refer the reader to [5,
Theorem 4.2].

We first remark that all the definitions given in Section 2.1 can be done
for the category of (homological) graded vector spaces V provided with further
increasing (nonnegative) filtrations {F•V}•∈�0 of graded vector subspaces and all
the maps preserve the filtrations. We will assume that the filtrations are exhaustive,
i.e., ∪n∈�0 FnV = V . We will talk in that case of filtered noncounitary (resp.,
counitary, coaugmented) curved A∞-coalgebras, morphisms of filtered noncounitary
(resp., counitary, coaugmented) curved A∞-coalgebras, etc. We recall that k is provided
with the trivial filtration Fnk = k, for all n ∈ �0. In the case of a coaugmented curved
A∞-coalgebra C, one further imposes F0C to be the image of the coaugmentation ηC of
C. As a consequence, GrF•C(C) has zero curvature, so it is in fact a coaugmented A∞-
coalgebra. Moreover, we recall that a morphism f• : C → C′ of filtered coaugmented
curved A∞-coalgebras is called a filtered quasi-equivalence if the associated morphism
gr(f•) is a quasi-equivalence of coaugmented A∞-coalgebras.

Let C be a coaugmented curved A∞-coalgebra and A be a unitary dg algebra. We
recall that a twisting cochain from C to A is a linear map τ : C → A of cohomological
degree 1 such that τ ◦ ηC vanishes and that it satisfies the Maurer–Cartan equation

dA ◦ τ +
∑
i∈�0

(−1)i(i+1)/2+1μ
(i)
A ◦ τ⊗i ◦ �i = 0, (16)

where μ
(i)
A : A⊗i → A is the iterative application of the product of A if i ≥ 2, the identity

map of A if i = 1, and the unit ηA of A if i = 0. Note that the sum in (16) is well-defined
by the local finiteness assumption on the higher comultiplications of C. If Tw(C, A)
denotes the set of twisting cochains from C to A, we have a canonical map

Homu-dg-alg(�+(C), A) → Tw(C, A) (17)

given by g �→ g ◦ τC , where τC : C → �+(C) is the composition of the canonical
projection C → JC , s−1

JC [−1] and the canonical inclusion of JC [−1] inside �+(C), where
JC is the cokernel of the coaugmentation ηC of C. It is clear that the map (17) is
a bijection, and we will denote the image of a twisting cochain τ under its inverse
map by Fτ . Furthermore, by means of the previous morphism, we can define the
composition twisting cochain of a morphism of coaugmented curved A∞-coalgebras f• :
C′ → C with a twisting cochain τ from C to A. Indeed, if Fτ ∈ Homu-dg-alg(�+(C), A)
is the morphism such that Fτ ◦ τC = τ , and �+(f•) is the morphism of unitary dg
algebras from �+(C′) to �+(C), the composition twisting cochain τ ◦ f• is defined as
Fτ ◦ �+(f•) ◦ τC′

.
Given a coaugmented curved A∞-coalgebra C, a unitary dg algebra A and a

(unitary) dg A-bimodule M with biaction σ : A ⊗ M ⊗ A → M, the twisted tensor
product M ⊗τ C is the complex whose underlined graded module is the usual tensor
product M ⊗ C and the differential is

dM ⊗ idC + idA ⊗ �1

+
∑

i, j ∈ �0
i + j > 0

(−1)εi,j (σ (i,j) ⊗ idC) ◦ (τ⊗i ⊗ idM ⊗ τ⊗j ⊗ idC) ◦ ςi,j ◦ (idM ⊗ �i+j+1), (18)
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where σ (i,j) : A⊗i ⊗ M ⊗ A⊗j → M is obtained from a successive application of the
biaction of M, ςi,j : M ⊗ C⊗(i+j+1) → C⊗i ⊗ M ⊗ C⊗(j+1) is the cyclic permutation
sending m ⊗ c1 ⊗ · · · ⊗ ci+j+1 to cj+2 ⊗ · · · ⊗ ci+j+1 ⊗ m ⊗ c1 ⊗ · · · ⊗ cj+1 (without
sign), and the sign εi,j is obtained from [5, equations (5), (6) and (13)].1 If A is augmented
by means of εA and M is a right dg A-module, then εA M denotes the dg A-bimodule
with the same right action as before and the left action a · m = εA(a)m, for m ∈ M and
a ∈ A.

5.2. The main results. We now present the following preparatory result, which is
an extension of a theorem announced by Keller at the X ICRA of Toronto, Canada,
in 2002 (see [8]). The proof given in [4, Theorem 4.7], can be extended straightforward
to the following case.

PROPOSITION 5.1. Let C be a coaugmented (minimal) A∞-coalgebra and A be an
augmented dg algebra over a field k such that its augmentation ideal IA = Ker(εA) and the
cokernel Coker(ηC) are provided with another grading (besides the cohomological one),
called internal or Adams, concentrated in (strictly) positive degrees, and the product
μA : Ae → A of A and all the comultiplication maps �n of C preserve this degree. Let
τ : C → A be a twisting cochain preserving the Adams degree. Then, the following are
equivalent:

(i) the associated morphism of unitary dg algebras Fτ : �+(C) → A is a quasi-
isomorphism;

(ii) the twisted tensor product εA A ⊗τ C is quasi-isomorphic to the trivial left dg module
k (via εA ⊗ εC);

(iii) the twisted tensor product Ae ⊗τ C is quasi-isomorphic to the standard dg A-
bimodule A via μA ⊗ εC.

Proof. Note that the augmented dg algebra �+(C) is cofibrant, due to the grading
assumption on C (see [7, 2.2.3]), so C is cocomplete. Moreover, as in the case of
conilpotent coaugmented dg coalgebras, where one utilises the usual homotopy of
the standard bar resolution of the trivial left dg C-comodule k constructed from the
counit of C, the complex ε�+(C)

�+(C) ⊗τC C is quasi-isomorphic to k via ε�+(C) ⊗ εC ,
where τC : C → �+(C) is the universal twisting cochain of C. Else, the result follows
from dualizing [10, Theorem 3.25]. The same holds for μ�+(C) ⊗ εC : �+(C)e ⊗τC C →
�+(C).

On the other hand, let τ ′ : C → A′ and τ : C → A be two twisting cochains,
where C is a coaugmented A∞-coalgebra and A and A′ are augmented dg algebras
satisfying the extra conditions about the grading. Let M and M′ be dg bimodules
provided with a compatible extra degree over A and A′, respectively, f : A′ → A a
morphism of augmented dg algebras and g : M′ → M a morphism of dg bimodules
over A′, both preserving the extra degree, where M is a dg A′-bimodule via f . We
assume further that f ◦ τ = τ ′. Then, if g is a quasi-isomorphism, g ⊗ idC induces a
quasi-isomorphism from M′ ⊗τ ′ C to M ⊗τ C. Indeed, since the components of fixed
internal degree of M′ ⊗τ C (resp., M ⊗τ C) are obtained from those of C and M′ (resp.,
C and M) as the result of a finite number of steps involving taking tensor product,

1We incidentally correct a typo in [5], equation (6), where the third term of the right member should include
(
∑p

i=1 deg φi + ∑q
j=1 deg ψj) instead of

∑p
i=1 deg φi.
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cones and shifts, and those operations preserve quasi-isomorphisms, the result follows.
Conversely, by reversing the steps in the previous argument, we see that, if g ⊗ idC is a
quasi-isomorphism, then g is a quasi-isomorphism as well.

Assume now that (i) holds. Since Fτ : �+(C) → A is a quasi-isomorphism, the
comments in the previous paragraph tell us that Fτ ⊗ idC : ε�+(C)

�+(C) ⊗τC C →
εA A ⊗τ C is a quasi-isomorphism, and it clearly satisfies (εA ⊗ εC) ◦ (Fτ ⊗ idC) =
ε�+(C) ⊗ εC . By the 2-out-of-3 property of quasi-isomorphisms, we conclude that
εA ⊗ εC is a quasi-isomorphism, which proves (ii). Replacing Fτ : �+(C) → A with
Fe

τ : �+(C)e → Ae in the previous argument, we obtain (iii).
Finally, assume that either (ii) or (iii) holds. In the first case, since the

morphism Fτ ⊗ idC : ε�+(C)
�+(C) ⊗τC C → εA A ⊗τ C satisfies that (εA ⊗ εC) ◦ (Fτ ⊗

idC) = ε�+(C) ⊗ εC , the 2-out-of-3 property of quasi-isomorphisms tells us that
Fτ ⊗ idC is a quasi-isomorphism. Using the converse result in the second paragraph
of this proof, we see that Fτ is a quasi-isomorphism of augmented dg algebras. If we
assume that (iii) holds, then the same argument shows that Fe

τ ⊗ idC : �+(C)e ⊗τC C →
Ae ⊗τ C is a quasi-isomorphism. From the converse result in the second paragraph of
this proof we see that Fe

τ is a quasi-isomorphism, which in turn implies that Fτ is a
quasi-isomorphism as well, by the Künneth theorem. This proves (i). �

We now prove the first main result of this article.

THEOREM 5.2. Let D be a filtered coaugmented curved A∞-coalgebra and U be a
nonnegatively (Adams) filtered unitary dg algebra over a field k, whose associated graded
algebra A = GrF•U (U) is an Adams nonnegatively graded connected dg algebra. Then,
the following are equivalent:

(i) there is a filtered quasi-equivalence of coaugmented curved A∞-coalgebras

F : D → B+(U); (19)

(ii) there is a filtered twisting cochain τ : D → U such that one of the following
equivalent conditions holds:
(a) the associated graded of the filtered morphism of unitary dg algebras Fτ :

�+(D) → U is a quasi-isomorphism;
(b) the associated graded map of the filtered morphism μU ⊗ εD : Ue ⊗τ D → U to

the standard dg U-bimodule U is a quasi-isomorphism, where μU : U ⊗ U →
U is the product of U.

Proof. Given a morphism F satisfying (19), consider the twisting cochain τ : D →
U such that Fτ = βU ◦ �+(F), where βU : �+(B+(U)) → U is the usual adjunction
morphism. It is clear that Gr(B+(U)) � B+(GrF•U (U)) = B+(A), where the grading
of B+(U) is the one induced from that of U following the usual tensor constructions,
and analogously Gr(�+(B+(U))) � �+(Gr(B+(U))) � �+(B+(A)). Furthermore, βU

is a quasi-isomorphism (see for instance the proof of [9, Theorem 6.10]), and
gr(βU ) coincides with βA under the previous identifications. Moreover, τ and Fτ

preserve the corresponding Adams filtrations. Conversely, given a twisting cochain
τ : D → U preserving the corresponding Adams filtrations, consider the associated
morphism Fτ : �+(D) → U of unitary dg algebras. Recall that there is a canonical
filtered quasi-equivalence B+(�+(D)) → D whose cobar construction is β�+(D). Let
j : D → B+(�+(D)) be any quasi-inverse (preserving the Adams filtration), which exists
by the usual homotopic argument using the model structure on the category of unitary
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dg algebras. Finally, define F : D → B+(U) as the composition of j and B+(Fτ ). Let
C = GrF•D(D). By the previous comments, it is clear that gr(Fτ ) is a quasi-isomorphism
if and only if gr(F) is so.

Moreover, it is clear that, if C and C′ are coaugmented A∞-coalgebras provided
with an extra degree satisfying the conditions of Proposition 5.1 and f• : C → C′ is
a morphism between them such that f1 is a quasi-isomorphism, then �+(f•) is quasi-
isomorphisms of augmented dg algebras. Indeed, this follows from the fact that the
components of fixed internal degree of �+(C) (resp., �+(C′)) are obtained from those
of C (resp., C′) as the result of a finite number of steps involving taking tensor product,
cones and shifts, and those operations preserve quasi-isomorphisms. As a consequence,
a morphism of coaugmented A∞-coalgebras preserving the internal degree is a quasi-
equivalence if and only if it is a quasi-isomorphism. This proves the equivalence
between (i) and (ii), (a).

It remains to prove that the conditions (a) and (b) in (ii) are equivalent. In order
to prove it, we first note that if τ : D → U is a filtered twisting cochain, then the
associated graded morphism gr(τ ) of τ is a twisting cochain from C to A and it
preserves the Adams degree. Moreover, the complex Ue ⊗τ D is canonically provided
with the filtration on a tensor product induced from those of the factors and its
associated graded space is precisely Ae ⊗gr(τ ) C. Hence, Proposition 5.1 tells us that (a)
and (b) are equivalent. �

6. Application: Curved A∞-coalgebras from PBW deformations.

6.1. The conventions, basic facts and the main result. Let A be an N-homogeneous
algebra that is generalised Koszul, and let U = TV/〈P〉 be a PBW-deformation of A.
We use the notation of the previous sections. Since the case N = 2 is well-known in the
literature, we will focus on N > 2.

Let C = ⊕2p∈2�0 TorA
2p(k, k) and M = ⊕2p+1∈2�0+1 TorA

2p+1(k, k). By the comments
in Section 3, C is a coaugmented counitary graded coalgebra (concentrated in even
homological degrees) with coproduct �C , counit εC and coaugmentation ηC , and
M is a counitary graded bicomodule over C with bicoaction ρ, concentrated in
odd homological degrees. We will consider the increasing filtrations {F•C}•∈�0 and
{F•M}•∈�0 of C and M associated with the corresponding Adams gradings recalled in
Remark 3.1. We will call them Adams filtrations. Regarding both C and M inside of TV ,
the previous filtrations are just the induced ones from the standard filtration {F•}•∈�0 of
TV seen in Section 4. Since the coproduct �C , the counit εC and the coaugmentation
ηC preserve the Adams degree, as mentioned in Remark 3.1, they preserve a fortiori
the corresponding filtrations, where k has the trivial filtration F•k = k if • ∈ �0, and
the filtration of a tensor product is given by the usual formula. The same argument
implies that the bicoaction of M preserves the corresponding filtrations.

REMARK 6.1. The reason for considering the previous filtrations is the following:
although the previous structures even preserve the mentioned Adams degree, we will
soon complete them with several maps involved in a curved A∞-coalgebra structure
on D = C[M] that will preserve the corresponding filtration but not the grading.

The main results we will prove in this section are the following.
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THEOREM 6.2. Let A be an N-homogeneous algebra that is generalised Koszul, and
let U = TV/〈P〉 be a PBW-deformation of A. Let D = TorA

• (k, k) be the coaugmented
A∞-coalgebra described in Section 3, with nonvanishing comultiplications �̄2 and
�̄N given by (i) and (ii), counit εD : D → k given by the canonical projection and
coaugmentation ηD : k → D given by the canonical inclusion. Recall that D = C ⊕ M,
where C is the direct sum of the even homogeneous components, whereas, M is the
direct sum of the odd homogeneous components, and let ∂ : M → C be the coderivation
given in Lemma 6.7. We provide D with the Adams filtration. Then, there is a
unique structure {�•}•∈�0 of filtered curved A∞-coalgebra on D such that �N = �̄N,
�p = �′

p ◦ πC + δp,1∂ ◦ πM + δp,2�̄2 for p ∈ {0, . . . , N − 1}, with �′
p = �′

p|M
⊗p

C and
�′

p|R = −ϕp for all p ∈ {0, . . . , N − 1}, and �• = 0 for all • > N. The previous structure
is also counitary for εD and coaugmented for ηD.

Proof. The fact that we obtain a structure of a counitary curved A∞-coalgebra
on D is a direct consequence of the Lemmas 6.7, 6.14, 6.16, 6.19–6.21, which will
be proved in the forthcoming sections, together with Proposition 2.1. As noted in
the first and last paragraphs of Section 6.4, the morphisms �′

p preserve the Adams
filtrations for all p ∈ �0, as well as εD and ηD. The latter condition implies in particular
that �′

p ◦ ηC = 0, for all p ∈ �0. By Proposition 2.1, we conclude that D is a filtered
coaugmented curved A∞-coalgebra. The uniqueness follows from the fact that the
definition of �′

p for p ∈ {0, . . . , N − 1} given via (33) and (34) is tantamount to some
special cases of identities (6) and (7). �

REMARK 6.3. As noted in [3] for the particular case that ϕ0 vanishes, the converse
of the previous result holds: consider a coaugmented curved A∞-coalgebra structure
on D = TorA

• (k, k) that is compatible with the Adams filtrations and of the form given
in Proposition 2.1 for the coaugmented coalgebra structure on D given by �̄2 in
Section 3, �p = 0 for p > N, and �N is given by �̄N in Section 3. It determines a PBW
deformation of A by means of ϕp = −�′

p|R for all p ∈ {0, . . . , N − 1}. Indeed, we first
note that the bicoderivation ∂ is uniquely determined by p2 ◦ ∂, which in turn satisfies
that p2 ◦ ∂|M2k+1 = 0 for k > 1 and p2 ◦ ∂|M1 = 0 for it has homological degree −1.
The expression for p2 ◦ ∂|M3 given in Section 6.3 follows now from (5) for p = N − 1.
Finally, we see that (14) is equivalent to the vanishing of the restriction �′

0 ◦ ∂|M3 ; if
1 ≤ j ≤ N − 1, (15) is precisely the composition of (5) for p = j − 1 with π̃M

ī , where
ī = (1, . . . , 1) ∈ �p+1, whereas (13) is the previous composition for p = N − 1. This
induces a bijection between the set of filtered coaugmented curved A∞-coalgebra
structure on D satisfying the previous properties and the one of PBW deformations of
A.

THEOREM 6.4. Let A be an N-homogeneous algebra that is generalised Koszul, and
let U = TV/〈P〉 be a PBW-deformation of A. Let D = TorA

• (k, k) be provided with the
coaugmented curved A∞-coalgebra described in Theorem 6.2. Then, there is a filtered
quasi-equivalence between D and B+(U).

Proof. It is easy to check that τ : D → U given by the composition of minus
the canonical projection D → V and the canonical inclusion V → U is a twisting
cochain that preserves the Adams filtrations. By Theorem 5.2, it suffices to show
that the associated graded to the filtered complex Ue ⊗τ D is quasi-isomorphic to the
standard A-bimodule A. This is indeed true, since the associated graded complex is just
Ae ⊗gr(τ ) Gr(D), where Gr(D) is precisely the coaugmented A∞-coalgebra described
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in Section 3, and Ae ⊗τ Gr(D) coincides with the Koszul bimodule complex of the
standard dg A-bimodule A. �

REMARK 6.5. Note that the proof of the previous result also gives a description
of a ‘small’ projective resolution of the standard U-bimodule U , which extends the
Koszul bimodule complex given by R. Berger and V. Ginzburg for the particular case
where ϕ = ϕ0 (see [2, Section 5]).

6.2. Some larger spaces. The rest of the paper is dedicated to prove Theorem
6.2. We will essentially follow and complete the (duals of the) ideas in [3, Section 3].
However, as indicated in the introduction, there were missing steps in that article,
e.g., the identities m1 ◦ d = 0 = d ◦ m1 were not proved there (cf. Lemma 6.20).
Furthermore, some of our proofs are shorter and clearer (cf. [3, Lemmas 3.6 and
3.7] and our Lemmas 6.19 and 6.21, resp.), and mostly with less signs (cf. [3, Lemma
3.5] and our Fact 6.18).

Define the graded vector spaces TR = ⊕j∈�0 R⊗j and T(V⊗N) = ⊕j∈�0 V⊗Nj, where
R⊗j and V⊗Nj are concentrated in homological degree 2j, for all j ∈ �0. We provide TR
(resp., T(V⊗N)) with the cofree cocomplete coaugmented graded coalgebra structure
cogenerated by R (resp., V⊗N), and that we will denote by C̃ (resp., Ĉ), i.e., the
coproduct �C̃ (resp., �Ĉ) is given by deconcatenation, the counit εC̃ : C̃ → k (resp.,
εĈ : Ĉ → k) is the canonical projection, and the coaugmentation ηC̃ : k → C̃ (resp.,
ηĈ : k → Ĉ) is the canonical inclusion. They are also provided with the induced Adams
grading from that of A, and thus the associated filtration, which also coincides with
the induced filtration from that of the tensor algebra TV where TR and T(V⊗N) are
canonically included. We will also call them the Adams filtration of C̃ and Ĉ, and
will denote them by {F•C̃}•∈�0 and {F•Ĉ}•∈�0 , respectively. It is easy to see that the
canonical inclusions ι̃C : C → C̃ and ι̂C̃ : C̃ → Ĉ as well as their composition ι̂C =
ι̂C̃ ◦ ι̃C are morphisms of counitary graded coalgebras that preserve the Adams degree,
so a fortiori they preserve the corresponding Adams filtrations. As a consequence, M
is canonically a counitary graded bicomodule over C̃ and Ĉ.

Let us also define the graded vector spaces M̃ = ⊕j∈�0 V⊗Nj+1, where we set V⊗Nj+1

to have homological degree 2j + 1. We provide M̃ with a bicomodule structure ρ̃ over
Ĉ, whose bicoaction ρ̃ is defined by

ρ̃(v1 . . . vNj+1)

=
j∑

i1=0

j−i1∑
i2=0

v1 . . . vNi1 ⊗ vNi1+1 . . . vN(i1+i2)+1 ⊗ vN(i1+i2)+2 . . . vNj+1,
(20)

where v1, . . . , vNj+1 ∈ V , we omit the tensor symbols for the elements of M̃, v1 . . . vNi1 =
1 if i1 = 0 and vN(i1+i2)+2 . . . vNj+1 = 1 if i1 + i2 = j. In particular, this induces a left
(resp., right) coaction ρ̃l (resp., ρ̃r) of M̃ over Ĉ. Moreover, let ι̃M : M → M̃ be the
canonical inclusion. It is clearly a morphism of Ĉ-bicomodules, so,

ρ̃l ◦ ι̃M = (idĈ ⊗ ι̃M) ◦ ρ̃l, and ρ̃r ◦ ι̃M = (ι̃M ⊗ idĈ) ◦ ρ̃r, (21)

where we denote the left (resp., right) coaction on M over Ĉ also by ρ̃l (resp., ρ̃r). As
usual, M̃ has the Adams filtration {F•M̃}•∈�0 induced from the canonical filtration of
TV by regarding its canonical contention of M̃. We will also consider the map
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�̂N : Ĉ → M̃⊗N (22)

defined as the linear map sending 1 ∈ k to zero, and v1 . . . vNj ∈ Ĉ2j = V⊗(Nj) to

∑
ī ∈ �N

0|ī| = j − 1

Vī
1 ⊗ · · · ⊗ Vī

N ∈ M̃⊗N,
(23)

where v1, . . . , vNj ∈ V , and Vī
j ∈ M̃2ij+1 = V⊗(Nij+1) is given by

Vī
j = vN(i1+···+ij−1)+j . . . vN(i1+···+ij)+j, (24)

for all j = 1, . . . , N. Note that �̂N ◦ ι̂C = ι̃⊗N
M ◦ �̄N |C .

We will use the following notation. For p ∈ � and ī = (i1, . . . , ip) ∈ �p, set π̃ī =
π̃i1 ⊗ · · · ⊗ π̃ip , with π̃i : TV → V⊗φN (i) the canonical projection. For the following,
recall the canonical inclusion ιD : D → TV . We remark that π̃i ◦ ιD|C vanishes if i
is odd and it coincides with the composition of the canonical projection pi : C → Ci

together with the inclusion Ci → V⊗φN (i), if i is even. Analogously, π̃i ◦ ιD|M vanishes if
i is even and it coincides with the composition of the canonical projection pi : M → Mi

together with the inclusion Mi → V⊗φN (i), if i is odd. We will denote π̃i ◦ ιD|M by π̃M
i ,

and the tensor product π̃M
i1 ⊗ · · · ⊗ π̃M

ip by π̃M
ī . The analogous notation will be used

for C, Ĉ and M̃.

FACT 6.6. For i, j ∈ �0 such that i is even and j is odd, we have π̃i+j ◦ ιM̃ = (π̃ Ĉ
i ⊗

π̃M̃
j ) ◦ ρ̃l and π̃i+j ◦ ιM̃ = (π̃M̃

j ⊗ π̃ Ĉ
i ) ◦ ρ̃r, by definition of the coactions of M̃, where

ιM̃ : M̃ → TV is the canonical inclusion. Analogously, the same holds for the coactions
ρl and ρr of M.

6.3. The definition of the morphism ∂. Define

∂̃ : M → C̃ (25)

as the unique bicoderivation satisfying that p̃2 ◦ ∂̃ = (idV ⊗ ϕN−1 − ϕN−1 ⊗ idV ) ◦
p3, where p̃2 : C̃ → R and p3 : M → M3 = (R ⊗ V ) ∩ (V ⊗ R) are the canonical
projections. This is well-defined by (13). It is clear that ∂̃|V vanishes, where V =
TorA

1 (k, k) ⊆ M, as well as εC̃ ◦ ∂̃. Moreover, if α ∈ TorA
2p+1(k, k) ⊆ M, where p ∈ �,

we have a fortiori

α ∈
p−1⋂
i=0

R⊗i ⊗ (
(R ⊗ V ) ∩ (V ⊗ R)

) ⊗ R⊗(p−i−1).

So, for every i ∈ {0, . . . , p − 1}, we can write α = ∑
(ai) r̄ai ⊗ ᾱai ⊗ r̄′

ai
, where r̄ai ∈ R⊗i,

ᾱai ∈ RN+1 and r̄′
ai

∈ R⊗(p−i−1). Then,

∂̃(α) =
p−1∑
i=0

∑
(ai)

r̄ai ⊗ (
idV ⊗ ϕN−1 − ϕN−1 ⊗ idV

)
(ᾱai ) ⊗ r̄′

ai
. (26)
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Finally, we remark that ∂̃ preserves the corresponding filtrations (but it does not
preserve in general the Adams degree).

The first result is the following.

LEMMA 6.7. The bicoderivation ∂̃ defined in (25) factors through the canonical
inclusion C → C̃, so it induces a bicoderivation ∂ : M → C satisfying that εC ◦ ∂ = 0.
Moreover, ∂ preserves the Adams filtrations.

Proof. By definition of ∂̃, the image of ∂̃|D3 is included in R ⊆ C, so ∂̃(D2p+1) ⊆ C
for p = 0 and p = 1. Let p ≥ 2. It is clear that it suffices to show that

∂̃(D2p+1) ⊆ R⊗h ⊗ V⊗j ⊗ R ⊗ V⊗(N−j) ⊗ R⊗(p−h−2), (27)

for every j ∈ {0, . . . , N} and every h ∈ {0, . . . , p − 2}. The cases j = 0 and j = N (and
arbitrary h) follow immediately from the definition of ∂̃. Moreover, since

D2p+1 ⊆
(( h−1⋂

i=0

R⊗i ⊗ (
(R ⊗ V ) ∩ (V ⊗ R)

) ⊗ R⊗(h−i−1)
)

⊗ D4 ⊗ R⊗(p−h−2)

)

∩
(

R⊗h ⊗ D4 ⊗
( p−h−3⋂

i=0

R⊗i ⊗ (
(R ⊗ V ) ∩ (V ⊗ R)

) ⊗ R⊗(p−h−i−3)
)

,

for every h ∈ {0, . . . , p − 2} and p ≥ 3, (26) tells us that it suffices to prove (27) for
p = 2. Let us first prove the case j = N − 1. Furthermore, since

∂̃|D3 = (idV ⊗ ϕN−1 − ϕN−1 ⊗ idV ),

a telescopic argument implies that

N∑
�=0

id⊗(Nh+�)
V ⊗ ∂̃|D3 ⊗ id

⊗
(

N−�+N(p−h−2)
)

V

= id⊗(Nh)
V ⊗ (id⊗(N+1)

V ⊗ ϕN−1 − ϕN−1 ⊗ id⊗(N+1)
V ) ⊗ id

⊗
(

N(p−h−2)
)

V ,

for p ≥ 2 and h ∈ {0, . . . , p − 2}. If p = 2, this is equivalent to

∂̃|D3 ⊗ id⊗N
V + id⊗N

V ⊗ ∂̃|D3

= (
id⊗(N+1)

V ⊗ ϕN−1 − ϕN−1 ⊗ id⊗(N+1)
V

) −
N−1∑
j=1

id⊗j
V ⊗ ∂̃|D3 ⊗ id⊗(N−j)

V .
(28)

Every term on the right member of (28) clearly sends D5 to
∑N−1

�=1 V⊗� ⊗ R ⊗ V⊗(N−�),
so the same is true for the left member. By (26), the left member of (28) is precisely
∂̃|D5 . Moreover, the tensor product of the inclusion (9) for j = N − 1 with V on the left
tells us that

(V⊗N ⊗ R) ∩
( N−1∑

�=1

V⊗� ⊗ R ⊗ V⊗(N−�)
)

⊆ V⊗(N−1) ⊗ R ⊗ V,

which, combined with the previous arguments, yields (27) for j = N − 1 (and p = 2).
Assume that (27) holds for all j = j0 + 1, . . . , N (and p = 2), with 1 ≤ j0 ≤ N − 2.
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Then, by tensoring (9) for j = j0 + 1 on the right with V⊗(N−j0−1), we get

(V⊗(j0+1) ⊗ R ⊗ V⊗(N−j0−1)) ∩
( j0∑

�=0

V⊗� ⊗ R ⊗ V⊗(N−�)
)

⊆ V⊗j0 ⊗ R ⊗ V⊗(N−j0),

which, together with (27) for p = 2 and j = 0, implies that (27) holds for all j = j0,
by the inductive hypothesis. Finally, εC ◦ ∂ = 0 follows from εC̃ ◦ ∂̃ = 0. The lemma is
thus proved. �

In what follows we will denote by ∂̂ : M → Ĉ the composition of ∂ and ι̂C .

6.4. The definition of the morphisms �′
p. For p ∈ �0, we will proceed to define

linear maps

�′
p : C → M⊗p (29)

that preserve the Adams filtrations. If p = 0, set �′
0 as the composition of the canonical

projection C → R together with −ϕ0. Moreover, �′
p is the zero map if p > N and the

map �̄N , given in Section 3, if p = N. It is clear that these maps also preserve the
corresponding filtrations.

FACT 6.8. The first equation in (4) holds, i.e., �′
0 ◦ ∂ = 0, where ∂ is given in Lemma

6.7.

Proof. By definition of ∂ and of �′
0, we see that �′

0 ◦ ∂|M2p+1 trivially vanishes for
all p = 1. Furthermore, �′

0 ◦ ∂|M3 = ϕ0 ◦ (ϕN−1 ⊗ idV − idV ⊗ ϕN−1), which vanishes
by (14). �

FACT 6.9. Equations (5)–(8) hold for all p, q ≥ N, where ∂ is given in Lemma 6.7.

Proof. Indeed, the mentioned identities are precisely the Stasheff equations
SI(m) with m > N for the coaugmented A∞-coalgebra structure on D considered in
Section 3. �

Note that �′
0 ◦ ηC = 0 and

�′
p ◦ ηC = 0 (30)

hold for all p ≥ N, because (D, �̄2, �̄N, εD, ηD) is a coaugmented A∞-coalgebra.

DEFINITION 6.10. Let � ∈ {0, . . . , N − 1}. Recall that �′
p is defined for all p ∈

{0} ∪ �≥N in (29). Assume that �′
�+1, . . . ,�

′
N−1 are also defined, they preserve the

Adams filtrations, and that the equations (5), (6), (7) and (8) hold for all p, q > �,
where ∂ is given in Lemma 6.7. We will call this hypothesis the assumption A� of degree
�. By Fact 6.9, the assumption AN−1 holds.

Assume Ap holds for some p ∈ {1, . . . , N − 1}. For q ∈ �>p ∪ {0}, define the linear
map

�̃q : C → M̃⊗q (31)

as the composition of �′
q and ι̃

⊗q
M , where ι̃M : M → M̃ is the canonical inclusion

(defined in the third paragraph of Section 6.2). Moreover, set �̃
[0]
p : C → V⊗p as the
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composition of the canonical projection p2 : C → R together with −ϕp. Consider the
finite increasing filtration {G•(M̃⊗p)}•∈{0,...,p} given by G�(M̃⊗p) = M̃⊗� ⊗ V⊗p−�. This
is clearly different from the Adams filtration on M̃⊗p. Note that the image of �̃

[0]
p

is included in G0(M̃⊗p), which is also included in M⊗p. Suppose further that there
is j0 ∈ {0, . . . , p − 1} such that �̃

[j]
p : C → Gj(M̃⊗p) is defined for all j ∈ {0, . . . , j0}

and the composition of �̃
[j]
p with the map idM̃⊗(j−1) ⊗ p̃1 ⊗ id⊗(p−j)

V (whose image is
G(j−1)(M̃⊗p)) is �̃

[j−1]
p for all j ∈ {1, . . . , j0}, where p̃1 : M̃ → V the canonical projection.

Let ī = (i1, . . . , ip) ∈ (2�0 + 1)p be such that ij0+2 = · · · = ip = 1 and ij0+1 > 1. Then,
define

�̃ī
p : C → M̃i1 ⊗ · · · ⊗ M̃ip (32)

by

(
π̃C

i1−1 ⊗ (π̃M̃
(1,i2,...,ip) ◦ �̃[j0]

p )
) ◦ �C + (

(π̃C
i1−1 ◦ ∂) ⊗ π̃M

(1,i2,...,ip)

) ◦ �′
p+1, (33)

if p = 1, or p ≥ 2 and j0 = 0, and by

π̃M̃
(i1,...,ij0−1,ij0 +ij0+1−1,1,ij0+2,...,ip) ◦ �̃[j0]

p

+ (−1)j0
(
π̃M

(i1,...,ij0 ) ⊗ (π̃C
ij0+1−1 ◦ ∂) ⊗ π̃M

(1,ij0+2,...,ip)

) ◦ �′
p+1,

(34)

if p ≥ 2 and j0 > 0. It is clearly well-defined, by the assumption Ap. Moreover, the
image of �̃ī

p is even included in M̃⊗(j0+1) ⊗ M⊗(p−j0−1). Note that �̃ī
p trivially preserves

the Adams filtrations. Finally, define �̃
[j0+1]
p : C → Gj0+1(M̃⊗p) as the unique linear

map satisfying that π̃M̃
ī ◦ �̃

[j0+1]
p = �̃ī

p, for all ī ∈ �q+1 such that ij0+2 = · · · = ip = 1.
The fact that the Adams filtration is locally finite dimensional, i.e., each subspace
of the filtration is finite dimensional, implies that �̃

[j0+1]
p is well-defined, for all j0 ∈

{0, . . . , p − 1}. Finally, set �̃p = �̃
[p]
p .

FACT 6.11. Assume the hypothesis Aq for some q ∈ {1, . . . , N − 1}. Then, the map
�̃q preserves the corresponding Adams filtrations.

6.5. The properties satisfied by the morphisms �′
p.

FACT 6.12. Assume the hypothesis Aq for some q ∈ {1, . . . , N − 1}. The identity

π̄ī ◦ (ρ̃l ⊗ id⊗(q−1)
M̃

) ◦ �̃q = π̄ī ◦ (idC ⊗ �̃q) ◦ �C + π̄ī ◦ (∂ ⊗ ι̃
⊗q
M ) ◦ �′

q+1 (35)

is verified for all ī ∈ �q+1 such that i2 = · · · = iq+1 = 1, where π̄ī = π̃C
i1 ⊗ π̃M̃

(i2,...,iq+1).
If q ≥ 2, then,

π̄ī ◦ (id⊗j
M̃

⊗ ρ̃l ⊗ id⊗(q−j−1)
M̃

) ◦ �̃q = π̄ī ◦ (id⊗(j−1)
M̃

⊗ ρ̃r ⊗ id⊗(q−j)
M̃

) ◦ �̃q

+ (−1)jπ̄ī ◦ (ι̃⊗j
M ⊗ ∂ ⊗ ι̃

⊗(q−j)
M ) ◦ �′

q+1

(36)

holds for all j ∈ {1, . . . , q − 1}, and all ī ∈ �q+1 such that ij+2 = · · · = iq+1 = 1, where
π̄ī = π̃M̃

(i1,...,ij)
⊗ π̃ Ĉ

ij+1
⊗ π̃M̃

(ij+2,...,iq+1).
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Proof. Note that (35) trivially holds if ī does not satisfy that i1 is even, and (36) is
directly fulfilled if ī does not satisfy that ij+1 is even and i1, . . . , ij are odd. It thus suffices
to prove them when these conditions are met. Then, (33) for p = 1 is equivalent to (35)
for q = 1 and ī = (i − 1, 1), where i ∈ �>1, and we have used Fact 6.6 to deal with the
first member of (35). Analogously, if q ≥ 2, (33) is tantamount to (35) for q = p and
(i1 − 1, 1, i2, . . . , ip), where ī ∈ �p satisfies that i2 = · · · = ip = 1 and i1 > 1. The first
part of the statement thus follows. The second part is proved from an easy inductive
argument based on the fact that (34) for p ≥ 2 is equivalent to (36) for q = p, j = j0
and (i1, . . . , ij0 , ij0+1 − 1, 1, ij0+2, . . . , ip), where ī ∈ �p satisfies that ij0+2 = · · · = ip = 1
and ij0+1 > 1. �

REMARK 6.13. If the assumption Ap holds for some p ∈ {1, . . . , N − 1} and let
q > p, then (35) and (36) are a particular case of (6) and (7), respectively.

LEMMA 6.14. Assume the hypothesis Aq for some q ∈ {1, . . . , N − 1}. Identity (35)
(resp., (36)) holds for all ī ∈ �q+1 (resp., for all j ∈ {1, . . . , q − 1} and all ī ∈ �q+1). In
other words,

(ρ̃l ⊗ id⊗(q−1)
M̃

) ◦ �̃q = (ι̂C ⊗ �̃q) ◦ �C + (∂̂ ⊗ ι̃
⊗q
M ) ◦ �′

q+1 (37)

holds, and

(id⊗j
M̃

⊗ ρ̃l ⊗ id⊗(q−j−1)
M̃

) ◦ �̃q = (id⊗(j−1)
M̃

⊗ ρ̃r ⊗ id⊗(q−j)
M̃

) ◦ �̃q

+ (−1)j(ι̃⊗j
M ⊗ ∂̂ ⊗ ι̃

⊗(q−j)
M ) ◦ �′

q+1

(38)

holds if q ≥ 2 and j ∈ {1, . . . , q − 1}.

Proof. Note again that (35) trivially holds if ī does not satisfy that i1 is even and for
all j ∈ {2, . . . , q + 1}, ij is odd, and (36) is directly fulfilled if ī does not satisfy that ij+1

is even and the other indices i1, . . . , ij, ij+2, . . . , iq+1 are odd. It thus suffices to prove
them when these conditions are met. For simplicity we shall treat the case of (35), but
the proof for (36) follows the same pattern.

We will proceed by induction. Assume that there is �0 ∈ {1, . . . , q − 1} such that
(35) holds for all ī ∈ �q+1 such that i�0+1 = · · · = iq+1 = 1. By Fact 6.12, this hypothesis
is fulfilled if �0 = 1. We will prove it holds for �0 + 1, provided it does for �0. Assume
�0 ≥ 2. Let ī ∈ �q+1 be such that i�0+2 = · · · = iq+1 = 1 and i�0+1 > 1. We recall that
we are also assuming that i1 is even and the other indices i2, . . . , iq+1 are odd. Using
definition (34), the left member of (35) is just

π̃M̃
(i1+i2,i3,...,i�0−1,i�0 +i�0+1−1,1,i�0+2,...,iq+1) ◦ �̃q

+ (−1)�0−1(π̃M
(i1+i2,i3,...,i�0 ) ⊗ (π̃C

i�0+1−1 ◦ ∂) ⊗ π̃M
(1,i�0+2,...,iq+1)

) ◦ �′
q+1,

(39)

whereas, the first term of the right member of (35) is given by

(
π̃C

i1 ⊗ (π̃M̃
(i2,...,i�0−1,i�0 +i�0+1−1,1,i�0+2,...,iq+1) ◦ �̃q)

) ◦ �C

+ (−1)�0+1
(
π̃C

i1 ⊗ (
π̃M

(i2,...,i�0 ) ⊗ (π̃C
i�0+1−1 ◦ ∂) ⊗ π̃M

(1,i�0+2,...,iq+1)

) ◦ �′
q+1

)
◦ �C,

(40)
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and the second term of the right member of (35) is

(
(π̃C

i1 ◦ ∂) ⊗ idM⊗q

) ◦
(

π̃M
(i1+1,i2,...,i�0−1,i�0 +i�0+1−1,1,i�0+2,...,iq+1) ◦ �′

q+1

+ (−1)�0
(
π̃M

(i1+1,i2,...,i�0 ) ⊗ (π̃C
i�0+1−1 ◦ ∂) ⊗ π̃M

(1,i�0+2,...,iq+1)

) ◦ �′
q+2

)
.

(41)

By applying the inductive assumption we can rewrite the first term of (39) as the sum
of the first two terms of (40) and (41), respectively. Moreover, since the statement of
this lemma is a particular case of (6) and (7), which holds for q + 1 by Aq (see Remark
6.13), we see that the second term of (39) is the sum of the last two terms of (40) and
(41), respectively. Note that the sign difference is compensated by the Koszul sign rule
applied to the commutation of the morphisms π̃C

i1 ◦ ∂ and π̃C
i�0+1−1 ◦ ∂.

Finally, the missing inductive step for �0 = 1 in the proof of (35) follows in the
same fashion, using (33) instead of (34) for rewriting the left member and the first term
of the right member of (35), but without rewriting the last term of the right member of
(35). The first terms obtained from these reexpressions of the left member and the first
term of the right member of (35) clearly coincide. The required equality, involving the
3 remaining terms, follows from the property that ∂ is a coderivation. �

FACT 6.15. Suppose that the assumptionAp holds for some p ∈ {1, . . . , N − 1}. Then,
given any j0 ∈ {1, . . . , p} we have that

(
id⊗(j0−1)

M̃
⊗ (

(�̂N ⊗ idM̃) ◦ ρ̃l

) ⊗ id⊗(p−j0)
M̃

)
◦ �̃p

= (−1)(j0−1)N(�̃N ⊗ �̃p) ◦ �C

+
j0−1∑
j=0

(−1)j+(j0−j−1)N(
ι̃
⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(p−j)
M

) ◦ �′
p+1.

(42)

Note that p − j ≥ p − j0 + 1 ≥ 1 in the last sum.

Proof. If j0 = 1, (42) is precisely the composition of (37) for q = p with �̂N ⊗ id⊗p
M̃

,

where we have used that �̂N ◦ ι̂C = �̃N . Assume that j0 > 1, and that (42) holds for
{1, . . . , j0 − 1}. It is easy to see that the composition of (38) for q = p and j = j0 − 1
with id⊗(j0−1)

M̃
⊗ �̂N ⊗ id⊗(p−j0+1)

M̃
gives

(
id⊗(j0−1)

M̃
⊗ (

(�̂N ⊗ idM̃) ◦ ρ̃l

) ⊗ id⊗(p−j0)
M̃

)
◦ �̃p

= (−1)N
(

id⊗(j0−2)
M̃

⊗ (
(�̂N ⊗ idM̃) ◦ ρ̃l

) ⊗ id⊗(p+1−j0)
M̃

)
◦ �̃p

+ (−1)j0−1(ι̃⊗(j0−1)
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(p+1−j0)
M

) ◦ �′
p+1,

(43)

where we have used the identity (�̂N ⊗ idM̃) ◦ ρ̃l = (−1)N(idM̃ ⊗ �̂N) ◦ ρ̃r (which
follows from the definitions) in the first term of the right member of (43), and
�̂N ◦ ∂̂ = �̃N ◦ ∂ in the second term of the right member of (43). The result follows
from the inductive hypothesis. �
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LEMMA 6.16. Assume the hypothesis Aq for some q ∈ {1, . . . , N − 1}. Then,

�̃q+1 ◦ ∂ =(�̃q ⊗ ι̃M) ◦ ρl − (−1)q(ι̃M ⊗ �̃q) ◦ ρr (44)

holds.

Proof. We will prove that (44) holds for q ∈ {1, . . . , N − 1}, if Aq is verified. It
suffices to prove that the compositions of the left and the right member of (44) with
π̃ī coincide, for all ī ∈ (2�0 + 1)q+1. If 1 ≤ q < N − 1, it is clear that the composition
of (44) with π̃M̃

ī , where ī = (1, . . . , 1) ∈ �q+1, is precisely (15) for j = q + 1, whereas if
q = N − 1 it gives (13). It thus suffices to prove that the compositions of the left and the
right member of (44) with π̃M̃

ī coincide, for all ī ∈ (2�0 + 1)q+1 such that |ī| > q + 1.
This is clearly tantamount to proving that the compositions of the left and the right
member of (44) with

(
id⊗(j0−1)

M̃
⊗ (

(�̂N ⊗ idM̃) ◦ ρ̃l

) ⊗ id⊗(q+1−j0)
M̃

)
(45)

coincide for all j0 ∈ {1, . . . , q + 1}. This follows from the fact that (�̂N ⊗ idM̃) ◦ ρ̃l|M̃�

is injective for every odd integer � > 1, which is a consequence of (23), (24) and
Fact 6.6. Moreover, we will prove that the composition of (44), (45) and π̃M̃

ā holds
for all ā ∈ (2�0 + 1)q+N+1, by induction on |ā|. Assume we have proved it for all
ā ∈ (2�0 + 1)q+N+1 such that |ā| < �0 for some �0 > q + 1, and we will now show it
holds for |ā| = �0.

Consider now the composition of ∂ and equation (42) for p = q + 1. This tells us
that the composition of the left member of (44) with (45) is precisely

(−1)(j0−1)N+q+1((�̃N ◦ ∂) ⊗ �̃q+1
) ◦ ρr + (−1)j+(j0−1)N(

�̃N ⊗ (�̃q+1 ◦ ∂)
) ◦ ρl

+
j0−1∑
j=0

(−1)j+(j0−j−1)N(
ι̃
⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(q+1−j)
M

) ◦ (�′
q+1 ⊗ idM) ◦ ρl

−
j0−1∑
j=1

(−1)j+(j0−j−1)N+q+1(ι̃⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(q+1−j)
M

) ◦ (idM ⊗ �′
q+1) ◦ ρr

− (−1)(j0−1)N+q+1((�̃N ◦ ∂) ⊗ �̃q+1
) ◦ ρr,

(46)

where we have used that ∂ is a bicoderivation, i.e., �C ◦ ∂ = (∂ ⊗ idC) ◦ ρr + (idC ⊗
∂) ◦ ρl, and (5) for p = q + 1, which holds due to the assumption Aq. It is clear that the
first and last terms cancel each other. Consider now the composition of the remaining
terms in (46) with  = π̃M̃

ā . By the inductive hypothesis, we see that

 ◦ (
�̃N ⊗ (�̃q+1 ◦ ∂)

) ◦ ρl

=  ◦ (
�̃N ⊗ (�̃q ⊗ ι̃M) ◦ ρl

) ◦ ρl − (−1)q ◦ (
�̃N ⊗ (ι̃M ⊗ �̃q) ◦ ρr

) ◦ ρl

=  ◦
((

(�̃N ⊗ �̃q) ◦ �C
) ⊗ ι̃M

)
◦ ρl − (−1)q ◦

((
(�̃N ⊗ ι̃M) ◦ ρl

) ⊗ �̃q

)
◦ ρr

=  ◦
((

(�̃N ⊗ �̃q) ◦ �C
) ⊗ ι̃M

)
◦ ρl − (−1)q+N ◦

((
(ι̃M ⊗ �̃N) ◦ ρr

) ⊗ �̃q

)
◦ ρr

=  ◦
(((

(�̃N ⊗ �̃q) ◦ �C
) ⊗ ι̃M

)
◦ ρl − (−1)q+N

(
ι̃M ⊗ (

(�̃N ⊗ �̃q) ◦ �C
)) ◦ ρr

)
,

(47)
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where we have used that M is a C-bicomodule in the second and last equality, and
the identity (�̃N ⊗ ι̃M) ◦ ρl = (−1)N(ι̃M ⊗ �̃N) ◦ ρr in the penultimate equality, which
follows from (5) for p = N due to Fact 6.9. Hence, the composition of the left member
of (44) with (45) and  gives

(−1)(j0−1)N ◦
((

(�̃N ⊗ �̃q) ◦ �C
) ⊗ ι̃M

)
◦ ρl

− (−1)j0N+q ◦
(
ι̃M ⊗ (

(�̃N ⊗ �̃q) ◦ �C
)) ◦ ρr

+
j0−1∑
j=0

(−1)j+(j0−j−1)N ◦ (
ι̃
⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(q+1−j)
M

) ◦ (�′
q+1 ⊗ idM) ◦ ρl

−
j0−1∑
j=1

(−1)j+(j0−j−1)N+q+1 ◦ (
ι̃
⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(q+1−j)
M

) ◦ (idM ⊗ �′
q+1) ◦ ρr.

(48)

Fact 6.15 tells us that the first and third terms add up to precisely give the composition
of the first term of the second member of (44) with (45) and , whereas the second
and the fourth terms give precisely the composition of the second term of the second
member of (44) with (45) and . The lemma is thus proved. �

FACT 6.17. Suppose that the assumptionAp holds for some p ∈ {1, . . . , N − 1}. Then,
for every p′ ∈ {0, . . . , N − p − 1} we have

p+p′∑
j=0

(−1)j(N−p′−1)(ι̃⊗j
M ⊗ (�̃N−p′ ◦ ∂) ⊗ ι̃

⊗(p+p′−j)
M

) ◦ �′
p+p′+1

= (�̃N−p′−1 ⊗ �̃p+p′+1) ◦ �C − (�̃p+p′+1 ⊗ �̃N−p′−1) ◦ �C

+
p+p′+1∑

j=0

(−1)j(N−p′)(ι̃⊗j
M ⊗ (�̃N−p′−1 ◦ ∂) ⊗ ι̃

⊗(p+p′+1−j)
M

) ◦ �′
p+p′+2.

(49)

Proof. Since N − p′ − 1 ≥ p, applying (44) for q = N − p′ − 1 in the left member
of (49), we obtain that the latter is given by

p+p′∑
j=0

(−1)j(N−p′−1)(ι̃⊗j
M ⊗ �̃N−p′−1 ⊗ ι̃

⊗(p+p′+1−j)
M ) ◦ (id⊗j

M ⊗ ρl ⊗ id⊗(p+p′−j)
M ) ◦ �′

p+p′+1

−
p+p′∑
j′=0

(−1)(j′+1)(N−p′−1)(ι̃⊗j′+1
M ⊗ �̃N−p′−1 ⊗ ι̃

⊗(p+p′−j′)
M ) ◦ (id⊗j′

M ⊗ ρr ⊗ id⊗(p+p′−j′)
M ) ◦ �′

p+p′+1.

(50)

Then,

(i) using identity (6) for q = p + p′ + 1 in the term with j = 0 of the first sum of (50),
we obtain the first term of the right member of (49) and the term with j = 0 in
the last sum of the second member of (49);

(ii) using (7) for q = p + p′ + 1 in the terms with j = 1, . . . , p + p′ of the first sum of
(50), we obtain an expression consisting of a summand that precisely cancels the
term with j′ = j − 1 in the second sum of (50), and the j-th summand in the last
sum of the second member of (49);
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(iii) using identity (8) for q = p + p′ + 1 in the term with j = p + p′ of the second sum
of (50), we obtain the second term of the right member of (49) and the term with
j = p + p′ + 1 in the last sum of the second member of (49).

The statement is thus proved. �

FACT 6.18. Suppose that the assumptionAp holds for some p ∈ {1, . . . , N − 1}. Then,

(�̃p ⊗ �̃N) ◦ �C−(�̃N ⊗ �̃p) ◦ �C

=
p∑

j=0

(−1)j(N−1)(ι̃⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(p−j)
M

) ◦ �′
p+1.

(51)

Proof. A repeated use of identity (49) for p′ ∈ {0, . . . , N − p − 2} tells us that

p∑
j=0

(−1)j(N−1)(ι̃⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(p−j)
M

) ◦ �′
p+1

=
N−p−2∑

p′=0

(
(�̃N−p′−1 ⊗ �̃p+p′+1) ◦ �C − (�̃p+p′+1 ⊗ �̃N−p′−1) ◦ �C

)

+
N−1∑
j=0

(−1)jp(ι̃⊗j
M ⊗ (�̃p+1 ◦ ∂) ⊗ ι̃

⊗(N−1−j)
M

) ◦ �′
N .

(52)

Moreover, the first sum in the second member of (52) vanishes. Indeed, the first (resp.,
second) summand of the p′-th term of the second sum in (52) with p′ ∈ {0, . . . , �(N −
p − 2)/2�} cancels with the second (resp., first) summand of the (N − p − p′ − 2)-th
term of the second sum in (52), where � � is the (integer) floor function. Since p ≥ 1,
another application of (49) for p′ = N − p − 1 tells us that second sum in the second
member of (52) gives the first member of (51). The statement follows. �

LEMMA 6.19. Assume the hypothesis Aq for some q ∈ {1, . . . , N − 1}. Then,

(id⊗(q−1)
M̃

⊗ ρ̃r) ◦ �̃q = (�̃q ⊗ ι̂C) ◦ �C + (−1)q+1(ι̃⊗q
M ⊗ ∂̂) ◦ �′

q+1 (53)

holds.

Proof. We will prove that the identity

π̄ī ◦ (id⊗(q−1)
M̃

⊗ ρ̃r) ◦ �̃q = π̄ī ◦ (�̃q ⊗ idC) ◦ �C + (−1)q+1π̄ī ◦ (ι̃⊗q
M ⊗ ∂̂) ◦ �′

q+1 (54)

is verified for all ī ∈ �q+1, where π̄ī = π̃M̃
(i1,...,iq) ⊗ π̃ Ĉ

iq+1
. It is clear that (54) holds if

iq+1 = 0, since εC ◦ ∂ vanishes (see Lemma 6.7). It suffices to prove the statement for
iq+1 > 1 even. This is tantamount to show that the composition of (53) with id⊗q

M̃
⊗ �̂N

holds, by (23) and (24). It is clear that the composition of the first member of (53) with
id⊗q

M̃
⊗ �̂N gives precisely the left member of (42) for j0 = p = q multiplied by (−1)N ,

since (�̂N ⊗ idM̃) ◦ ρ̃l = (−1)N(idM̃ ⊗ �̂N) ◦ ρ̃r (which follows from the definitions).
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By (42), we conclude that
(

id⊗(q−1)
M̃

⊗ (
(idM̃ ⊗ �̂N) ◦ ρ̃r

)) ◦ �̃q = (−1)qN(�̃N ⊗ �̃q) ◦ �C

+
q−1∑
j=0

(−1)j+(q−j)N(
ι̃
⊗j
M ⊗ (�̃N ◦ ∂) ⊗ ι̃

⊗(q−j)
M

) ◦ �′
q+1.

(55)

By applying (51) for p = q to reexpress the first term of the second member of (55),
we obtain precisely the composition of (53) with id⊗q

M̃
⊗ �̂N , where we have used

�̂N ◦ ι̂C = �̃N . The lemma is thus proved. �
LEMMA 6.20. Assume that the hypothesis A0 holds. Then,

∂ ◦ �′
1 = (�′

0 ⊗ idC) ◦ �C − (idC ⊗ �′
0) ◦ �C,

�̃1 ◦ ∂ = (�̃0 ⊗ ι̃M) ◦ ρl − (ι̃M ⊗ �̃0) ◦ ρr

(56)

hold.

Proof. It suffices to prove that the composition of the first (resp., second) identity in
(56) with π̃C

i (resp., π̃M
i ) holds for every i ∈ 2�0 (resp., i ∈ 2�0 + 1). The composition

of the first equation in (56) with π̃C
0 is clearly verified, by definition of ∂, �′

0 and �′
1.

Moreover, the composition of the second equation in (56) with π̃M
1 is precisely (15)

for j = 1. Assume now that the composition of both identities in (56) with π̃C
i (resp.,

π̃M
i ) holds for every i ∈ 2�0 (resp., i ∈ 2�0 + 1) such that i < �0, for some �0 ∈ �. We

will prove that the composition of both identities in (56) with π̃C
i (resp., π̃M

i ) holds for
i = �0.

Let us deal with the second identity in (56). We remark that all of the arguments
in the proof of Lemma 6.16 up to (and including) (48) are also valid for q = 0. We will
also follow the notation given there. In this case, the last sum in (48) is trivial, and we
only use the expression for the first two terms of (48) given by the third member of
(47), which tells us that the composition of the left member of (44) for q = 0 with (45)
and  gives

 ◦
((

(�̃N ⊗ �̃0) ◦ �C
) ⊗ ι̃M

)
◦ ρl −  ◦

((
(�̃N ⊗ ι̃M) ◦ ρl

) ⊗ �̃0

)
◦ ρr

+  ◦ (
(�̃N ◦ ∂ ◦ �′

1) ⊗ ι̃M
) ◦ ρl.

(57)

By (21), it is clear that second term in (57) is precisely the composition of the second
term of the second member of (44) for q = 0 with (45) and . Moreover, using the
fact that M is a left C-comodule together with the inductive assumption on the first
equation of (56), we conclude that the sum of the first and third terms of (57) is equal
to the composition of the first term of the second member of (44) for q = 0 with (45)
and .

Finally, let us prove the first identity in (56). We first note that we can consider
�0 > 1. Moreover, proving that the composition of the first identity in (56) with π̃C

�0

holds is tantamount to showing that the composition of the first equation in (56) with
π̃M̃

ī ◦ �̃N holds for all ī ∈ (2�0 + 1)N such that |ī| = �0, by definition of �̃N . This latter
composition is precisely the composition of the identity (51) for p = 0 with π̃M̃

ī . To
prove it holds, we remark first that all of the arguments in the proof of Fact 6.18 up to
(and including) the vanishing of the first sum in the second member of (52) are also
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valid for p = 0. Indeed, by the inductive assumption on the second equation of (56)
and Lemma 6.19, we see that the proof in Fact 6.17 also holds for the composition
of (49) with π̃M̃

ī if p = 0. Hence, another application of (49) for p = 0 and p′ = N − 1
gives exactly the composition of the identity (51) for p = 0 with π̃M̃

ī , as was to be
shown. The lemma is thus proved. �

LEMMA 6.21. Assume that the hypothesis Aq holds for some q ∈ {1, . . . , N − 1}.
Then, �̃q : C → M̃⊗q factors through the canonical inclusion ι̃

⊗q
M , i.e., there exists (a

unique map) �′
q : C → M⊗q such that ι̃

⊗q
M ◦ �′

q = �̃q.

Proof. It suffices to prove that, given any j ∈ {0, . . . , q} and any ī′ ∈ (2�0 + 1)q,
then

Im(π̃M̃
ī′ ◦ �̃q) ⊆ Mi′1 ⊗ · · · ⊗ Mi′j ⊗ M̃i′(j+1)

⊗ · · · ⊗ M̃i′q , (58)

where for the case j = 0 the right member of (58) is M̃i′1 ⊗ · · · ⊗ M̃i′q , whereas, for the
case j = q it gives precisely Mi′1 ⊗ · · · ⊗ Mi′q , which is what we want to prove. In order
to do it, we proceed by induction on the index j, the case j = 0 being obviously verified.
Assume that (58) holds for all j ∈ {0, . . . , j0 − 1}, with j0 ∈ �≤q. We will prove it for j =
j0. Note that the inductive assumption together with (35) for ī = (i′1 − 1, 1, i′2, . . . , i′q)
if j0 = 1, and (36) for j = j0 − 1 and ī = (i′1, . . . , i′j0−1, i′j0 − 1, 1, i′j0+1, . . . , i′q) if j0 > 1
(which hold due to Lemma 6.14) tell us precisely that

Im(π̃M̃
ī ◦ �̃q) ⊆ Mi′1 ⊗ · · · ⊗ Mi′j0−1

⊗ (Ci′j0 −1 ⊗ V ) ⊗ M̃i′j0+1
⊗ · · · ⊗ M̃i′q , (59)

whereas, the inductive assumption together with (36) for j = j0 and the vector ī =
(i′1, . . . , i′j0−1, 1, i′j0 − 1, i′j0+1, . . . , i′q) if j0 < q (which holds due to Lemma 6.14), and
(54) for ī = (i′1, . . . , i′q−1, 1, i′q − 1) if j0 = q (which holds due to Lemma 6.19) imply
that

Im(π̃M̃
ī ◦ �̃q) ⊆ Mi′1 ⊗ · · · ⊗ Mi′j0−1

⊗ (V ⊗ Ci′j0 −1) ⊗ M̃i′j0+1
⊗ · · · ⊗ M̃i′q . (60)

Indeed, (60) holds for j0 = q due to the mentioned equation (54), and the other cases
follow from an inductive argument on j0 and |ī| using (9), (35) and (36). Since Mi′ =
(Ci′−1 ⊗ V ) ∩ (V ⊗ Ci′−1) for any i′ ∈ 2�0 + 1 (by (10)), then (58) for j = j0 holds. The
lemma is thus proved. �
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